Empirically Evaluating Multiagent Reinforcement Learning Algorithms

Asher Lipson – alipson@cs.ubc.ca MSc Thesis talk: 12 September 2005

Supervised by Kevin Leyton-Brown and Nando de Freitas

Road map

- Introduction
- Reinforcement Learning
- Multiagent Learning Algorithms
- Game Theory
- Existing Experimental Methods
- A Platform for Multiagent Reinforcement Learning
- Empirical Test and Results

• Questions

Introduction

• Interest in algorithms for game theoretic settings

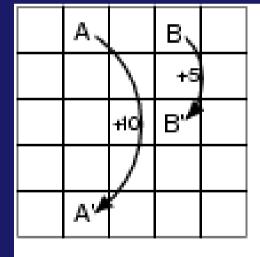
Focus: New Algorithms, eg. Littman [1994]; Claus and Boutilier [1997]; Singh *et al.* [2000]; Bowling and Veloso [2001]; Bowling [2004]

- Lack general understanding of strengths and weaknesses Different metrics used to judge performance
- This research has two contributions:
 - 1. A platform for experiments on MARL algorithms
 - 2. Analysis of an empirical test run on the platform

Reinforcement Learning

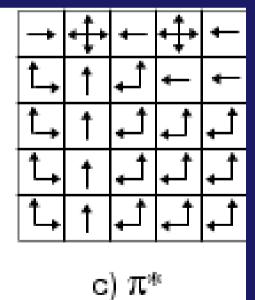
- Method to learn optimal actions in an environment
- Algorithm receives information about the state,
 - takes an action and then receives feedback/reward
- Reward only dependent on agent's action
- Goal: Find optimal action in each state
- Popular RL method: Q-learning [Watkins and Dayan, 1992]
- Examples: Helicopter flying [Ng et al., 2004],

Single agent environments [Sutton and Barto, 1999]



a) gridworld

22.0	24,4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7



b) V^{*}

Multiagent Learning

- Multiple agents interacting in single environment
- Repeatedly play actions
- BUT
 - Environment is no longer stationary
 - Agent's reward dependent on EVERYONE's actions
 - Notion of optimality from SARL does not exist

Game Theory

- Repeated games:
 - Set of agents repeatedly play a normal form game (NFG)
 - NFG: Matrix of payoffs indexed by agents' actions
- Nash equilibrium (NE):
 - Every agent is best responding to every other agent
 - No agent can obtain higher reward by changing strategy
- Two most common paradigms:

Reward obtained and Convergence to a NE

$MARL: Algorithms ({\it some of them})$

• Fictitious play [Brown, 1951]

Count-based estimate, play best response

• Minimax-Q [Littman, 1994]

Modify Q-learning; Assume the worst of the opponent

• GIGA-WoLF [Bowling, 2004]

Estimate, Gradient, WoLF (variable step size), regret

 Global Stochastic Approximation (GSA) [Spall, 2003]
 Estimate, Annealing+Stochastic approximation, adds "jump"

Existing Experimental Methods

- Algorithms & their parameters
- Games
- Runs or trials
- Iterations per trial
- Settling vs. recording iterations

A Platform for MARL: Details

- Open, reusable platform
- Now available on the web
- Object-oriented Matlab
- All interaction through GUIs
- Currently 12 algorithms (including ones described earlier)
- Games from GAMUT software [Nudelman et al., 2004]
- Game properties solved by Gambit [McKelvey et al., 2004]

-Agents	Games	
determined_agent - Add Agent	ArmsRace Add Ga	ame
	Number of actions/agent 2	
fictitious_agent	ArmsRace	
giga_wolf_agent gsa_agent minimax_agent Modify Agent	BertrandOligopoly CournotDuopoly CovariantGame Modify G	ame
minimax_idr_agent	DispersionGame GuessTwoThirdsAve	
Delete Agent	GrabTheDollar LocationGame MinimumEffortGame	ame
	MajorityVoting	
Best response Types of metrics	Number of runs 100	
Available metrics	Number of runs 100 Number of iterations 100000	
Available metrics	Number of iterations 100000 Settling in iterations 90000	
K-competitiveness Available metrics for this type Frequency to measure metric 1 Add Metric	Number of iterations 100000 Settling in iterations 90000	
K-competitiveness Available metrics for this type	Number of iterations 100000 Settling in iterations 90000	
K-competitiveness Available metrics for this type Frequency to measure metric Best response:K-competitiveness Best response:Sum of incentives t Nash equilibrium:L1-Norm converg Rewards obtained:Number of wins Rewards obtained:Regret	Number of iterations 100000 Settling in iterations 90000 Session Type	
K-competitiveness Available metrics for this type Frequency to measure metric 1 Add Metric Best response: K-competitiveness Best response: Sum of incentives t Nash equilibrium: L1-Norm converg Rewards obtained: Number of wins Rewards obtained: Number of wins Rewards obtained: Regret Rewards obtained: Reward obtaine Strategy tracking: 1-norm Modify Metric	Number of iterations 100000 Settling in iterations 90000 Session Type	
K-competitiveness Available metrics for this type Frequency to measure metric Best response: K-competitiveness Best response: Sum of incentives t Nash equilibrium:L1-Norm converg Rewards obtained: Number of wins Rewards obtained: Regret Rewards obtained: Regret Strategy tracking:1-norm	Number of iterations 100000 Settling in iterations 90000 Session Type	

A Platform for MARL: Metrics

- Reward-based Metrics (7)
 - eg. Reward, regret, incentive to deviate, # wins
- Nash Convergence-based Metrics (2) :
 - eg. Joint ℓ_1 distance to closest equilibrium
- Estimating opponent's strategy (4):
 - ℓ_1 distance between estimate and actual

Visualisation

- View 4D table (algorithms, games, iterations, runs)
- User controlled in a step-by-step process
- Can visualise specific subset of data cells in table and aggregate over the rest
- eg: Average reward achieved by each agent overall;
 Box plot of a metric results for each algorithm pairing;
 Average distance to a NE in each game

Empirical Test

- Six Algorithms: GIGA-WoLF, GSA, Minimax-Q, Minimax-Q-IDR, Q-learning, Fictitious Play
- Seven metrics
- 1200 10x10 instances from 12 game generators
- 1200 2x2 instances from TwoByTwo game generator
- 100k iterations, 90k settle, 10k record
- Kolmogorov-Smirnov Z test used to test statistical similarity

High-level Observations

- 9 High-level observations, including:
 - 1. No algorithm dominates
 - 2. Different generators are required for accurate performance
 - 3. No relationship between algorithm performance and the number of actions in the game
 - 4. Large experiments are easier to run on our platform

Reducing the Size of the Space

- 21 algorithm pairs, 24 game generators, 100 instances, 10k iterations = 504 million cells in the 4D data table
- Too big to consider the results in each cell \Rightarrow
 - 1. Average over iterations
 - 2. Average over instances
 - 3. Generators split into 2x2 & 10x10 sets
 - 4. Algorithms kept separate
- 19 total claims/hypotheses, subset described next

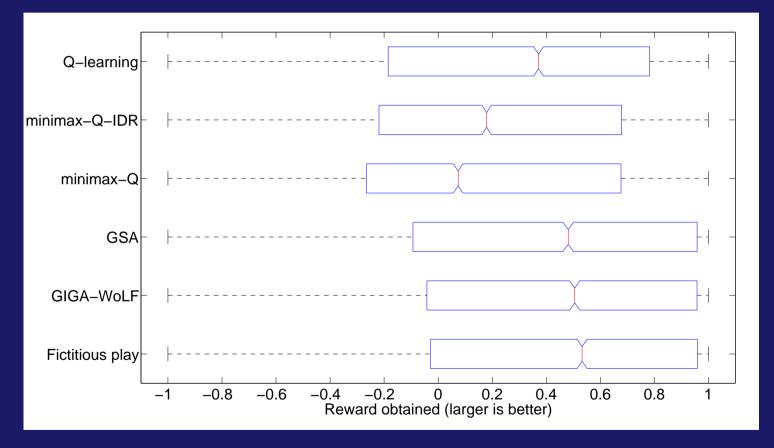
Results: Reward-based

- No algorithm obtains highest avg. reward in either 2x2 or 10x10 sets of generators.
- \Rightarrow Average reward is opponent dependent

- Q-learning achieves highest mean and median reward in 2x2 set.
- \Rightarrow Averaged over all opponents, games



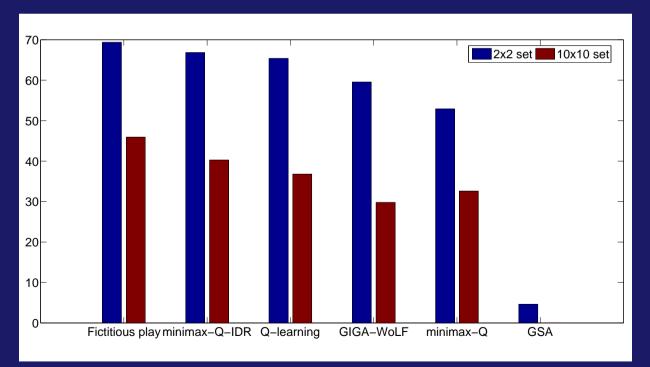
• Fictitious play obtains highest avg. mean and median reward in 10x10 set.



- Fictitious play obtains highest avg. mean and median reward in 10x10 set.
- GIGA-WoLF achieves lower avg regret, sometimes negative.
- \Rightarrow Designed with this goal in mind

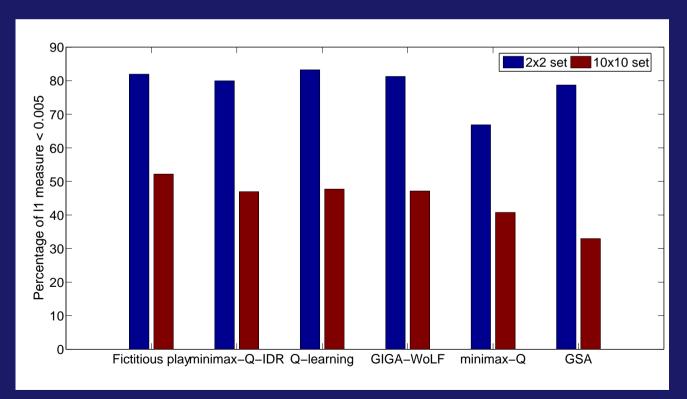
Results: Nash Convergence-based

- No relationship between obtaining reward & converging to a NE.
- Algorithms often converge, but often fail to converge.



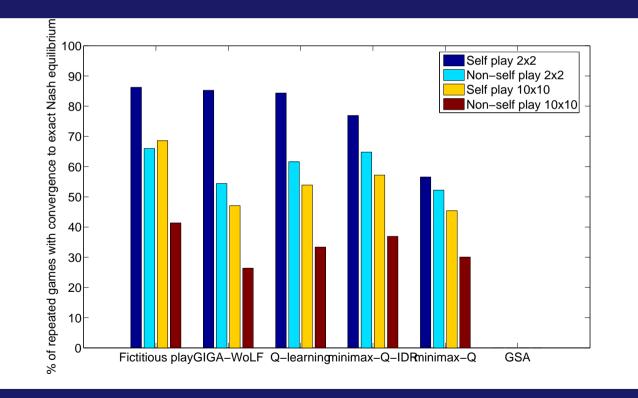
Results: Nash Convergence-based

- Algorithms often converge "close" (< 0.005) to a NE.
- \Rightarrow 2x2: algorithms > 70%; 10x10: Fictitious play > 50%



Results: Nash Convergence-based

• Algorithms converge more often exactly in self play than non-self play.



Conclusion

- Final analysis: 9 observations, 19 claims
- Platform proved to be extremely useful for this research
 Experiment ran for 2 CPU years on the cluster
 Survived several cluster outages
- In analysis phase:

GUI speeded up selection of interesting parameters Meant we probably ran more iterations of analysis

• Configuration files made available for reproducibility

I will use Google before asking dumb questions. www.mrburns.nl before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions. I will use Google before asking dumb questions I will use Google before asking dumb questions. I will use Google before asking dumb questions

References

- M. Bowling and M. Veloso. Convergence of Gradient Dynamics with a Variable Learning Rate. In *ICML 18*, June 28 – July 1 2001.
- M. Bowling. Convergence and no-regret in multiagent learning. In NIPS 17, 2004.
- G. Brown. Iterative Solution of Games by Ficticious Play. In Activity Analysis of Production and Allocation, New York, 1951.
- C. Claus and C. Boutilier. The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems. In AAAI 4, pages 746 752, July 28 1997.
- M. Littman. Markov Games as a Framework for Multi-agent Reinforcement Learning. In *ICML* 11, pages 157 163, 1994.
- R.D. McKelvey, A.M. McLennan, and T.L. Turocy. Gambit: Software Tools for Game Theory. Version 0.97.0.6. http://econweb.tamu.edu/gambit, 2004.
- A.Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and E. Liang. Inverted Autonomous Helicopter Flight via Reinforcement Learning. In *Int. Symposium on Experimental Robototics*, 2004.

- E. Nudelman, J. Wortman, K. Leyton-Brown, and Y. Shoham. Run the GAMUT: A Comprehensive Approach to Evaluating Game-Theoretic Algorithms. In AAMAS 3, July 19 – 14 2004.
- S. Singh, M. Kearns, and Y. Mansour. Nash Convergence of Gradient Dynamics in General-Sum Games. In UAI 16, 2000.
- J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control. John Wiley & Sons, Hoboken, New Jersey, 2003.
- R.S. Sutton and A.G. Barto. *Reinforcement Learning, An Introduction*. The MIT Press, Cambridge, Massachusetts, 1999.
- C.H. Watkins and P. Dayan. Q-Learning: Technical Note. Machine Learning, 8:279–292, 1992.