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Road map

• Introduction

• Reinforcement Learning

• Multiagent Learning Algorithms

• Game Theory

• Existing Experimental Methods

• A Platform for Multiagent Reinforcement Learning

• Empirical Test and Results

• Questions
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Introduction

• Interest in algorithms for game theoretic settings

Focus: New Algorithms, eg. Littman [1994]; Claus and Boutilier

[1997]; Singh et al. [2000]; Bowling and Veloso [2001]; Bowling [2004]

Lack general understanding of strengths and weaknesses

Different metrics used to judge performance

• This research has two contributions:

1. A platform for experiments on MARL algorithms

2. Analysis of an empirical test run on the platform
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Reinforcement Learning

• Method to learn optimal actions in an environment

• Algorithm receives information about the state,

takes an action and then receives feedback/reward

• Reward only dependent on agent’s action

• Goal: Find optimal action in each state

• Popular RL method: Q-learning [Watkins and Dayan, 1992]

• Examples: Helicopter flying [Ng et al., 2004],

Single agent environments [Sutton and Barto, 1999]
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(a)

(b)
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Multiagent Learning

• Multiple agents interacting in single environment

• Repeatedly play actions

• BUT

Environment is no longer stationary

Agent’s reward dependent on EVERYONE’s actions

Notion of optimality from SARL does not exist
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Game Theory

• Repeated games:

Set of agents repeatedly play a normal form game (NFG)

NFG: Matrix of payoffs indexed by agents’ actions

• Nash equilibrium (NE):

Every agent is best responding to every other agent

No agent can obtain higher reward by changing strategy

• Two most common paradigms:

Reward obtained and Convergence to a NE
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MARL: Algorithms (some of them)

• Fictitious play [Brown, 1951]

Count-based estimate, play best response

• Minimax-Q [Littman, 1994]

Modify Q-learning; Assume the worst of the opponent

• GIGA-WoLF [Bowling, 2004]

Estimate, Gradient, WoLF (variable step size), regret

• Global Stochastic Approximation (GSA) [Spall, 2003]

Estimate, Annealing+Stochastic approximation, adds

“jump”
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Existing Experimental Methods

• Algorithms & their parameters

• Games

• Runs or trials

• Iterations per trial

• Settling vs. recording iterations
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A Platform for MARL: Details

• Open, reusable platform

• Now available on the web

• Object-oriented Matlab

• All interaction through GUIs

• Currently 12 algorithms (including ones described earlier)

• Games from GAMUT software [Nudelman et al., 2004]

• Game properties solved by Gambit [McKelvey et al., 2004]
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A Platform for MARL: Metrics

• Reward-based Metrics (7)

eg. Reward, regret, incentive to deviate, # wins

• Nash Convergence-based Metrics (2) :

eg. Joint ℓ1 distance to closest equilibrium

• Estimating opponent’s strategy (4):

ℓ1 distance between estimate and actual
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Visualisation

• View 4D table (algorithms, games, iterations, runs)

• User controlled in a step-by-step process

• Can visualise specific subset of data cells in table

and aggregate over the rest

• eg: Average reward achieved by each agent overall;

Box plot of a metric results for each algorithm pairing;

Average distance to a NE in each game
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Empirical Test

• Six Algorithms: GIGA-WoLF, GSA, Minimax-Q,

Minimax-Q-IDR, Q-learning, Fictitious Play

• Seven metrics

• 1200 10x10 instances from 12 game generators

• 1200 2x2 instances from TwoByTwo game generator

• 100k iterations, 90k settle, 10k record

• Kolmogorov-Smirnov Z test used to test statistical sim-

ilarity
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High-level Observations

• 9 High-level observations, including:

1. No algorithm dominates

2. Different generators are required for accurate per-

formance

3. No relationship between algorithm performance and

the number of actions in the game

4. Large experiments are easier to run on our platform
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Reducing the Size of the Space

• 21 algorithm pairs, 24 game generators, 100 instances,

10k iterations = 504 million cells in the 4D data table

• Too big to consider the results in each cell ⇒

1. Average over iterations

2. Average over instances

3. Generators split into 2x2 & 10x10 sets

4. Algorithms kept separate

• 19 total claims/hypotheses, subset described next
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Results: Reward-based

• No algorithm obtains highest avg. reward in either 2x2

or 10x10 sets of generators.

⇒ Average reward is opponent dependent
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• Q-learning achieves highest mean and median reward

in 2x2 set.

⇒ Averaged over all opponents, games
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• Fictitious play obtains highest avg. mean and median

reward in 10x10 set.
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• Fictitious play obtains highest avg. mean and median

reward in 10x10 set.

• GIGA-WoLF achieves lower avg regret, sometimes neg-

ative.

⇒ Designed with this goal in mind
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Results: Nash Convergence-based

• No relationship between obtaining reward & conver-

ging to a NE.

• Algorithms often converge, but often fail to converge.
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Results: Nash Convergence-based

• Algorithms often converge “close” (< 0.005) to a NE.

⇒ 2x2: algorithms > 70%; 10x10: Fictitious play > 50%
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Results: Nash Convergence-based

• Algorithms converge more often exactly in self play

than non-self play.
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Conclusion

• Final analysis: 9 observations, 19 claims

• Platform proved to be extremely useful for this research

Experiment ran for 2 CPU years on the cluster

Survived several cluster outages

• In analysis phase:

GUI speeded up selection of interesting parameters

Meant we probably ran more iterations of analysis

• Configuration files made available for reproducibility
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