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Introduction

Despite years of research into novel designs, search engines have
held on to (quality-weighted) GSP.

Question

How can revenue be maximized within the GSP framework?

Various (reserve price; squashing) schemes have been proposed.

We do three kinds of analysis:

theoretical: single slot, Bayesian

computational, perfect information: enumerate all pure
equilibria; consider best and worst

computational: consider the equilibrium corresponding to a
DS truthful mechanism with the appropriate allocation rule
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1 Model and auctions

2 Theoretical analysis, single-slot auctions

3 What happens in the multi-slot case?

4 Equilibria corresponding to DS truthful mechanisms
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Modeling advertisers

Definition (Varian’s model [Varian 07])

Each advertiser i has a valuation vi per click, and quality score qi.
In position k, i’s ad will be clicked with probability αkqi, where αk

is a position-specific click factor.
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“Vanilla” GSP

rank by biqi, charge lowest amount that would preserve
position in the ranking.

1 slot, 2 bidders, quality scores q1 = 1 and q2 = 0.5:
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GSP with Squashing

rank by bi(qi)
s, s ∈ [0, 1] [Lahaie, Pennock 07].

s = 1: vanilla GSP
s = 0: no quality weighting

used in practice by Yahoo!, according to media reports
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1 slot, 2 bidders, quality scores q1 = 1 and q2 = 0.5, s = 0.19.
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GSP with unweighted reserves (UWR)

Vanilla GSP with global minimum bid and payment of r

UWR was common industry practice; now replaced by QWR.
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1 slot, 2 bidders, quality scores q1 = 1 and q2 = 0.5, r = .549.
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GSP with quality-weighted reserves (QWR)

Vanilla GSP with per-bidder minimum bid and payment r/qi
UWR was common industry practice; now replaced by QWR.
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1 slot, 2 bidders, quality scores q1 = 1 and q2 = 0.5, r = .375.
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GSP with unweighted reserves and squashing (UWR+sq)
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1 slot, 2 bidders, quality scores q1 = 1 and
q2 = 0.5, r = .505, s = 0.32.
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GSP: quality-weighted reserves and squashing (UWR+sq)
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1 slot, 2 bidders, quality scores q1 = 1 and
q2 = 0.5, r = .472, s = 0.24.
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Our main findings

Considering Varian’s valuation model, our main findings:

QWR is consistently the lowest-revenue reserve-price variant,
and substantially worse than UWR.

Anchoring: a new GSP variant that is provably optimal in
some settings, and does well in others

first systematic investigation of the interaction between
reserve prices and squashing

first systematic investigation of the effect of equilibrium
selection on the effectiveness of revenue optimization
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Revenue-optimal position auctions

The auctioneer is selling impressions. A bidder’s
per-impression valuation is qivi, where:

the auctioneer knows qi
the auctioneer knows the distribution from which vi comes

Thus, even if per-click valuations are i.i.d., each bidder has a
different per-impression valuation distribution, and the seller
knows about those differences.

Strategically, it doesn’t matter how q’s are distributed, because
it is impossible for a bidder to participate in the auction
without revealing this information.
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Optimality of unweighted reserves

Proposition
Consider any one-position setting where each agent i’s per-click valuation vi is
independently drawn from a common distribution g. If g is regular, then the
optimal auction uses the same per-click reserve price r for all bidders.

Proof.

Because g is regular, we must maximize virtual surplus.

i’s value per-impression is qivi.

Transforming g into a per-impression valuation distribution f gives:
f(qivi) = g(vi)/qi and F (givi) = G(vi).

Substituting into the virtual value function gives:

ψi(qivi) = qi

(
vi −

1−Gi(vi)

gi(vi)

)
Optimal per-click reserve ri is solution to ψi(qiri) = 0, which is
independent of qi. 2
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Uniform distribution, single slot

Definition (Anchoring GSP)

Bidders face an unweighted
reserve r, and those who exceed
it are ranked by (bi − r)qi.

Proposition

When per-click valuations are
drawn from the uniform
distribution, anchoring GSP is
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Optimizing GSP variants by grid search: uniform, 2 bidders

Auction Revenue (±1e− 5) Parameters

VCG/GSP 0.208 —
Squashing 0.255 s = 0.19

QWR 0.279 r = 0.375
UWR 0.316 r = 0.549

QWR+Sq 0.321 r = 0.472, s = 0.24
UWR+Sq 0.322 r = 0.505, s = 0.32
Anchoring 0.323 r = 0.5

Anchoring’s r agrees with [Myerson 81] and QWR’s with [Sun,

Zhou, Deng 11].

Optimal parameters for other variants don’t correspond to
recommendations from the literature.
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Optimal auction for the log-normal distribution

Anchoring is not always optimal
(but perhaps it is always a good approximation?)
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Optimal auction for log normal, 1 slot, 2 bidders, quality scores
q1 = 1 and q2 = 0.5. Anchoring shown for comparison.
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2 Theoretical analysis, single-slot auctions
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4 Equilibria corresponding to DS truthful mechanisms
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Computing equilibria

Action-graph games (AGGs) exploit structure to represent
games in exponentially less space than than the normal form
[Bhat, LB 04; Jiang, LB 06; Jiang, LB, Bhat 11].

Games involving GSP and Varian’s preference model have
such structure [Thompson, LB 09].

Heuristic tree search can enumerate all pure-strategy Nash
equilibria of an AGG [Thompson, Leung, LB 11].

S1={H} S1={T} S1={H,T}

S2={H} S2={T} S2={H,T}
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Investigating multiple slots with grid search

Leverage AGGs to consider more than a single slot, and to
examine different equilibria of GSP variants to determine
impact of equilibrium selection

Sample perfect-information games from the distribution over
values and quality scores

5 bidders; 26 bid increments each; 3 slots; uniform valuations

enumerate pure-strategy equilibria
consider statistics over their best and worst (conservative) NE.

Identify optimal parameter settings by performing fine-grained
grid search.
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Equilibrium Selection and Reserve Prices
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Anchoring

Any reserve scheme dramatically improves vanilla GSP’s
worst-case revenue (look at reserves of $0).

Optimal unweighted reserves are higher than quality-weighted.

High bidding can do the work of high reserve prices. Thus,
worst-case reserve prices tend to be higher than best case.
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Equilibrium Selection and Squashing
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Squashing can improve revenue in best- and worst-case
equilibrium. (Recall: s = 1 is vanilla GSP.)

Smaller impact, lower sensitivity than reserve prices.

Gap between best and worst is consistently large (∼ 2.5×).
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Comparing variants optimized for best/worst case

Auction Revenue

Vanilla GSP 3.814
Squashing 4.247

QWR 9.369
Anchoring 10.212
QWR+Sq 10.217
UWR 11.024

UWR+Sq 11.032

Worst-case equilibrium

Auction Revenue

Vanilla GSP 9.911
QWR 10.820

Squashing 11.534
UWR 11.686

Anchoring 12.464
QWR+Sq 12.627
UWR+Sq 12.745

Best-case equilibrium

Worst case: 2-way tie (UWR+Sq, UWR)

Best case: 3-way tie (UWR+Sq, QWR+Sq, Anchoring)

UWR’s worst case is better than QWR’s best case.
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Equilibrium Selection

With vanilla GSP, it’s common to study the equilibrium that leads
to the efficient (thus, VCG) outcome. Many reasons why this is an
interesting equilibrium:

Existence, uniqueness, polytime computability [Aggarwal et al 06]

Envy-free, symmetric, competitive eq [Varian 07; EOS 07]

Impersonation-proof [Kash, Parkes 12]

Doesn’t predict that GSP gets more revenue than Myerson
(“Non-contradiction criterion”) [ES 10]

Analogously, can compute the equilibrium corresponding to a DS
truthful mechanism with the appropriate allocation rule.

see previous analyses of squashing [LP 07] and reserves [ES 10].
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Distributions

For these experiments, we used two distributions:

Uniform vi’s drawn from uniform (0, 25); qi’s drawn from
uniform (0, 1).

Log-Normal qi’s and vi’s drawn from log-normal
distributions; qi positively correlated with vi by Gaussian
copula. (Similar to [LP07]; new parameters based on personal
communication.)

We compute equilibrium following recursion of [Aggarwal et al 06].
We optimize parameters by grid search.
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Revenue across GSP variants, optimal parameters

Auction Revenue

VCG 7.737
Squashing 9.123

QWR 10.598
UWR 12.026

QWR+Sq 12.046
Anchoring 12.2
UWR+Sq 12.220

Uniform distribution

Auction Revenue

VCG 20.454
QWR 48.071

Squashing 53.349
QWR+Sq 79.208

UWR 80.050
Anchoring 80.156
UWR+Sq 81.098

Log-Normal Distribution
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Reserve Prices
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All three reserve-based variants (anchoring, QRW and UWR)
provide substantial revenue gains (compare to reserve 0).

Anchoring very slightly better than UWR; both substantially
better than QWR.
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Squashing + UWR
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Adding squashing to UWR provides small marginal
improvements (compare to s = 1) and does not substantially
affect the optimal reserve price.
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Squashing + QWR
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Adding squashing to QWR yields big improvements (compare
to s = 1); high sensitivity.
But, the higher the squashing power (s→ 0), the less reserve
prices are actually weighted by quality.
Log-normal: optimal parameter setting (s = 0.0) removes
quality scores entirely and is thus equivalent to UWR.
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Does squashing help QWR via reserve or ranking?
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Applying squashing only to reserve prices can dramatically
increase QWR’s revenue (compare to s = 1).

However, there has to be a lot of squashing (i.e., s close to 0)
optimal reserve is very dependent on squashing power
optimal parameter setting is s = 0: identical to UWR

Applying squashing only to ranking, the marginal gains from
squashing over QWR (with optimal reserve) are very small.
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Does squashing help QWR via reserve or ranking?
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Applying squashing only to reserve prices can dramatically
increase QWR’s revenue (compare to s = 1).

However, there has to be a lot of squashing (i.e., s close to 0)
optimal reserve is very dependent on squashing power
optimal parameter setting is s = 0: identical to UWR

Applying squashing only to ranking, the marginal gains from
squashing over QWR (with optimal reserve) are very small.
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Scaling

Because equilibrium computation is cheap, we can scale up.
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Top 4 mechanisms are still nearly tied. Squashing and QWR
are consistently below.

As n increases, squashing gains on QWR.

For log normal, squashing substantially outperforms QWR.
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Conclusions

We optimized revenue in GSP-like auctions under Varian’s
valuation model, conducting three different kinds of analysis.

QWR was consistently the lowest-revenue reserve-price
variant, and substantially worse than UWR.

Anchoring does well; optimal in simple settings

Equilibrium selection: vanilla GSP, squashing have big gaps
between best and worst case

Squashing helps both UWR and QWR.

Why do search engines prefer QWR to UWR? Possible explanations:

Whoops—they should use UWR.

Analysis should consider long-run revenue

Analysis should consider cost of showing bad ads

Actually, they do some other, secret thing, not QWR.
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