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Context

Motivation: Predict human behavior in strategic settings.

Our focus: Unrepeated “initial play” in simultaneous-move,
2-player games.

Game theory: Studies idealized rational agents, not human
agents.

Behavioral game theory: Aims to extend game theory to
modeling human agents.

There are a wide range of BGT models in the literature.
Historically, BGT has been most concerned with explaining
behavior, often on particular games, rather than predicting it.
No study compares a wide range of models, considers
predictive performance, or looks at such a large, heterogeneous
set of games.
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Contribution

Our contributions:

Compared predictive performance of the most prominent
solution concepts for our setting:

Nash equilibrium, plus
Four models from behavioral game theory

. . . using nine experimental datasets from the literature

Bayesian sensitivity analysis:

Yields new insight into existing model (Poisson-CH)
Argues for a novel simplification of an existing model
(Quantal level-k)
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Example: Traveler’s Dilemma

2 3 4 96 97 98 99 100
. . .

100

100

96 + 2 = 98

96− 2 = 94 100

100

99− 2 = 97

99 + 2 = 101

98 + 2 = 100

98− 2 = 96

2

2

Two players pick a number (2-100) simultaneously.

If they pick the same number, that is their payoff.

If they pick different numbers:

Lower player gets lower number, plus bonus of 2.
Higher player gets lower number, minus penalty of 2.
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Nash equilibrium and human subjects

Nash equilibrium often makes counterintuitive predictions.

In Traveler’s Dilemma: The vast majority of human players
choose 97–100. The Nash equilibrium is 2.

Modifications to a game that don’t change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001].

In Traveler’s Dilemma: When the penalty is large, people play
much closer to Nash equilibrium.
But the size of the penalty does not affect equilibrium.

Clearly Nash equilibrium is not the whole story.

Behavioral game theory proposes a number of models to
better explain human behavior.

September 10, 2012: OpLog Kevin Leyton-Brown
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BGT model: Quantal response equilibrium (QRE)

Cost-proportional errors: Agents are less likely to make high-cost
mistakes than low-cost mistakes.

QRE model [McKelvey & Palfrey 1995] parameter: (λ)

Agents quantally best respond to each other.

QBRi(s−i, λ)(ai) =
eλui(ai,s−i)∑

a′i∈Ai
eλui(a

′
i,s−i)

Precision parameter λ ∈ [0,∞) indicates how sensitive agents
are to utility differences.

λ = 0 means agents choose actions uniformly at random.
As λ→∞, QBR approaches best response.
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Nice story—but is QRE a good model?

Let’s say we pay a bunch of people to play games against each
other, and gather some data. Now we’d like to know how good a
job our QRE model does. How would we do that?

Two issues:

have to set the model’s parameter (λ) to use it at all;

must ensure that we do this in a way that generalizes to new
play by the same people.

September 10, 2012: OpLog Kevin Leyton-Brown
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Scoring a model’s performance

We randomly partition our data into different sets:
D = Dtrain ∪ Dtest
We choose parameter value(s) that maximize the likelihood of
the training data:

#»

θ ∗ = argmax
#»
θ

Pr(Dtrain |M,
#»

θ ).

a tricky non-convex optimization problem

We score the performance of a model by the likelihood of the
test data:

Pr(Dtest |M,
#»

θ ∗).

To reduce variance, we repeat this process multiple times with
different random partitions and average the results
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BGT models: Iterative strategic reasoning

Level-0 agents choose actions non-strategically.

In this work (and most others), uniformly at random

Level-1 agents reason about level-0 agents.

Level-2 agents reason about level-1 agents.

There’s a probability distribution over levels.

Higher-level agents are “smarter”; scarcer

Predicting the distribution of play: weighted sum of the
distributions for each level.

September 10, 2012: OpLog Kevin Leyton-Brown
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BGT model: Lk

Lk model [Costa-Gomes et al. 2001] parameters: (α1, α2, ε1, ε2)

Each agent has one of 3 levels: level-0, level-1, or level-2.

Distribution of level [2, 1, 0] agents is [α2, α1, (1− α1 − α2)]

Each level-k agent makes a “mistake” with prob εk, or best
responds to level-(k − 1) opponent with prob 1− εk.

Level-k agents believe all opponents are level-(k − 1).
Level-k agents aren’t aware that level-(k − 1) agents will make
“mistakes”.

IBRi,0 = Ai,

IBRi,k = BRi(IBR−i,k−1),

πLki,0 (ai) = |Ai|−1,

πLki,k (ai) =

{
(1− εk)/|IBRi,k| if ai ∈ IBRi,k,
εk/(|Ai| − |IBRi,k|) otherwise.
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BGT model: Cognitive hierarchy

Cognitive hierarchy model [Camerer et al. 2004] parameter: (τ)

An agent of level m best responds to the truncated, true
distribution of levels from 0 to m− 1.

Poisson-CH: Levels are assumed to have a Poisson distribution
with mean τ .

πPCHi,0 (ai) = |Ai|−1,

πPCHi,m (ai) =


∣∣∣BRi (πPCHi,0:m−1

)∣∣∣−1 if ai ∈ BRi
(
πPCHi,0:m−1

)
,

0 otherwise.

πPCHi,0:m−1 =

∑m−1
`=0 πPCHi,` Pr(Poisson(τ) = `)∑m−1

`=0 Pr(Poisson(τ) = `)
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BGT model: QLk

QLk model [Stahl & Wilson 1994] parameters: (α1, α2, λ1, λ2, λ1(2))

Distribution of level [2, 1, 0] agents is [α2, α1, (1− α1 − α2)]

Each agent quantally responds to next-lower level.

Each QLk agent level has its own precision (λk), and its own
beliefs about lower-level agents’ precisions (λ`(k)).

πQLki,0 (ai) = |Ai|−1,

πQLki,1 = QBRi(π
QLk
−i,0 , λ1),

πQLkj,1(2) = QBRj(π
QLk
−j,0 , λ1(2)),

πQLki,2 = QBRi(π
QLk
−i,1(2), λ2).
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Model comparisons: Nash equilibrium vs. BGT
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Average NEE virtually always worse than every BGT model
(only exception: SW95).

All NEE significantly worse than best BGT model in most
datasets.
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Model comparisons: Lk and CH vs. QRE
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Lk and Poisson-CH performance was strikingly similar.

No consistent ordering between Lk/Poisson-CH and QRE.
Iterative strategic reasoning and quantal response appear to
capture distinct phenomena.
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Model comparisons: QLk
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So perhaps a model with both iterative and quantal response
components would perform best?

In fact, on every dataset, QLk is either the best predictive
model or very similar to the best.
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Taking Stock of What We Have Done

Take-home message so far

QLk is the best of the models for prediction.

Question

How strongly does the data argue for particular parameter values?

September 10, 2012: OpLog Kevin Leyton-Brown
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Posterior distributions

A posterior distribution gives the probability of each possible
combination of parameter values, given the data, e.g.:

Pr(α1 = 0.1, α2 = 0.3, λ = 0.1 | D)

Maximum likelihood only tells us the most likely parameter
setting, given the data.

The posterior distribution over parameter settings describes
the relative probability of all possible parameter settings.

Individual parameters can be analyzed by inspecting the
marginal posterior distribution.

Pr(α1 = 0.1 | D) =
∫∫

Pr(α1 = 0.1, α2 = α′2, λ = λ′ | D)dα′2dλ′

Flat distributions indicate less important parameter values.
Sharp distributions indicate a high degree of certainty.

September 10, 2012: OpLog Kevin Leyton-Brown
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Warm-up: Poisson-CH

Regarding the single parameter (τ) for the Poisson-CH model:

“Indeed, values of τ between 1 and 2 explain empirical
results for nearly 100 games, suggesting that a τ value of
1.5 could give reliable predictions for many other games
as well.” [Camerer et al. 2004]
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Warm-up: Poisson-CH’s Posterior Distribution
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Our analysis gives 99% posterior probability that the best value of
τ is 0.59 or less.

September 10, 2012: OpLog Kevin Leyton-Brown



Introduction Models Model Comparisons Bayesian Analysis

Refresher: QLk’s Parameters

QLk has 5 different parameters:

α1: Proportion of level-1 agents.

α2: Proportion of level-2 agents.

λ1: Precision of level-1 agents.

λ2: Precision of level-2 agents.

λ1(2): Level-2 agents’ belief about level-1 agents’ precision.

πQLki,0 (ai) = |Ai|−1,

πQLki,1 = QBRi(π
QLk
−i,0 , λ1),

πQLkj,1(2) = QBRj(π
QLk
−j,0 , λ1(2)),

πQLki,2 = QBRi(π
QLk
−i,1(2), λ2).

September 10, 2012: OpLog Kevin Leyton-Brown
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Posterior distributions: QLk
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Some surprises:

1 α1, α2: Best fits predict more level-2 agents than level-1.

2 λ1, λ2: Level-2 agents have lower precision than level-1 agents.

3 λ1, λ1(2): Level-2 agents’ beliefs are very wrong.
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Maybe QLk isn’t quite the right model

We constructed a family of models by systematically varying QLk:
1 Top level:

1, 2, 3, 4, 5, 6, 7, Poisson

2 Precisions: Homogeneous or inhomogeneous.

3 Precision beliefs: Accurate or general.

4 Population beliefs: Lk or CH.

We evaluated all variations leading to ≤ 8 parameters.
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Model variations: Efficient frontier
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Efficient frontier: best performance for # of parameters.

QLk (gi-QLk2) is not on the efficient frontier.

Best models all have accurate precision beliefs, homogeneous
precision, cognitive hierarchy population beliefs.
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Thinking back to QLk
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Recall...

α1, α2: Best fits predict more level-2 agents than level-1.

λ1, λ2: Level-2 agents have lower precision than level-1 agents.

λ1, λ1(2): Level-2 agents’ beliefs are very wrong.
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ah-QCH3: Posterior distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Level proportions

α1
α2
α3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

Precisions

λ

More robust model: small parameter changes less likely to
change prediction quality.

Smooth, unimodal distributions for level proportions.

Distribution for λ is unimodal, with narrow confidence region

Still more agents of type 2 than 1.
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Marginal distributions comparison
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Poisson QCH matches tabular L0 proportions very closely.
To do so, forced to match most other proportions poorly.

If L0 were treated specially, could Poisson match others?
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Spike-Poisson model

Spike-Poisson QCH model parameters: (τ, ε, λ)

An ah-QCH model with precision λ.

Proportion distribution f is a mixture of Poisson distribution
and a “spike” distribution of L0 agents:

f(m) =

{
ε+ (1− ε)Poisson(m; τ) if m = 0,

(1− ε)Poisson(m; τ) otherwise.
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Spike-Poisson performance
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Spike-Poisson QCH outperforms all other ah-QCH models
except for ah-QCH5.

Only three parameters, fewer even than ah-QCH3.
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Summary

Compared predictive performance of four BGT models.

BGT models typically predict human behavior better than
Nash equilibrium-based model.
QLk has best performance of the four.

Bayesian sensitivity analysis of parameters.

Parameters for QLk are counterintuitive, hard to identify.
Using CH beliefs and a single precision for all agents yields
more identifiable parameter values, superior predictive
performance.

Even with fewer parameters!

September 10, 2012: OpLog Kevin Leyton-Brown
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Thank you!

Compared predictive performance of four BGT models.

BGT models typically predict human behavior better than
Nash equilibrium-based model.
QLk has best performance of the four.

Bayesian sensitivity analysis of parameters.

Parameters for QLk are counterintuitive, hard to identify.
Using CH beliefs and a single precision for all agents yields
more identifiable parameter values, superior predictive
performance.

Even with fewer parameters!
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