Empirical Hardness Models

A Statistical Approach to Describing Hardness in Practice

Kevin Leyton-Brown

Computer Science Department University of British Columbia

THIS TALK DESCRIBES 10 YEARS OF WORK WITH/BY MANY COLLABORATORS, NOTABLY:

Holger Hoos

Frank Hutter UBC Eugene Nudelman Stanford/Google

Yoav Shoham Stanford Lin Xu UBC

[L-B, Nudelman, Shoham, 2002; 2009] [Nudelman, L-B, Hoos, Devkar, Shoham, 2004] [Xu, Hoos, L-B, 2007] [Hutter, Xu, Hoos, L-B, ongoing work]

Motivating Question

"How hard is it to solve a given problem in practice, using the best available methods?"

The best available methods tend

- to offer no interesting theoretical guarantees
- work astoundingly well in practice
- often exhibit exponentially varying performance
 (e.g., milliseconds to days) even on fixed-size problems

Our Key Finding

Even in settings where **formal analysis seems hopeless**:

algorithms are complex black boxes

instance distributions are heterogeneous or richly structured
 ...it is possible to apply rigorous statistical methods to
 answer such questions with high levels of confidence.

I suspect that many here prefer complexity-theoretic analysis to statistical methods that aim "only" to work in practice

Why I think you should still care:

 the success of statistical methods points to patterns in algorithm performance that aren't yet captured theoretically

Phase Transitions for SAT

 Uniform-random 3-SAT: phase transition in probability of solvability at clauses / variables ≈ 4.26

Phase Transitions for SAT

- Uniform-random 3-SAT: phase transition in probability of solvability at clauses / variables ≈ 4.26
- Corresponding easy-hard-less hard transitions discovered in the behavior of DPLL-type solvers [Cheeseman et al, 1991; Selman et al., 1996]
 - Spawned a new enthusiasm for using empirical methods to study algorithm performance

Kcnfs Data

Kcnfs Data

Kcnfs Data

Where We Stand

Probability of solvability correlates strongly with instance hardness in practice

- However, lots of residual variance
- There's much more going on here

Is it possible to make more accurate predictions?

 Idea: use machine learning methods to look for patterns

[L-B, Nudelman, Shoham, 2002; 2009] [Nudelman, L-B, Hoos, Devkar, Shoham, 2004] [Xu, Hoos, L-B, 2007]

Empirical Hardness Models

- Predict how long an algorithm will take to run, given:
 - A set of instances D
 - For each instance $i \in D$, a vector \mathbf{x}_i of feature values
 - For each instance $i \in D$, a runtime observation y_i
- We want a mapping $f(x) \mapsto y$ that accurately predicts y_i given x_i
 - This is a **regression** problem
 - We've tried about a dozen different methods over the years
 - This choice (sometimes) matters, but features are more important
 - First, let's consider a straightforward, tractable, and often very effective approach: basis function ridge regression

Motivation

SAT Instance Features

- Problem Size (clauses, variables, clauses/variables, ...)
- Syntactic properties (e.g., positive/negative clause ratio)
- Statistics of various constraint graphs
 - factor graph
 - clause–clause graph
 - variable-variable graph
- Knuth's search space size estimate
- Cumulative number of unit propagations at different depths (SATz heuristic)
- Local search probing
- Linear programming relaxation

Variable Ratio Prediction (Kcnfs)

Note: each point corresponds to a "test" instance not used to train the model. 1000 100 Predicted Runtime [CPU sec] 10 1 0.1 0.01 0.1 0.01 10 100 1000 1 Actual Runtime [CPU sec]

Variable Ratio - UNSAT

Variable Ratio - SAT

Actual Runtime [CPU sec]

- We can **analyze a model's features** to identify problem parameters that most affect empirical hardness
 - problem: very high-dimensional models
 - solution: subset selection
 - caveat: other subsets could potentially achieve similar performance
- Questions:
 - Do our models discover the importance of c/v?
 - If so, in what form do the models depend on this quantity?
 - What other features are important?

- We can **analyze a model's features** to identify problem parameters that most affect empirical hardness
 - problem: very high-dimensional models
 - solution: subset selection
 - caveat: other subsets could potentially achieve similar performance

Variable	Cost of Omission
c/v - 4.26	100
c/v - 4.26 ²	69
(v/c) ² · SapsBestCVMean	53
∣c/v - 4.26∣ · SapsBestCVMean	33

- We can **analyze a model's features** to identify problem parameters that most affect empirical hardness
 - problem: very high-dimensional models
 - solution: subset selection
 - caveat: other subsets could potentially achieve similar performance

Variable	Cost of Omission
c/v - 4.26	100
c/v - 4.26 ²	69
(v/c) ² · SapsBestCVMean	53
c/v - 4.26 · SapsBestCVMean	33

- We can **analyze a model's features** to identify problem parameters that most affect empirical hardness
 - problem: very high-dimensional models
 - solution: subset selection
 - caveat: other subsets could potentially achieve similar performance

Fixed Ratio Data

Beyond Uniform-Random 3-SAT

Fixed Ratio Prediction (Kcnfs)

Feature Importance – Fixed Ratio

Variable	Cost of Omission
SapsBestSolMean ²	100
SapsBestSolMean · MeanDPLLDepth	74
GsatBestSolCV · MeanDPLLDepth	21
VCGClauseMean · GsatFirstLMRatioMean	9

Feature Importance – Fixed Ratio

Feature Importance – Fixed Ratio

Empirical Performance of EHMs

Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio

Motivation

Hierarchical Hardness Models

- Conditioning on satisfiability of the instance, single-feature models become sufficient, clauses/variables unimportant
 - Satisfiable: local search probing
 - Unsatisfiable: search space size
- Hierarchical hardness model [Xu, Hoos, Leyton-Brown, 2007]:
 - 1. Predict satisfiability status
 - 2. Use this prediction as a feature to combine the predictions of SAT-only and UNSAT-only models
- Not necessarily easy: SAT-only and UNSAT-only models can make large errors when given wrong data

Predicting Satisfiability Status (fixed-ratio 3-SAT)

Beyond Uniform-Random 3-SAT

Empirical Performance of HHMs

Predicted vs. Actual Log Runtime, SATZ on Uniform Random 3SAT, variable ratio

BEYOND UNIFORM-RANDOM 3-SAT

[L-B, Nudelman, Shoham, 2002; 2009] [Hutter, Xu, Hoos, L-B, 2006–ongoing]

Beyond Uniform-Random 3-SAT

We've shown that EHMs work consistently, across:

- 4 problem domains (with new features in each domain)
 - Combinatorial Auctions
 - Satisfiability (SAT)
 - Mixed Integer Programming (MIP)
 - Travelling Salesman Problem (TSP)
- dozens of **solvers**, including:
 - state of the art solvers in each domain
 - black-box, commercial solvers
- dozens of instance distributions, including:
 - major benchmarks (SAT competitions; MIPLIB; ...)
 - real-world data (hardware verification, computational sustainability, ...)

We've also investigated different machine learning techniques. Overall, we recommend random forests of regression trees.

Actual Runtime

Actual Runtime

Examples: EHMs for SAT

Motivation

Examples: EHMs for MIP

Actual Runtime

Actual Runtime

Actual Runtime

Examples: EHMs for TSP

Modeling Algorithm Design Spaces

- Models can be extended to the sets of algorithms described by solvers with parameters that are:
 - continuous or discrete
 - ordinal or categorical
 - potentially conditional on the values of other parameters
- These models are useful for:
 - understanding hardness of an instance distribution across a (potentially infinite) family of algorithms
 - choosing a solver design to use in practice
 - we can iterate between identifying a design with good predicted performance, and gathering data about this new design
 - "sequential model-based optimization" paradigm in Bayesian statistics

Motivation

Previously Unseen Instances and Configurations

Summary and Applications of EHMs

• Empirical Hardness Models

- a statistically rigorous approach to characterizing the difficulty of solving a given family of problems using available methods
- surprisingly effective in practice, across various domains
- analysis of these models can open avenues for theoretical investigations beyond the worst case
- EHMs are also useful for practical applications:
 - job scheduling (e.g., to minimize makespan)
 - automatic design of algorithm portfolios
 - automatic synthesis of hard benchmark distributions
 - model-based solver tuning/design