Scaling Up Game Theory: Representation and Reasoning with Action Graph Games

Kevin Leyton-Brown

Computer Science University of British Columbia

This talk is primarily based on papers with:

Albert Xin Jiang

Navin A.R. Bhat

[AAAI 2006] [UAI 2004] and a joint paper [GEB, to appear 2010]

and also touches on more recent joint work with Albert Xin Jiang, David R.M. Thompson, Avi Pfeffer, Damien Bargiacchi, and James Wright

The Kind of Games Often Studied

• e.g., Prisoner's Dilemma: you and an accomplice are arrested. Should you confess or stay silent?

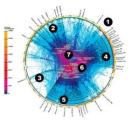
 $\boldsymbol{\Sigma}$

$$\begin{array}{c|c} C & D \\ \hline \\ C & -5, -5 & -20, 0 \\ \hline \\ D & 0, -20 & -1, -1 \end{array}$$

• The analysis of such 2 × 2 games has proven surprisingly interesting, and has had a profound impact both on our understanding of strategic situations and on popular culture

The Kind of Games We'd Like to Study

- In order to use game theory to **model real systems**, we need to consider games with more than two agents and two actions
- Some examples of the kinds of questions we would like to be able to answer:
 - How will heterogeneous users route their traffic in a network?
 - How will advertisers bid in a sponsored search auction?
 - Which job skills will students choose to pursue?
 - Where in a city will businesses choose to locate?
- Most GT work is analytic, not computational
- What's holding us back?
 - the size of classical game representations grows exponentially in the number of players
 - this makes all but the simplest games infeasible to write down
 - even when games can be represented, "fast" algorithms often have worst-case performance exponential in the game's size



Compact Representations

Research program for advancing the computational analysis of games:

- 1. find representations that can encode games of interest in **exponentially-less space** than the normal form
- 2. find **efficient algorithms** for working with these representations

Key representations from the literature:

- Graphical Games [Kearns, Littman, Singh, 2001]
 - utility functions exhibit strict independence
 - some pairs of agents have no (direct) effect on each other's payoff
 - many efficient algorithms
 - however, none of the games discussed above are compact as GGs
- Congestion Games [Rosenthal, 1973; Monderer & Shapley, 1996]
 - utility functions exhibit context-specific independence
 - whether agents affect each other's payoffs can depend on the action choices they each make
 - good theoretical properties; some algorithmic results
 - however, none of the games discussed above can be represented as CGs

Overview of This Talk

1. Basic AGGs: Definition and Examples

- 2. Analyzing and Extending the Representation
- 3. Computing Expected Utility
- 4. Recent Directions

The Coffee Shop Problem

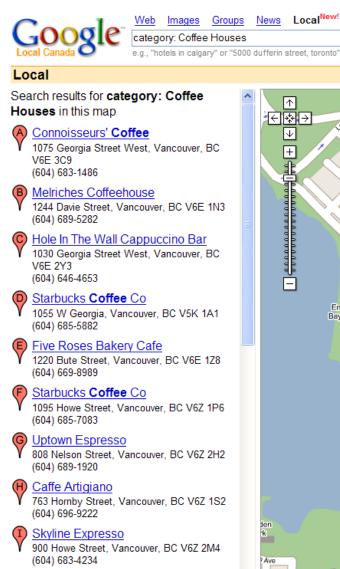
Search

Search the map

Find businesses

Get directions

more »



Farenheit Celsius Coffee

1225 Burrard Street, Vancouver, BC V6Z 1Z5 (604) 682-6675

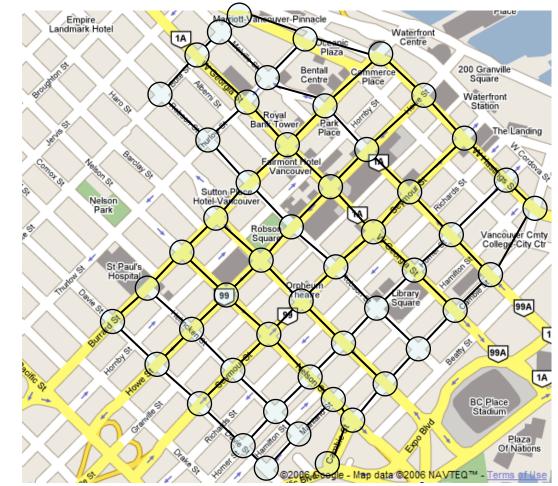
Chicco Dall Oriente

1504 Robson Street, Vancouver, BC V6G 1C2 💌



Basic Action-Graph Games

- set of **players**: want to open coffee shops
- **actions:** choose a location for your shop, or choose not to enter the market
- **utility:** profitability of a location
 - some locations might have more customers, and so might be better *ex ante*
 - utility also depends on the number of other players who choose the same or an adjacent location



Formal Definitions

Definition 1 (action graph) An action graph is a tuple (\mathcal{A}, E) , where \mathcal{A} is a set of nodes corresponding to distinct actions and Eis a set of directed edges.

Let $A = A_1 \times \cdots \times A_n$ be a *set of actions* available to each of n agents, with $\mathcal{A} = \bigcup_{i \in N} A_i$.

Definition 2 (configuration) Given an action graph (\mathcal{A}, E) and a set of action profiles A, a **configuration** c is a tuple of $|\mathcal{A}|$ nonnegative integers, where the j^{th} element c[j] is interpreted as the number of agents who chose the j^{th} action $a_j \in \mathcal{A}$, and where there exists some $a \in A$ that would give rise to c. Denote the set of all configurations as C.

Formal Definitions

Definition 3 (neighborhood relation) Given a graph having a set of nodes \mathcal{A} and edges E, define the **neighborhood relation** as $\nu : \mathcal{A} \to 2^{\mathcal{A}}$, with $\nu(i) = \{j | (j, i) \in E\}$.

Define a *configuration over a node's neighborhood*, written as $c^{(\alpha)} \in C^{(\alpha)}$, as the elements of c that correspond to the actions $\nu(\alpha)$.

Definition 4 A basic action-graph game (AGG- \emptyset) is a tuple (N, A, G, u):

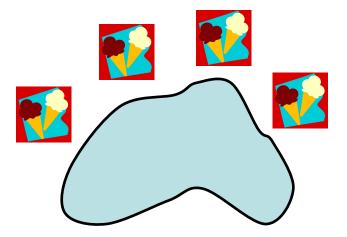
- N is the set of agents;
- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent *i*;
- $G = (\mathcal{A}, E)$ is an action graph, where $\mathcal{A} = \bigcup_{i \in N} A_i$ is the set of distinct actions;
- $u = (u^1, \dots, u^{|\mathcal{A}|}), u^{\alpha} : C^{(\alpha)} \to \mathbb{R}.$

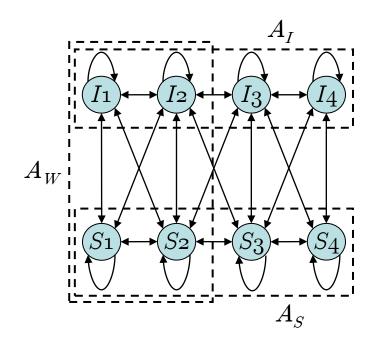
Elaborated Ice Cream Vendor Problem

Inspired by [Hotelling, 1929]

 \boldsymbol{n} vendors sell either ice cream or strawberries at one of four stations along a beach

- n_I ice cream (I) vendors;
- n_{S} strawberry (S) vendors;
- $n_W ext{ can sell } I/S$, but only on the west side.
- competition between nearby sellers of same type; synergy between nearby different types





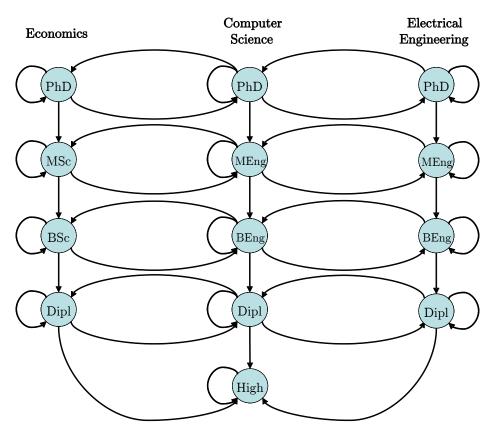
Notes:

- graph structure independent of # agents
- overlapping action sets
- context-specific independence without strict independence

The Job Market Problem

Each player chooses a level of training Players' utilities are the sum of:

- a constant cost:
 - difficulty; tuition; foregone wages
- a variable reward, depending on:
 - How many jobs prefer workers with this training, and how desirable are the jobs?
 - How many other jobs are willing to take such workers as a second choice, and how good are these jobs?
 - Employers will take workers who are overqualified, but only by one degree.
 - They will also interchange similar degrees, but only at the same level.
 - How many other graduates want the same jobs?



Overview of This Talk

- 1. Basic AGGs: Definition and Examples
- 2. Analyzing and Extending the Representation
- 3. Computing Expected Utility
- 4. Recent Directions

Analyzing the AGG- \emptyset Representation

AGG-Øs can represent **any game**.

Overall, AGG- \emptyset s are more compact than the normal form when the game exhibits either or both of the following properties:

- 1. Context-Specific Independence:
 - pairs of agents can choose actions that are not neighbors in the action graph

2. Anonymity:

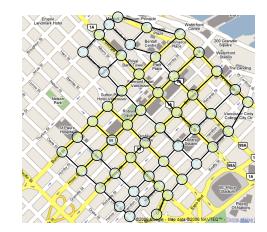
• multiple action profiles yield the same configuration

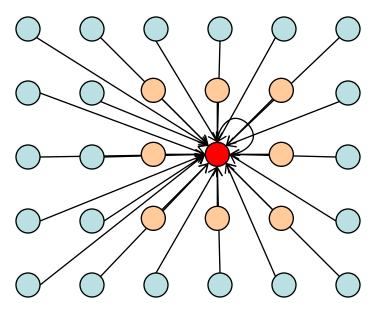
When max in-degree \mathcal{I} is bounded by a constant:

- polynomial size: $O(|A_{\max}|n^{\mathcal{I}})$
- in contrast, size of normal form is $O(n|A_{\max}|^n)$

The Coffee Shop Problem Revisited

- What if utility also depends on total # shops?
- Now action graph has in-degree $|\mathcal{A}|$
 - NF & Graphical Game representations: $O(|\mathcal{A}|^N)$
 - AGG- \emptyset representation: $O(N^{|\mathcal{A}|})$
 - when $|\mathcal{A}|$ is held constant, the AGG- \emptyset representation is polynomial in N
 - but still doesn't effectively capture game structure
 - given i's action, his payoff depends only on 3 quantities!

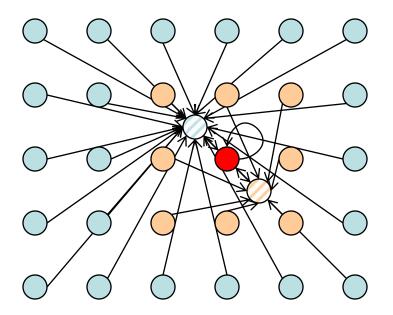




 6×5 Coffee Shop Problem: projected action graph at the red node

AGG-FNs: Function Nodes

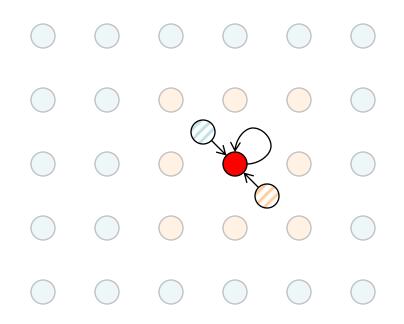
- To exploit this structure, introduce **function nodes**:
 - The "configuration" of a function node p is a (given) function of the configuration of its neighbors: $c[p]=f_p(c[\nu(p)])$
- Coffee-shop example: for each action node *s*, introduce:
 - a function node with adjacent actions as neighbors
 - $c[p'_s] = \text{total number of shops in surrounding nodes}$
 - $-\,$ similarly, a function node with non-adjacent actions as neighbors



 6×5 Coffee Shop Problem: function nodes for the red node

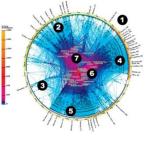
The Coffee Shop Problem

- Now the red node has only **three incoming edges**:
 - itself, the blue function node and the orange function node
 - so, the action-graph now has in-degree three
- Size of representation is now $O(N^3)$



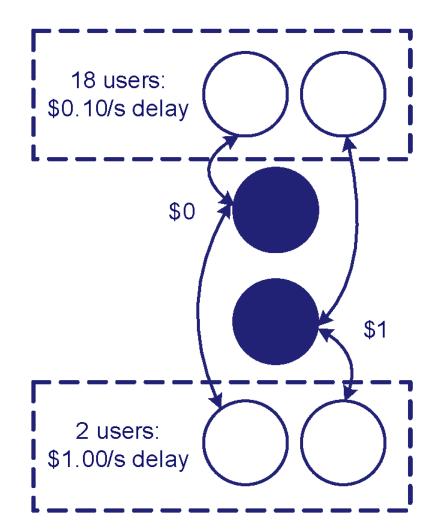
 6×5 Coffee Shop Problem: projected action graph at the red node

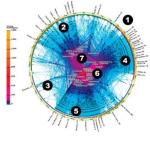
Example: Parallel Edges



Based on [Thompson, Jiang & LB, 2007]; inspired by [Odlyzko, 1998]

- Network with one source, one sink, **two parallel edges**
 - both edges offer identical speed
 - $-\,$ one is free, one costs 1
 - latency is an additive function of the number of users on an edge
- Two classes of users
 - 18 users pay 0.10/unit of delay
 - 2 users pay \$1.00/unit of delay
- Which edge should users choose?
- Example scales to longer paths
 - not a congestion game because of player-specific utility





Further Representational Results

- Without loss of compactness, AGGs can also encode:
 - Graphical games (AGG- \emptyset)
 - Symmetric games (AGG- \emptyset)
 - Anonymous games (AGG-FN)
- One other extension to AGGs: explicit **additive structure**
- Enables compact encoding of still other game classes:
 - Congestion games (AGG-FNA)
 - Polymatrix games (AGG-FNA)
 - Local-Effect games (AGG-FNA)

Conclusion: AGGs compactly encode all major compact classes of simultaneous-move games, and also many new games that are compact in none of these representations.

Overview of This Talk

- 1. Basic AGGs: Definition and Examples
- 2. Analyzing and Extending the Representation
- 3. Computing Expected Utility
- 4. Recent Directions

Computing Expected Utility

Expected utility of agent *i* for playing (pure) action a_i , if other agents play according to mixed-strategy profile s_{-i} :

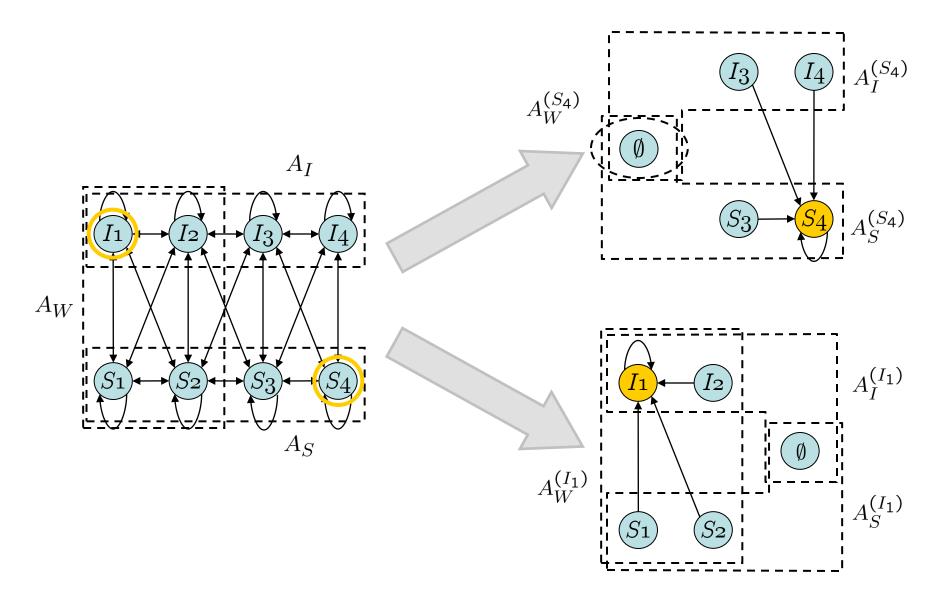
$$V_{a_i}^i(s_{-i}) \equiv \sum_{a_{-i} \in A_{-i}} u_i(a_i, a_{-i}) \Pr(a_{-i}|s_{-i})$$

Exponential-sized set: naive algorithm is $O(|A_{\max}|^{n-1})$

 $V_{a_i}^i(s_{-i})$ is an inner-loop problem in many game-theoretic algorithms:

- Best Response (e.g., for multiagent reinforcement learning)
- Govindan-Wilson Algorithm (Nash equilibrium)
- Simplicial Subdivision Algorithm (Nash equilibrium)
- **Papadimitriou's** Algorithm (correlated Nash equilibrium)
- Turocy's Path Tracing Algorithm (quantal response equilibrium)
- **Predicted Action Distributions** under Level-*k*; Cognitive Hierarchy

Computing with AGG-Øs: Projection



Computing with AGG-Øs: Projection

• Projection captures **context-specific independence** and strict independence

$$\begin{split} V_{a_i}^i(s_{-i}) &= \sum_{\substack{a_{-i}^{(a_i)} \in A_{-i}^{(a_i)}\\a_{-i}^{(a_i)} \in A_{-i}^{(a_i)}}} u^{a_i} \left(\mathcal{C}(a_i, a_{-i}^{(a_i)}) \right) \Pr\left(a_{-i}^{(a_i)} | s_{-i}^{(a_i)}\right) \\ \text{Still exponential, but smaller than before} \\ \Pr\left(a_{-i}^{(a_i)} | s_{-i}^{(a_i)}\right) &= \prod_{j \in N \setminus \{i\}} s_j^{(a_i)}(a_j^{(a_i)}). \\ \text{Linear-sized set} \end{split}$$

 $*^{(\alpha)} \equiv$ projection with respect to action α $C(a_i, a_{-i}) \equiv$ configuration caused by a_i, a_{-i} $S(c) \equiv$ set of pure action profiles giving rise to c

Computing with AGG-Øs: Anonymity

• Writing in terms of the configuration captures **anonymity**

$$V_{a_{i}}^{i}(s_{-i}) = \sum_{\substack{c_{-i}^{(a_{i})} \in C_{-i}^{(a_{i})}}} u^{a_{i}} \left(\mathcal{C} \left(a_{i}, c_{-i}^{(a_{i})} \right) \right) \Pr \left(c_{-i}^{(a_{i})} | s_{-i}^{(a_{i})} \right)$$
Polynomial-sized set
$$\Pr \left(c_{-i}^{(a_{i})} | s_{-i}^{(a_{i})} \right) = \sum_{\substack{a_{-i}^{(a_{i})} \in \mathcal{S} \left(c_{-i}^{(a_{i})} \right)}} \Pr \left(a_{-i}^{(a_{i})} | s_{-i}^{(a_{i})} \right)$$
Exponential-sized set

 $*^{(\alpha)} \equiv$ projection with respect to action α $C(a_i, c_{-i}) \equiv$ configuration caused by a_i, c_{-i} $S(c) \equiv$ set of pure action profiles giving rise to c

Dynamic Programming

- Can we do better computing $Pr\left(c_{-i}^{(a_i)}|s_{-i}^{(a_i)}\right)$? Note that
 - the players' mixed strategies are independent
 - s is a product probability distribution
 - each player affects a configuration c independently
- We can use **dynamic programming** to compute the probability of a configuration:
 - base case: zero agents and the mixed strategy s_0 :
 - $C_0 = \{c_0\}$
 - $c_0 = [0, ..., 0]$
 - $P_0(c_0) = 1$
 - then add agents one by one:
 - C_k : the set of configurations that can be built by adding any action from the support of player k's mixed strategy to any configuration from C_{k-1}

•
$$P_k(c_k) = \sum_{\substack{(c_{k-1}, a_k), \\ \mathcal{C}(c_{k-1}, a_k) = c_k}} s_k(a_k) \cdot P_{k-1}(c_{k-1})$$

Computing with AGGs: Complexity

Theorem 1 Given an AGG- \emptyset representation of a game, i's expected payoff $V_{a_i}^i(s_{-i})$ can be computed in time polynomial in the size of the representation. If \mathcal{I} , the maximum in-degree of the action graph, is bounded by a constant, $V_{a_i}^i(s_{-i})$ can be computed in time polynomial in n.

- Complexity of our approach: $O\left(n^{\mathcal{I}}poly(n)poly\left(|A_{\max}|\right)\right)$
- Exponential speedup vs. standard approach: $O\left(|A_{\max}|^{n-1}poly(n)poly(|A_{\max}|)\right)$

In AGG-FNs, players are no longer guaranteed to affect c independently

• but the DP algorithm still works when function nodes can be expressed using some commutative, associative operator

Computing Expected Utility

 $V_{a_i}^i(s_{-i})$ is an inner-loop problem in many game-theoretic algorithms:

- Best Response (e.g., for multiagent reinforcement learning)
- Govindan-Wilson Algorithm (Nash equilibrium)
- Simplicial Subdivision Algorithm (Nash equilibrium)
- **Papadimitriou's** Algorithm (correlated Nash equilibrium)
- **Turocy's** Path Tracing Algorithm (quantal response equilibrium)
- **Predicted Action Distributions** under Level-*k*; Cognitive Hierarchy

Because we compute $V_{a_i}^i(s_{-i})$ exactly, our expected utility algorithm yields an **exponential speedup** in every one of these algorithms, whenever the AGG is exponentially smaller than the normal form.

Overview of This Talk

- 1. Basic AGGs: Definition and Examples
- 2. Analyzing and Extending the Representation
- 3. Computing Expected Utility

4. Recent Directions

- 1. computing pure strategy equilibria
- 2. analyzing sponsored search auctions
- 3. temporal AGGs
- 4. Bayesian AGGs
- 5. free software tools

(1) Computing Pure-Strategy Equilibrium

- **Pure Nash equilibrium** is often a more interesting solution concept than mixed Nash equilibrium
- It also presents a very **computationally different problem**
 - PSNE in normal form admits a very simple polytime algorithm
 - just check every action profile
 - For AGG- $\emptyset s$ the representation can be exponentially smaller
 - thus, the same algorithm is exponential time

Theorem (Conitzer, personal communication; also proven independently in (Daskalakis et al. 2008)): The problem of determining whether a pure Nash equilibrium exists in an AGG- \emptyset is NP-complete, even when the AGG- \emptyset is symmetric and has max in-degree of three.

(1) Computing PSNEs in AGG-Øs

[Jiang & LB, 2007]

We propose a message passing algorithm:

- partition action graph into subgraphs (via tree decomposition)
- construct equilibria of the game from equilibria of games played on subgraphs

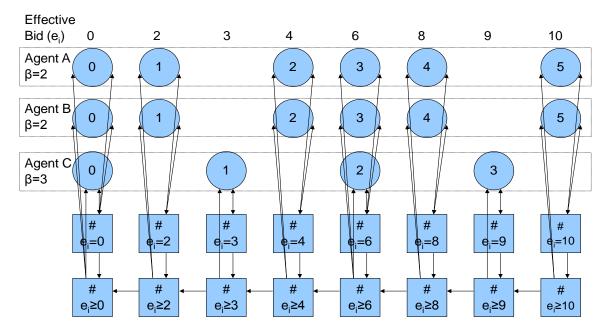
This algorithm finds PSNE in polynomial time for every **symmetric AGG-Ø that has bounded treewidth**.

- it can also be applied to other bounded-treewidth settings
- Generalizes earlier algorithms
 - finding pure equilibria in graphical games
 [Gottlob, Greco, & Scarcello 2003; Daskalakis & Papadimitriou 2006]
 - finding pure equilibria in simple congestion games [Ieong, McGrew, Nudelman, Shoham, & Sun 2005]

(2) Sponsored Search Auctions

[Thompson & LB, 2008; 2009]

- Position auctions are used to sell \$10Bs of keyword ads
- Some theoretical analysis, but **based on strong assumptions**
 - Unknown how different auctions compare in more general settings
- Idea: analyze the auctions computationally
 - Main hurdle: ad auction games are large; infeasible as normal form

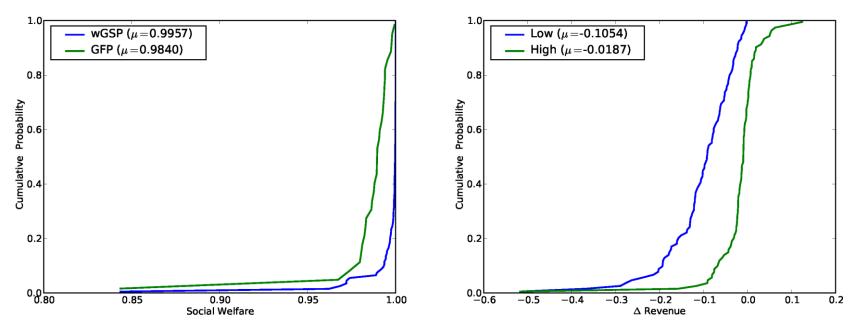


AGG-FN representation of a Weighted, Generalized First-Price (GFP) Auction

(2) Sponsored Search Auctions

[Thompson & LB, 2008; 2009]

- Position auctions are used to sell \$10Bs of keyword ads
- Some theoretical analysis, but **based on strong assumptions**
 - Unknown how different auctions compare in more general settings
- Idea: analyze the auctions computationally
 - Main hurdle: ad auction games are large; infeasible as normal form



Social welfare and revenue of EOS auction model

(3) Temporal Action Graph Games

[Jiang, LB & Pfeffer, 2009]

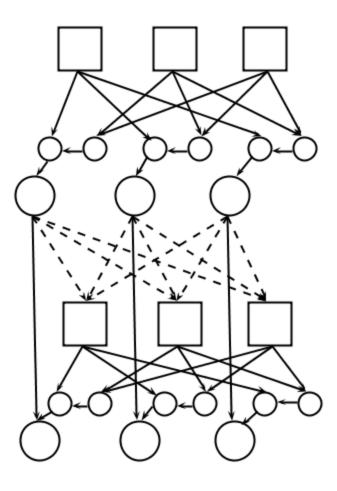
Goal: extend AGGs to temporal settings

- Model: An AGG-FN played over a series of **discrete time steps**
 - at each time step, a subset of players move
 - action counts on the action nodes grow over time
- Allow payoff uncertainty using **random variables** that are realized at a given time step
- Imperfect information: players may **condition their actions** on a given set of observed previous actions, chance variables and action counts
- Utility functions: action-specific and time-specific

(3) Properties of TAGGs

[Jiang, LB & Pfeffer, 2009]

- Can **compactly represent** a wide range of dynamic games, including:
 - arbitrary MAIDs [Milch & Koller, 2001]
 - games whose straightforward MAID representations are not compact
- Can be **efficiently encoded as MAIDs** by introducing deterministic chance nodes
- Efficient computation of **expected utility**
 - exploit anonymity and context-specific independence as in AGG-Øs
 - also exploit the temporal structure
 - as with AGG-Øs, can be leveraged to yield
 exponential speedups in computation (Nash equilibrium, etc.)



(4) Bayesian Games

- TAGGs aren't the most appropriate way of representing simultaneous-move Bayesian games
 - indeed, while such models are widely used (e.g., in auction theory), the setting has largely been neglected by the computational game theory community
- As far as we know, there are **no representations or algorithms** targeting general BNE computation
- This leaves two general approaches, both of which make use of complete-information Nash algorithms:
 - 1. Induced normal form
 - one action for each pure strategy (mapping from type to action)
 - set of players unchanged
 - 2. Agent form
 - one player for each type of each of the BG's players
 - action space unchanged

(4) Bayesian AGGs

[Jiang & LB, work under review 2010]

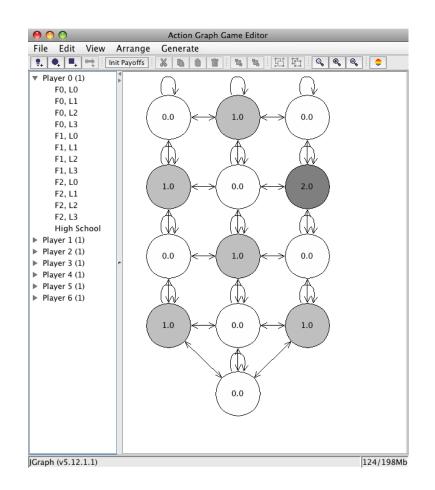
Bayesian AGG: an AGG-like representation of a Bayesian game's utility functions, which compactly encodes its agent form:

- Bayesian network for the joint type distribution
- A (potentially separate) **action graph** for each type of each agent
- A utility function that depends on which types are realized and on the actions taken by the other agents of the appropriate types
- Representation size grows polynomially in $|\Theta|$, |A|, n, when action graph has constant-bounded in-degree
 - Exponential savings over an unstructured Bayesian game
- When types are independent, expected utility can be computed in time polynomial in the size of the BAGG
- When types are not independent, expected utility can still be **computed in polynomial time** when an induced Bayesian network has bounded treewidth.

(5) Free Software Tools

 $[\mathrm{Jiang},\mathrm{Bargiacchi}\&\mathrm{LB},2007\text{--}2010]$

- Goal: make it **easier for other researchers** to use AGGs
- Equilibrium computation algorithms:
 - Govindan-Wilson (NE)
 - Simplicial Subdivision (NE)
 - Papadimitriou (CE) * in progress
 - Turocy (QRE) * in progress
- GAMUT:
 - extended to support AGGs
- Action Graph Game Editor:
 - creates AGGs graphically
 - facilitates entry of utility fns
 - supports "player classes"
 - auto creates game generators
 - visualizes eq. on the action graph



Conclusions

- AGGs compactly represent games exhibiting contextspecific independence, anonymity and/or additive structure
- Generalizes all major, existing compact representations of simultaneous-move games
 - graphical games, congestion games, many others
 - Recent directions:
 - Polytime algorithm for computing pure strategy Nash equilibrium (bounded treewidth; symmetric AGG-Ø)
 - modeling and comparing **sponsored search auctions**
 - extending AGGs to temporal settings
 - extending AGGs to **Bayesian games**
 - developing **free software tools**