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Context

• Game theory: Mathematical study of behavior in idealized
strategic multiagent settings.

• Idealized agents, not human agents.

• Behavioral game theory: Aims to extend game theory to
modelling human agents.

• There are a wide range of BGT models in the literature.
• BGT focuses on explaining behavior rather than predicting it.
• Not much work compares different models’ predictive power.
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Game theory: Normal form game

In a normal form game:

• Each agent simultaneously chooses an action from a finite
action set.

• Each combination of actions yields a known utility to each
agent.

• The agents may choose actions either deterministically or
stochastically.
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Nash equilibrium

• In a Nash equilibrium, each agent best responds to the others.

• An agent best responds to other agents’ actions by choosing a
strategy that maximizes utility, conditional on the other
agents’ strategies.

BRi (s−i ) = arg max
si

ui (si , s−i )
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Example: Traveler’s Dilemma

2 3 4 96 97 98 99 100
. . .

100

100

96 + 2 = 98

96− 2 = 94 100

100

99− 2 = 97

99 + 2 = 101

98 + 2 = 100

98− 2 = 96

2

2

• Two players pick a number (2-100) simultaneously.

• If they pick the same number, that is their payoff.

• If the pick different numbers:
• Lower player gets lower number, plus bonus of 2.
• Higher player gets lower number, minus penalty of 2.

• Traveler’s Dilemma has a unique Nash equilibrium.
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Nash equilibrium and human subjects

• Nash equilibrium often makes counterintuitive predictions.
• In Traveler’s Dilemma: The vast majority of human players

choose 97–100.

• Modifications to a game that don’t change Nash equilibrium
predictions at all can cause large changes in how human
subjects play the game [Goeree & Holt 2001].

• In Traveler’s Dilemma: When the penalty is large, people play
much closer to Nash equilibrium.

• But the size of the penalty does not effect equilibrium.

• Clearly Nash equilibrium is not the whole story.

• Behavioral game theory proposes a number of models to
better explain human behavior.
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Behavioral game theory models

Themes:

1 Quantal response: Agents best-respond with high probability
rather than deterministically best responding.

2 Iterative strategic reasoning: Agents can only perform limited
steps of strategic “look-ahead”.

One model is based on quantal response, two models are based on
iterative strategic reasoning, and one model incorporates both.
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BGT model: Quantal response equilibrium (QRE)

QRE model [McKelvey & Palfrey 1995]

• Agents quantally best respond to each other.

QBRi (s−i )(ai ) =
eλui (ai ,s−i )∑

a′i∈Ai
eλui (a

′
i ,s−i )

• Precision parameter λ ∈ [0,∞) indicates how sensitive agents
are to utility differences.

• λ = 0 means agents choose actions uniformly at random.
• As λ→∞, QRE approaches Nash equilibrium.
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BGT models: Level-k models

• Each agent has one of 3 levels: Level-0, level-1, or level-2.

• Level-0 agents choose uniformly at random.

• Level-1 agents believe that all opponents are level-0.

• Level-2 agents believe that all opponents are level-1.

• Two variants considered:
• Lk
• Quantal level-k (QLk)

2 3 4 96 97 98 99 100
. . .
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BGT model: Lk

Lk model [Costa-Gomes et al. 2001]

• Each level-k agent makes a “mistake” with probability εk , or
best responds to level-(k − 1) opponent with probability
1− εk .

• Level-k agents aren’t aware that level-(k − 1) agents will
make “mistakes”.

IBRi ,0 = Ai ,

IBRi ,k = BRi (IBR−i ,k−1),

πLki ,0(ai ) = |Ai |−1,

πLki ,k(ai ) =

{
(1− εk)/|IBRi ,k | if ai ∈ IBRi ,k ,

εk/(|Ai | − |IBRi ,k |) otherwise.
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BGT model: QLk

QLk model [Stahl & Wilson 1994]

• Each agent quantally responds to next-lower level.

• Each QLk agent level has its own precision (λk), and its own
beliefs about lower-level agents’ precisions (µk,`).

πQLk
i ,0 (ai ) = |Ai |−1,

πQLk
i ,1 = QBRi (π

QLk
−i ,0 | λ1),

πQLk
i ,2 = QBRi (γ | λ2).
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BGT model: Cognitive hierarchy

• Each agent has a non-negative level.

• An agent of level m best responds to the truncated, true
distribution of levels from 0 to m − 1.

• Poisson-CH [Camerer et al. 2004]: Levels are assumed to have a
Poisson distribution.

πPCHi ,0 (ai ) = |Ai |−1,

πPCHi ,m (ai ) =

{
|TBRi ,m|−1 if ai ∈ TBRi ,m,

0 otherwise.

TBRi ,m = BRi

(
m−1∑
`=0

F (`)πPCH−i ,`

)

Introduction Framework Experimental setup Results Conclusions 12



Prediction using Nash equilibrium

• We would like to compare BGT models’ prediction
performance to Nash equilibrium.

• Unmodified Nash equilibrium is not suitable for predictions:

1 Games often have multiple Nash equilibria.
2 A Nash equilibrium will often assign probability 0 to some

actions.

• We constructed two different Nash-based models to deal with
multiple equilibria:

• UNEE: Take the average of all Nash equilibria.
• NNEE: Predict using the post-hoc “best” Nash equilibrium.

• Both models avoid probability 0 predictions via a tunable error
probability.
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Experimental setup: Overview

What do we need to compare predictive models?

1 Evaluation criteria
• Metric to measure performance
• Statistical test to evaluate significance

2 Experimental data
• Training data to fit model parameters
• Test data to evaluate models on
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1. Evaluation criteria: Metric

• We score the performance of a model by the likelihood of the
test data:

P(Dtest | M,
#»

θ ∗).

• The parameters are chosen to maximize the likelihood of the
training data:

#»

θ ∗ = arg max
#»
θ

P(Dtrain | M,
#»

θ ).
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1. Evaluation criteria: Statistical test

• For lower-variance estimate of performance, we use 10-fold
cross-validation.

• Problem: Results may depend upon the particular partition
into folds.

• We average over multiple cross-validation runs.

• We can then compute 95% confidence interval by assuming a
t-distribution of these averages [Witten & Frank 2000].

Introduction Framework Experimental setup Results Conclusions 16



1. Evaluation criteria: Statistical test

• For lower-variance estimate of performance, we use 10-fold
cross-validation.

• Problem: Results may depend upon the particular partition
into folds.

• We average over multiple cross-validation runs.

• We can then compute 95% confidence interval by assuming a
t-distribution of these averages [Witten & Frank 2000].

Introduction Framework Experimental setup Results Conclusions 16



1. Evaluation criteria: Statistical test

• For lower-variance estimate of performance, we use 10-fold
cross-validation.

• Problem: Results may depend upon the particular partition
into folds.

• We average over multiple cross-validation runs.

• We can then compute 95% confidence interval by assuming a
t-distribution of these averages [Witten & Frank 2000].

Introduction Framework Experimental setup Results Conclusions 16



2. Experimental data

• Data from six experimental studies, plus a combined dataset:
• SW94: 400 observations from [Stahl & Wilson 1994]
• SW95: 576 observations from [Stahl & Wilson 1995]
• CGCB98: 1296 observations from [Costa-Gomes et al. 1998]
• GH01: 500 observations from [Goeree & Holt 2001]
• CVH03: 2992 observations from [Cooper & Van Huyck 2003]
• RPC09: 1210 observations from [Rogers et al. 2009]
• ALL6: All 6974 observations

• Subjects played 2-player normal form games once each.

• Each action by an individual player is a single observation.
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Model comparisons: Nash equilibrium vs. BGT
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• UNEE worse than every BGT model (except GH01 and SW95).
• Even NNEE worse than QLk and QRE in most datasets.
• BGT models typically predict human behavior better than

Nash equilibrium-based models.
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Model comparisons: Lk and CH vs. QRE
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• Lk and Poisson-CH performance roughly similar.
• No ordering between Lk/Poisson-CH and QRE.
• Iterative models and quantal response appear to capture

distinct phenomena.
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Model comparisons: QLk
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• We would expect a model with both iterative and quantal
response components to perform best.

• That is the case: QLk is the best predictive model on almost
every dataset.

Introduction Framework Experimental setup Results Conclusions 20



Deeper analysis

1 Is the Poisson distribution helpful in cognitive hierarchy?

2 Are higher-level agents helpful in level-k?

3 Does payoff scaling matter in QRE?

4 Is heterogeneity necessary in QLk?
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Heterogeneity

In QLk, different agent levels:

• have different precisions (λk).

• have different beliefs about the relative proportions of other
levels.

• Level-k believes that 100% of the population is level-(k − 1).

• have different beliefs about the precisions of other levels
(µk,`).

πQLk
i ,0 (ai ) = |Ai |−1,

πQLk
i ,1 = QBRi (π

QLk
−i ,0 | λ1),

πQLk
i ,2 = QBRi (γ | λ2).
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Simplified hybrid model

Question 4: Is heterogeneity necessary in QLk?

• Combine quantal response of QLk with truncated true beliefs
of cognitive hierarchy

• In quantal cognitive hierarchy model (QCH), all agent levels:
• respond quantally (as in QLk).
• respond to truncated, true distribution of lower levels (as in

cognitive hierarchy).
• have the same precision λ.
• are aware of the true precision of lower levels.

πQCH
i ,0 (ai ) = |Ai |−1

πQCH
i ,m (ai ) = QBRi

(
m−1∑
`=0

α`π
QCH
j ,` | λ

)
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QCH vs. QLk
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• QCH predicts somewhat better than QLk on most datasets,
including the combined dataset.

• A less heterogeneous model has roughly the same predictive
power as QLk.
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Summary
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• We compared predictive performance of four BGT models.
• BGT models typically predict human behavior better than

Nash equilibrium-based models.
• Recommended specific models: QLk or QCH.

Introduction Framework Experimental setup Results Conclusions 25



Thank you!
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Previous work

Paper N
a

sh

Q
L

k

L
k

C
H

Q
R

E

[Stahl and Wilson, 1994] t t
[McKelvey and Palfrey, 1995] f f
[Stahl and Wilson, 1995] f t
[Costa-Gomes et al., 1998] f f
[Haruvy et al., 1999] t
[Costa-Gomes et al., 2001] f f
[Haruvy et al., 2001] t
[Morgan and Sefton, 2002] f p
[Weizsäcker, 2003] t t
[Camerer et al., 2004] f p
[Costa-Gomes and Crawford, 2006] f f
[Stahl and Haruvy, 2008] t
[Rey-Biel, 2009] t t
[Georganas et al., 2010] f f
[Hahn et al., 2010] p

[Camerer et al., 2001] f f
[Chong et al., 2005] f p p
[Crawford and Iriberri, 2007] p p p
[Costa-Gomes et al., 2009] f f f f
[Rogers et al., 2009] f f f

A ‘p’ indicates that the study evaluated out-of-sample prediction performance for that model; a ‘t’ indicates
statistical tests of training sample performance; an ‘f’ indicates comparison of training sample fit only.
Only five studies compared more than one of the non-Nash models we considered.
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