
SATenstein:
Automatically Building Local Search

SAT Solvers From Components

Ashiqur R. KhudaBukhsh, Lin Xu,
Holger H. Hoos, Kevin Leyton-Brown

Department of Computer Science

University of British Columbia

Canada

SATenstein?

• Frankenstein

– Create “perfect” human being from scavenged
body parts

• SATenstein

– Create high-performance SAT solvers using
components scavenged from existing solvers

Algorithm Design Approach

• Traditional approach
– Hard-code various design choices
– Iteratively conduct small experiments to improve the

design

• Our approach
– Make all design options explicit, encoding them as

parameters
• Results in a generalized, highly parameterized algorithm
• Instantiation produces many different solvers

– Given a distribution, set the parameters using an
automatic algorithm configuration procedure

SATenstein

• A highly parameterized, generalized SLS solver
built on top of UBCSAT solver framework
[Tompkins & Hoos, 2004]

– 3 categories of SLS algorithms
• WalkSAT, G2WSAT, dynamic local search algorithms

– 25 known algorithms

– 41 parameters

– > 2 × 1011 possible instantiations

• For each distribution, configured using
ParamILS [Hutter et al., 2007-2009]

Related Work

• SLS SAT solvers
– GSAT [Selman et al., 1992]

– WalkSAT [Selman et al., 1994]

– SAPS [Hutter et al., 2002]

– gNovelty+ [Pham and Gretton, 2007]

• UBCSAT [Tompkins & Hoos, 2004]

– SLS solver development framework

• Genetic programming [Fukunaga, 2002; 2004]

– Evolve variable selection mechanism for SLS solver

• SATzilla [Xu et al., 2008]

– Instance-based algorithm selection from portfolio of SAT
solvers

SATenstein vs SATzilla

SATenstein
• Can instantiate billions of solvers,

most never studied before

• Selects a given configuration on a
per-distribution basis

• Does not use runtime prediction

SATzilla [Xu et al., 2008]

• Relatively small number of known
solvers

• Selects a given algorithm on a per-
instance basis

• Creates empirical hardness model
from given run-time data

• The approaches are complementary
• SATenstein solvers can be used in SATzilla

• Satzilla2009_R in SAT competition 2009
• Gold in random SAT+UNSAT
• 4th in random SAT

Performance objective

Penalized Average Runtime (PAR)

• Want: Minimize mean runtime
• What about capped runs?

PAR = avg(completed runs + penalty × cutoff time)

• here: penalty = 10

Experimental setup

• 6 well-known distributions of SAT instances

– Application/Industrial: FAC, CBMC-SE

– Crafted: QCP, SW-GCP,

– Random: HGEN, R3SAT

• 11 challenger algorithms (medal-winning SLS
solvers in the 2003 - 2008 SAT competitions)

9

Automatic configurator: ParamILS 2.2 [Hutter et al., 2007-2009]

• Iterated local search (ILS) based automated
parameter tuning tool

• Previously used to tune:

– SPEAR, a highly parametric DPLL solver [Hutter et al., 2007a]

– SLS algorithm for timetabling [Chiarandini et al., 2008]

– CPLEX for mixed integer programming [Hutter et al., 2009]

Results
• Factor of 70 - 1000 performance improvement over best

challenger on QCP, HGEN, CBMC-SE

• Factor of 1.4 - 2 performance improvement over best
challenger on SW-GCP, R3SAT and FAC

• Improved the state-of-the-art across all the solvers on

SW-GCP, QCP , HGEN and R3SAT

• On CBMC-SE and FAC, reduced the gap between complete
solvers and SLS solvers

PAR comparison on QCP

PAR comparison on CBMC(SE)

SATenstein-LS vs Top 3 challengers on HGEN

SATenstein-LS vs Top 3 challengers on CBMC-SE

SATenstein-LS vs Oracle on CBMC-SE

• Oracle selects the challenger with minimum median
runtime on a per-instance basis

Conclusion
• SATenstein: A new approach for building high-

performance algorithms.
– A framework that flexibly combines components from

high-performance algorithms

– A powerful algorithm configuration tool

• New state-of-the-art SAT solvers in 4 distributions

• Substantial improvement on 3 distributions

(QCP, HGEN, CBMC-SE)

• Reduced gap between DPLL solvers and SLS solvers
on CBMC-SE

17

Future Work

• Use of preprocessing

• Mixed strategies

• Better understanding of the configurations found

• More problem distributions / other problems

