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SATenstein?

• Frankenstein

– Create “perfect” human being from scavenged 
body parts

• SATenstein

– Create high-performance SAT solvers using 
components scavenged from existing solvers



Algorithm Design Approach

• Traditional approach
– Hard-code various design choices
– Iteratively conduct small experiments to improve the 

design

• Our approach
– Make all design options explicit, encoding them as 

parameters 
• Results in a generalized, highly parameterized algorithm
• Instantiation produces many different solvers

– Given a distribution, set the parameters using an 
automatic algorithm configuration procedure



SATenstein

• A highly parameterized, generalized SLS solver 
built on top of UBCSAT solver framework 
[Tompkins & Hoos, 2004]

– 3 categories of SLS algorithms
• WalkSAT, G2WSAT, dynamic local search algorithms

– 25 known algorithms 

– 41 parameters

– > 2  × 1011 possible instantiations

• For each distribution, configured using 
ParamILS [Hutter et al., 2007-2009]



Related Work

• SLS SAT solvers 
– GSAT [Selman et al., 1992]

– WalkSAT [Selman et al., 1994]

– SAPS [Hutter et al., 2002]

– gNovelty+ [Pham and Gretton, 2007]

• UBCSAT [Tompkins & Hoos, 2004]

– SLS solver development framework

• Genetic programming [Fukunaga, 2002; 2004]

– Evolve variable selection mechanism for SLS solver 

• SATzilla [Xu et al., 2008]

– Instance-based algorithm selection from portfolio of SAT 
solvers



SATenstein vs SATzilla

SATenstein
• Can instantiate billions of solvers, 

most never studied before

• Selects a given configuration on a 
per-distribution basis

• Does not use runtime prediction

SATzilla [Xu et al., 2008]

• Relatively small number of known 
solvers

• Selects a given algorithm on a per-
instance basis

• Creates empirical hardness model 
from given run-time data

• The approaches are complementary
• SATenstein solvers can be used in SATzilla

• Satzilla2009_R in SAT competition 2009
• Gold in random SAT+UNSAT
• 4th in random SAT



Performance objective

Penalized Average Runtime (PAR)

• Want: Minimize mean runtime
• What about capped runs?

PAR = avg(completed runs + penalty × cutoff time)

• here: penalty = 10



Experimental setup

• 6 well-known distributions of SAT instances

– Application/Industrial: FAC, CBMC-SE

– Crafted: QCP, SW-GCP,

– Random: HGEN, R3SAT

• 11 challenger algorithms (medal-winning SLS 
solvers in the 2003 - 2008 SAT competitions) 
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Automatic configurator: ParamILS 2.2 [Hutter et al., 2007-2009] 

• Iterated local search (ILS) based automated 
parameter tuning tool

• Previously used to tune:

– SPEAR, a highly parametric DPLL solver [Hutter et al., 2007a]

– SLS algorithm for timetabling [Chiarandini et al., 2008]

– CPLEX  for mixed integer programming [Hutter et al., 2009]



Results
• Factor of 70 - 1000 performance improvement over best 

challenger on QCP, HGEN, CBMC-SE

• Factor of 1.4 - 2 performance improvement over best 
challenger on SW-GCP, R3SAT and FAC

• Improved the state-of-the-art across all the solvers on 

SW-GCP, QCP , HGEN and R3SAT

• On CBMC-SE and FAC, reduced the gap between complete 
solvers and SLS solvers 



PAR comparison on QCP



PAR comparison on CBMC(SE)



SATenstein-LS vs Top 3 challengers on HGEN



SATenstein-LS vs Top 3 challengers on CBMC-SE



SATenstein-LS vs Oracle on CBMC-SE 

• Oracle selects the challenger with minimum median 
runtime on a per-instance basis



Conclusion
• SATenstein: A new approach for building high-

performance algorithms.
– A framework that flexibly combines components from 

high-performance algorithms

– A powerful algorithm configuration tool  

• New state-of-the-art SAT solvers in 4 distributions 

• Substantial improvement on 3 distributions 

(QCP, HGEN, CBMC-SE)

• Reduced gap between DPLL solvers and SLS solvers 
on CBMC-SE 
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Future Work 

• Use of preprocessing 

• Mixed strategies 

• Better understanding of the configurations found

• More problem distributions / other problems




