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1 Introduction
Although some algorithms are better than others on average,
there is rarely a best algorithm for a given problem. Instead, it
is often the case that different algorithms perform well on dif-
ferent problem instances. Not surprisingly, this phenomenon
is most pronounced among algorithms for solvingNP-Hard
problems, because runtimes for these algorithms are often
highly variable from instance to instance. When algorithms
exhibit high runtime variance, one is faced with the problem
of deciding which algorithm to use; in 1976 Rice dubbed this
the “algorithm selection problem”[8]. In the nearly three
decades that have followed, the issue of algorithm selection
has failed to receive widespread attention, though of course
some excellent work does exist. By far, the most common
approach to algorithm selection has been to measure different
algorithms’ performance on a given problem distribution, and
then to use only the algorithm having the lowest average run-
time. This “winner-take-all” approach has driven recent ad-
vances in algorithm design and refinement, but has resulted in
the neglect of many algorithms that, while uncompetitive on
average, may offer excellent performance on particular prob-
lem instances. Our consideration of the algorithm selection
literature, and our dissatisfaction with the winner-take-all ap-
proach, has led us to ask the following two questions. First,
what general techniques can we use to perform per-instance
(rather than per-distribution) algorithm selection? Second,
once we have rejected the notion of winner-take-all algorithm
evaluation, how ought novel algorithms to be evaluated? We
offer the following answers:

1. Algorithms with high average running times can be com-
bined to form an algorithm portfolio with low average
running time when the algorithms’ easy inputs are suffi-
ciently uncorrelated.

2. New algorithm design should focus on problems on
which the current algorithm portfolio performs poorly.

Readers familiar with the boosting paradigm in machine
learning[9] will recognize that boosting uses similar ideas:
combining weak classifiers into a much stronger ensemble
by iteratively training new classifiers on data on which the
ensemble performs poorly.

2 Algorithm Portfolios
In our previous work[6] we demonstrated that statistical re-
gression can be used to learn surprisingly accurate algorithm-
specific models of the empirical hardness of given distribu-
tions of problem instances. In short, the method proposed in
that work is:
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Figure 1: Algorithm and Portfolio Runtimes
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1. Use domain knowledge to select features of problem in-
stances that might be indicative of runtime.

2. Generate a set of problem instances from the given dis-
tribution, and collect runtime data for the algorithm on
each instance.

3. Use regression to learn a real-valued function of the fea-
tures that predicts runtime.

Given this existing technique for predicting runtime, we
now propose building portfolios of multiple algorithms as fol-
lows:

1. Train a model for each algorithm, as described above.

2. Given an instance:

(a) Compute feature values
(b) Predict each algorithm’s running time
(c) Run the algorithm predicted to be fastest

2.1 WDP Case Study: Past Work
Our case study is based on the data collected in our previous
work [6]. In that work we have constructed models for pre-
dicting the running time of the CPLEX solver on the winner
determination problem (WDP), which is anNP-Complete
combinatorial optimization problem formally equivalent to
weighted set-packing. We have also created models for two
other WDP algorithms: GL (Gonen-Lehmann)[3], a simple



branch-and-bound algorithm with CPLEX’s LP solver as its
heuristic, and CASS[1], a more complex branch-and-bound
algorithm with a non-LP heuristic. The data set consists of
4500 instances of a fixed size (256 goods and 1000 non-
dominated bids), sampled uniformly from CATS[7] instance
generator. Since our methodology relies on machine learning,
we split the data into training, validation, and test sets. We re-
port our portfolio runtimes only on the test set that was never
used to train or evaluate models. Runtime data was collected
on 550 MHz Pentium Xeons, running Linux 2.2.

2.2 WDP Case Study: Portfolios

We now describe new results. Fig. 1 compares the average
runtimes of our three algorithms to that of the portfolio. Note
that CPLEX would be chosen under winner-take-all algo-
rithm selection. The “optimal” bar shows the performance of
an ideal portfolio where algorithm selection is performed per-
fectly and with no overhead. The portfolio bar shows the time
taken to compute features (light portion) and the time taken
to run the selected algorithm (dark portion). Despite the fact
that CASS and GL are much slower than CPLEX on average,
the portfolio outperforms CPLEX by more than a factor of 3.
Further, neglecting the cost of computing features, our port-
folio’s selections take only 5% longer to run than the optimal
selections. Figs. 2 and 3 show the frequency with which each
algorithm is selected in the ideal portfolio and in our portfo-
lio. They illustrate the quality of our algorithm selectionand
the relative value of the three algorithms. While our portfo-
lio does not always make the right choice, most of the mis-
takes occur when algorithms have very similar running times.
These mistakes are not very costly, which explains why our
portfolio’s choices have a running time so close to optimal.
These results show that our portfolio methodology can work
very well even with a small number of algorithms, and even
when one algorithm has superior average performance.

3 Focused Algorithm Design

Once it has been decided to select algorithms from a portfo-
lio on a per-instance basis, it is necessary to reexamine the
way we design and evaluate algorithms. Since the purpose
of designing new algorithms is to reduce the time that it will
take to solve problems, designers should aim to produce new
algorithms that complement an existing portfolio given a dis-
tribution D reflecting problems that will be encountered in
practice. The instances with the greatest potential for im-
provement will be hard for the portfolio, common inD, or
both. The full version of this paper describes a technique for
using rejection sampling to automatically generate such in-
stances. In Figures 4 and 5 we show how our techniques are
able to automatically skew two of the easiest CATS instance
distributions towards harder regions. In fact, for these two
distributions we generated instances that were (respectively)
100 and 50 times harder than anything we had previously
seen! Moreover, theaverageruntime for the new distribu-
tions was greater than the observedmaximumrunning time
on the original distribution.
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4 Conclusions
Learned runtime models may be used to create algorithm
portfolios that outperform their constituent algorithms.These
models can also be used to induce harder benchmark distri-
butions for use in the development and evaluation of new al-
gorithms. Our case study on combinatorial auctions demon-
strates that a portfolio composed of CPLEX and two older—
and generallymuchslower—algorithms outperforms CPLEX
alone by about a factor of 3. In the full version of this paper
we describe our methodology in more detail, and also:

• Show how to reduce the time spent computing features
without substantially degrading portfolio performance;

• Demonstrate ways of using response variable transfor-
mations to focus portfolios on metrics other than average
running time;

• Explain how to induce distributions with characteristics
other than hardness (e.g. realism);

• Compare our approach to previous work that executes
algorithms in parallel[2]; uses classification instead of
regression[4]; or considers the problem as an MDP[5].
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