
Smoothing Out Focused Demand for Network Resources

Kevin LeytonBrown, Ryan Porter, Shobha Venkataraman, Balaji Prabhakar
CS Department, Stanford University, Stanford CA 94305

{kevinlb;rwporter;shobhav;balaji}@cs.stanford.edu

ABSTRACT
We explore the problem of sharing network resources when agents’
preferences lead to temporally concentrated, inefficient use of the
network. In such cases, external incentives must be supplied to
smooth out demand. Taking a game-theoretic approach, we con-
sider a setting in which bandwidth is available during several
time slots at a fixed cost, but all agents have a natural preference
for choosing the same slot. We present four mechanisms that
motivate agents to distribute load optimally by probabilistically
waiving the cost for each time slot, and analyze equilibria.

1. INTRODUCTION
It is common for networks to experience frequent conges-

tion even when average demand for the network is much
less than the network’s capacity. In some networks, times
of peak demand are regular and predictable. Such focused
loading can occur because many agents’ utility functions
are maximized by using the network at some focal time.
For example, studies of long-distance telephone networks
show a spike in usage when rates drop in the evening [7, 1].
Predictably heavy loads also occur on web servers just be-
fore deadlines or just after new content or services are made
available. In this paper, we provide a game-theoretic analy-
sis of several solutions to the problem of focused loading.

There exists a substantial body of existing work on man-
aging congestion in networks. In particular, the problem of
designing congestion control and pricing mechanisms to pro-
vide differentiated qualities-of-service (QoS) in the Internet
has received a lot of attention. The essential issue is allocat-
ing network bandwidth fairly among concurrent users, given
that agents are likely to act selfishly to maximize the band-
width available to them [9]. This problem can be addressed
with new technology: the network can isolate packet flows
by erecting “bandwidth firewalls” to ensure fairness or ap-
proximate fairness [3, 4]. An alternate line of research takes
an economic approach to congestion management. The net-
work attempts to induce agents to condition their flows to
prescribed parameters, avoiding the implementation com-
plexity inherent in the technological approach [6, 5, 8].

Separate consideration of the case of focused loads is worth-
while for two main reasons. First, focused loading occurs at
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very predictable times. This means that it is possible to
know in advance the cases for which such a specialized so-
lution should be used. Second, specialized solutions can do
a better job of dealing with the problem of focused load-
ing than more general approaches. Focused loading occurs
because agents have similar utility functions—particularly,
functions that are maximized by using the network at a par-
ticular time. General congestion management techniques
cannot take this information into account; however, addi-
tional knowledge about agent utility functions makes it pos-
sible to design mechanisms that collect more revenue and
make fewer (e.g., computational) demands on the network.

2. PROBLEM DEFINITION
We begin with a canonical example. Consider a tele-

phone network in which usage is divided into ten-minute
blocks from the 5 PM rate drop until 8 PM. All agents
prefer to use the phone network from 5:00 to 5:10, having
strictly monotonically-decreasing valuations for later slots
as compared to earlier slots. Given that time slots are
priced identically, rational agents would all choose to use
the network from 5:00 to 5:10, leading to a focused load.
More formally, consider the operation of a network over t
time slots, where each slot has a fixed usage cost of m, and
where n risk-neutral agents, a1 . . . an, intend to use the net-
work. Agent ai’s valuation for slot s is given by an arbitrary
function vi(s). Let vl and vu be lower and upper bounds
on every agent’s valuation respectively: i.e., ∀i, s vl(s) ≤
vi(s) ≤ vu(s). Thus (for all i) let s = arg maxs vi(s)
and s = arg mins vi(s). In sections 3 and 4 we make the
assumption that vl = vu and hence that all agents have
the same valuations for all slots (here we use the notation
v rather than vi to describe agents’ valuations); we relax
this assumption in sections 5 and 6. Agents may also have
“names”—numerical identifiers—denoted name(ai).

To spread out the focused load, the network will provide
agents with an incentive to choose other slots. In this pa-
per we consider mechanisms in which agents are spared the
usage cost for the slot they choose according to a proba-
bility depending on the slot chosen and independent of the
probabilities corresponding to other slots. More formally, to
prevent all agents from choosing s, the network implements
a mechanism Φ to waive the usage cost for q of the t slots, on
average. Free slots will be chosen according to a probability
distribution associated with each slot s, which we call p(s).
The distribution of agents is denoted d, and so d(s) is the
number of agents who chose slot s.

The mechanism implemented by the network specifies p;
the network must draw (independently) from each p(s) to
determine if the usage cost will actually be waived for slot s.



The number of free slots, q, is thus only an expected value,
and there is no guarantee on the total number of slots that
will actually be free. Observe that q =

P
s p(s).

We restrict ourselves to considering mechanisms in which
participation is rational for all agents who want to use the
network, in all equilibria arising from that mechanism; thus
we assume that all agents will participate. An implication of
this restriction is that in all equilibria, the expected cost of
using the network for any agent must be less than or equal
to that agent’s valuation for the slot he chooses. Finally, we
assume that agents are risk neutral.

In our model, agents must simply choose a slot s. The
space of agent strategies may be seen as the space of all
functions mapping from the information available to a prob-
ability distribution over slot choices. We assume that agents
are aware of the mechanism and consider it when determin-
ing their strategies. A given agent’s expected utility for
choosing slot s is ui(s) = vi(s)− (1− p(s))m.

It might appear that more powerful mechanisms could be
designed if prices could be varied arbitrarily, as opposed to
slots priced at either m or 0. In fact, risk-neutral agents are
indifferent between any slot priced on the range [0, m] and
the same slot made free with an appropriate probability.

2.1 Evaluating Outcomes
The network has two goals: to balance the load caused by

the agents’ selection of slots and to collect as much revenue
as possible. We denote the network’s expected revenue given
a mechanism Φ and distribution d as E[R|Φ, d]. The network
collects a payment of m from each participating agent except
for those who receive free slots. As the number of agents is
fixed and the mechanism is constrained so that participation
is rational for all agents, expected revenue depends only on
the likelihood of the usage fee being waived for each slot and
on which slots agents select. We define g as the monetary
value to the network of the variance of load across the set of
time slots. Lower variance corresponds to a more even load
and so has a higher dollar value; thus g must decrease strictly
as variance increases. We will that load is balanced when g
is maximized, which corresponds to minimal variance. We
define the superlinear summation class of functions to be
the set of functions in which g(d) = −κ

P
i h(d(i)), where

h is superlinear in d(i) and κ is a constant that is used to
indicate the relative value of load balancing to the network.

Maximizing revenue and maximizing g are conflicting goals,
as it costs the network more to induce an agent to choose
slot s than it does to induce an agent to choose slot s. (In-
deed, note that revenue is maximized when all agents choose
s—i.e., under focused loading—because agents are willing
to distribute themselves in this way without the applica-
tion of any external incentives.) The network must there-
fore trade off quality of load balancing against expected
revenue; the degree of trade-off desired may be specified
through the choice of κ. We define z, the evaluation of dis-
tribution d under equilibrium ϕ of mechanism Φ : z(Φ, d) =
E[R|Φ, d] + g(d). First we define optimality:

Definition 1. A mechanism-equilibrium pair (Φ, ϕ) is
optimal if and only if for all other pairs (Φ′, ϕ′) and for all
d, d′ resulting from ϕ and ϕ′ respectively, z(Φ, d) ≥ z(Φ′, d′),
where n is held constant.

This definition of optimality is inappropriate for the case
where agents have different valuation functions that are not

known by the network—the case we take up in sections 5 and
6. In the event that the network’s bounds on agents’ valu-
ations are not tight, the best mechanism that the network
can choose will not extract the maximal amount of revenue
from each agent, and so will not be optimal as defined above.
Instead, we provide an alternate notion of optimality that
bounds the average loss per agent.

Definition 2. A mechanism-equilibrium pair (Φ, ϕ) is c-
optimal if and only if for all other pairs (Φ′, ϕ′) and for all
d, d′ resulting from ϕ and ϕ′ respectively, z(Φ, d) + cn ≥
z(Φ′, d′), where n is held constant and c > 0.

We also use the term optimal to refer to equilibria alone
when the mechanism giving rise to the equilibrium is un-
ambiguous. Finally, we give a definition to describe the
best possible distribution of agents given a mechanism. A
distribution is ideal if it maximizes z given the mechanism.

Definition 3. A distribution d is ideal for mechanism
Φ if and only if d = arg maxd′ z(Φ, d′). In such a case we
superscript d as d∗ to highlight the fact that it is ideal .

3. PENNY MATCHING
Here we consider a simple mechanism designed to make

agents indifferent between all time slots despite their initial
preferences. We call it ‘penny matching’, since agents must
guess what slots the network will make free; more formally,
we denote this mechanism as Φ1 . The mechanism follows:

1. Free slots are determined by drawing from p.
2. Agents choose a slot.

All things being equal, agents prefer slot s to slot s. We
can overcome this preference by biasing p(s). Recall that an
agent’s expected utility is given by ui(s) = v(s)−(1−p(s))m.
We can make agents indifferent between slots by requiring
that all time slots will have the same expected utility for
agents: that is, that the expected utility derived from each
time slot is equal to the average expected utility over all time
slots. This is expressed by the equation v(s)−(1−p(s))m =
1
t

P
i(v(i)− (1− p(i))m). Rearranging, we get:

p∗(s) =
1
t (qm +

P
i v(i))− v(s)
m

(1)

If free slots are awarded according to p∗, it is a weak equi-
librium for all agents to select a slot uniformly at random.
We call this equilibrium ϕ1 . Consider the case where all
other agents play according to ϕ1 , and one remaining agent
ai must decide his strategy. Since the choice of any slot en-
tails equal utility on expectation, ai can do no better than
to randomly pick a slot. ϕ1 is a weak equilibrium: indeed,
there is no strategy that would make ai worse off.

It appears that deviation from ϕ1 will never be profitable
for agents, since we have guaranteed that all slots provide
the same expected utility. Consider the most profitable de-
viation, from s to s. We have claimed that utility of both
slots is the same: v(s)− (1− p(s))m = v(s)− (1− p(s))m.
Since we want to interpret p(s) and p(s) as probability mea-
sures, p(s) ≥ 0 and p(s) ≤ 1. Substituting the constraints
into equation (1), we get tv(s)−Σiv(i)

m ≤ q ≤ t(v(s)+m)−Σiv(i)
m .

We must also ensure that a value of q exists for a given m
and v. Intersecting the two bounds and simplifying gives us



m ≥ v(s) − v(s). We now show how the network can
maximize revenue. We define vavg as 1

t

P
s v(s). The re-

quirement that an agent’s utility for slot s must be greater
than or equal to zero—i.e., that v(s)−(1−p(s))m ≥ 0—can
be rewritten, substituting in p∗, as vavg − (1 − q

t )m ≥ 0.
The seller’s revenue will be maximized when all agents get
zero utility. Thus we must have (1 − q

t )m = vavg. There
is a range of q and m values that will satisfy this equation;
here we show one. We substitute in the lower bound for q
from section 3. Rearranging, we get m = v(s). This satisfies
the constraint on m, so we are done. Intuitively, we have
shown that we can collect maximum revenue: we can ensure
that on expectation each agent will pay an amount exactly
equal to his utility for any slot he chooses. However, ϕ1 is
not guaranteed to achieve an optimal distribution of agents,
and therefore, ϕ1 is not optimal. The easiest way to show
this is to present another equilibrium of Φ1 that is optimal.

Consider an equilibrium in which each of the agents de-
terministically chooses one slot. (Recall that any strategy
is rational under Φ1 , and thus that any set of strategies is
a weak equilibrium.) In one such equilibrium, agents deter-
ministically choose slots so that the distribution of all agents
is ideal ; we call this equilibrium ϕ∗1 . Unsurprisingly:

Theorem 1. (Φ1, ϕ∗1) is optimal.

All proofs are deferred to the full version of the paper.

ϕ∗1 is optimal, but it is extremely unlikely that this equi-
librium would arise through the choices of real agents. This
drawback is inherent to the setting as we have modeled it so
far; a “matching pennies” mechanism can only yield weak
equilibria. In the next three sections, we explore more com-
plex mechanisms that give rise to strict equilibria.

4. BULLETIN BOARD SYSTEM
In this section we assume that agents are given a bul-

letin board system: a forum in which all communications
are visible to all agents and the identity of agents is as-
sociated with their transmissions. For simplicity, we allow
a very limited form of communication: agents sequentially
indicate the slot that they intend to choose. Let db(s) de-
note the number of agents who have indicated that they will
choose slot s. Agents’ communications through the bulletin
board are cheap talk : a technical term that indicates that
these communications are not binding in any way. Even so,
the bulletin board can help agents to coordinate on desirable
equilibria without the use of names. Mechanism Φ2 follows:

1. “Potentially free”1 slots chosen according to (1+ε)p∗.
2. Agents communicate through the bulletin board.
3. Agents choose time slots.
4. If d = d∗, then “potentially free” slots are made to be

free. Otherwise, all agents are made to pay.

A strict equilibrium in Φ2 , called ϕ2 , is for the ith agent
to choose a slot s such that di−1(s) < d∗i (s); to indicate his
chosen slot s on the bulletin board; and ultimately to choose
that slot s. Consider the case where all other agents follow
ϕ2 and agent ai must decide his strategy. If ai cooperates
and chooses slot s then the distribution of agents is guar-
anteed to be d∗ and so ai will receive an expected utility of
1We redefine q as the expected number of “potentially free”
slots; the same redefinition is required for section 6.

v(s)− (1− (1+ε)p∗(s))m. If ai defects to slot s′, one of two
cases will result. In the first case, agents indicating their
choices after ai will compensate for his deviation by choos-
ing different slots; thus ai will receive the same expected
utility as he would have received if he had not deviated. In
the second case, ai will be late enough in the sequence of
agents indicating their choices that the agents who indicate
after him will be too few to bring the distribution back to d∗.
In this case ai will receive an expected utility of v(s′)−m.
Since ai does not know the total number of agents, he must
assign non-zero probability to the second case, regardless of
the number of agents who have already indicated. There-
fore ϕ2 is strict as long as v(s) + (1 + ε)p∗(s)m > v(s′) for
all s, s′ such that 1 ≤ s, s′ ≤ t. Simplifying, we derive the
same conditions on q and m described above, except that
the probability of a free slot is increased to make ϕ2 strict.

It is well known that any game having an equilibrium
arising from cheap talk coordination has other equilibria in
which agents ignore the cheap talk [2]. Φ2 is no exception.
All agents choosing s (focused loading) is an equilibrium
when the resulting d could not be transformed into d∗ by
one agent choosing a different slot. Note, however, that
ϕ2 Pareto-dominates all equilibria where the cheap talk is
ignored. Because of this equilibrium, we know that m can-
not be set above v(s), because agents would receive nega-
tive utility in equilibrium. For this reason, we can do no
better than setting m as in section 3. Note that there can
never be an equilibrium in which participation is irrational
if m ≤ v(s), because agents who choose slot s will always
have nonnegative utility.

Theorem 2. There does not exist an optimal (Φ, ϕ) for
which ϕ is a strict equilibrium and m ≤ v(s).

However, there exists no equilibrium of any other mecha-
nism yielding z larger than z(Φ2, ϕ2) + ε.

Theorem 3. (Φ2, ϕ2) is ε-optimal.

Note that in ϕ2 each agent chooses a slot that would result
in an optimal distribution if he were the last agent to post
to the bulletin board. In the full version of the paper, we
show that we can assign names to agents greedily with the
guarantee of achieving the ideal distribution for whatever
number of agents eventually participate.

5. COLLECTIVE REWARD
We now consider the more general case where each agent

may have a different vi, bounded by vl and vu, as described
in section 2. In this section we introduce the assignment of
agent names as a mechanism for the agents to coordinate to
a desirable equilibrium, and also show how collective reward
may be used to prevent agents from deviating. We define
mechanism Φ3 as follows:

1. Each agent indicates that he will participate.
2. Integral names are assigned to agents from [1, t].
3. Each agent indicates what slot he selects.
4. After all agents have selected their slots, the network

determines whether each slot will be made free.

The chance that slot s will be free, p(s), depends on the
number of agents who chose that slot, d(s). Let count(s) be



the number of agents who were given the name s. Define
d+(s) = d(s)− count(s). For Φ3 :

p(s) ={ pl(s) if d+(s) ≤ 0
0 if d+(s) > 0

(2)

Intuitively, we construct pl so that each agent ai will par-
ticipate in the worst case for Φ3 : when ai has the lowest pos-
sible valuation for the slot corresponding to his name, and
the highest possible valuation for all other slots. The deriva-
tion of pl ensures that no agent will deviate regardless of his
actual v. We follow the derivation of p∗, with some changes.
The equation to make agents indifferent between all slots is
changed to: vl(s)−(1−pl(s))m = 1

t

P
i(v

u(i)−(1−pl(i))m).
The left-hand side uses vl so that it represents the lowest
possible value for the expected utility of a slot s that the
agent could receive free. The right-hand side uses vu be-
cause it represents the most an agent can receive by choos-
ing another slot. If this equality holds, then for all possible v
functions for an agent, he will not have incentive to deviate.
Algebraic manipulation gives:

pl(s) =
1
t (qm +

P
i vu(i))− vl(s)
m

(3)

As in section 3, we can derive bounds on q and m. In
this case the most profitable possible deviation is from s
with a valuation of vl(s) to s with a valuation of vu(s).
This leads to the following natural condition on m which
shows us how to create a large enough pl to ensure that
no agent deviates: m ≥ vu(s) − vl(s). It also follows that
the inequality vu(s)−m ≥ vl(s)− (1− pl(s))m must hold.
Substituting in the additional constraint of pl(s) ≥ 0 and

rearranging, we get q ≥ tvl(s)−Σivu(i)
m . Φ3 sets m > vu(s)

so that it is never rational for an agent to deviate. We then
plug m into the bound on q given above and set q as small
as possible to maximize expected revenue.

An equilibrium ϕ3 is for each agent aj to select the slot
corresponding to its number. Consider the case where all
other agents follow this strategy, and one remaining agent
ai decides his strategy. If agent ai selects slot s as above then
his expected utility is ui(s) = vi(s)−(1−pl(s))m. Deviating
to slot s′ gives him ui(s′) = vi(s′) − m. The difference
between these two options is ui(s)− ui(s′), which simplifies
to at least the sum of two positive terms: (vi(s) − vl(s)) +
(vu(s) − vi(s′)). Since agents can only lose by deviating,
ϕ3 is a strict equilibrium.

There are no equilibria of Φ3 for which d 6= d∗. Consider
any distribution of agents such that d 6= d∗. There must be
some s1 such that d+(s1) < 0, and some other s2 such that
d+(s2) > 0. An agent in s2 thus has no chance of a free
slot, and he receives negative utility for this slot, because
m > vu(s). If he switches to s1, then his probability of re-
ceiving a free slot becomes pl(s1) because d+(s1) ≤ 0. Since
pl is constructed to make participation rational, the agent
must receive nonnegative expected utility for this slot, con-
tradicting the claim that staying in s2 was an equilibrium.

Theorem 4. ϕ3 is c-optimal, c = maxs(vu(s)− vl(s)).

6. DISCRIMINATORY MECHANISM
A disadvantage of both Φ2 and Φ3 is that they reimburse

some agents at the end of the game rather than simply waiv-
ing their fees. This requires tracking individual agents’ be-
havior and executing more financial transactions, both of

which could be costly to the network. Also, Φ2 has non-
optimal equilibria. Finally, irrational agents can harm oth-
ers in both Φ2 and Φ3 . These problems are eliminated by
Φ4 , which makes use of agent names and also discriminates
by offering different free slots to different agents:

1. Each agent indicates that he will participate.
2. Integral names are assigned to agents from [1, t].
3. “Potentially free” slots are chosen according to pl.
4. Each agent indicates what slot he selects.
5. The network checks only those agents in each slot si

that was picked to be “potentially free”. If agent aj

in slot si has name(aj) = si then he receives the free
slot; otherwise he is made to pay.

Agent ai’s dominant strategy is to choose the slot that
may be free for him. The analysis is the same as for ϕ3 ; we
call this equilibrium ϕ4 . Since ϕ4 results from (strongly)
dominant strategies, it is unique. By theorem (4), dl is c-
optimal for Φ4 , c = maxs(vu(s)− vl(s)).

It may seem disappointing from a game-theoretic point
of view that neither strategy nor even payoffs under Φ4 de-
pend on the actions of other agents. However, we feel that
this is an advantage of Φ4 , since irrational agents are not
able to harm others, retroactive payments to agents are not
required, and the only equilibrium that exists is c-optimal.

7. CONCLUSION
Focused loading is a predictable problem that occurs in

real networks. We present a theoretical model of the prob-
lem and discuss four mechanisms that induce selfish agents
to smooth out their resource demands. We show a simple
mechanism that achieves a weak load-balancing equilibrium,
and three more complex mechanisms that balance load in
strict equilibria or dominant strategies. Two of our mech-
anisms assume that all agents value time slots identically,
and two generalize to the case where only upper and lower
bounds are known on agent valuations. In the future we
intend to examine the cases where agents have unrestricted
valuations for time slots, and make resource demands of dif-
ferent magnitudes.
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