
N-Body Games

Albert Xin Jiang, Kevin Leyton-Brown, Nando De Freitas
Department of Computer Science, University of British Columbia

{jiang;kevinlb;nando}@cs.ubc.ca

Abstract

This paper introducesn-body games, a new compact game-theoretic rep-
resentation which permits a wide variety of game-theoretic quantities to
be efficiently computed both approximately and exactly. This representa-
tion is useful for games which consist of choosing actions from a metric
space (e.g., points in space) and in which payoffs are computed as a func-
tion of the distances between players’ action choices.1

1 Introduction

Recently, the study of systems which involve multiple self-interested agents (e.g. auction
environments, computer networks, poker) has emerged as a major research direction in
computer science. In such systems, game theory is a primary modeling tool. Thus, in many
such systems it is necessary to compute game-theoretic quantities ranging from expected
utility to Nash equilibria.

Most of the game theoretic literature presumes that simultaneous games will be represented
in normal form (or matrix form). However, quite often games of interest have a large
number of players and a large set of action choices. This is problematic because in the
normal form representation, we store the game’s payoff function as a matrix with one entry
for each player’s payoff under each combination of all players’ actions. As a result, the
size of the representation grows exponentially with the number of players. Even if we have
enough space to store such games, most non-trivial computations on such exponential-sized
objects take exponential time.

Fortunately, most large games of any practical interest have highly structured payoff func-
tions, and thus it is possible to represent them compactly. (Intuitively, this is why humans
are able to reason about these games: we understand the payoffs in terms of simple func-
tions, rather than in terms of enormous look-up tables.) Compactness of representations in
itself is not enough, however. In order for a compact representation to be useful, it must
give rise to efficient computations.

Compact representations of structured games and these representations’ computational
properties have already received considerable study. For example, see work on congestion
games [21], local effect games [17], graphical games [13], multi-agent influence diagrams
[15] and action graph games [1]. This prior work on compactly representing and reason-
ing about large utility functions in highly-multiplayer games provides us with many useful
tools; however, for the most part these classes of games are only compact when players’
payoff functions exhibit strict or context-specific independencies. While such assumptions

1We’d like to thank Mike Klaas for helpful discussions.

are justified in a wide range of practical applications, there are many other sorts of interac-
tions that cannot be compactly modeled using these existing approaches.

In this paper, we describe a class of games calledn-body games, which have structure
similar to the “n-body problems” widely studied in physics and statistical machine learning
[6]. Thesen-body problems usually involven particles in a metric space, and the quantities
to be computed are functions of the distances between each pair of particles. Examples of
n-body problems range from determining the gravitational forces in effect between a set of
masses in physics to kernel density estimation in statistics.

In an n-body game, players choose actions in a metric space, and the payoff of a player
depends on the distances between her actions and each of the other players’ actions. We
show that many computational questions aboutn-body games can be answered efficiently,
often by combining techniques forn-body problems, such as the dual-tree algorithm, with
classical game-theoretic algorithms. The key difference between our work and the ex-
isting research on compact game representations mentioned above is thatn-body games
need exhibitneither strict or context-specific independence structures. Instead, in this
work we show how regularity in the action space can be leveraged in several key game-
theoretic computational problems, even when each agent’s payoffalwaysdepends on all
other agents’ action choices. (Of course, this does not mean that the two approaches are
incompatible: in our current research we are investigating further computational gains that
can be realized inn-body games when strict or conditional independencies hold between
players’ payoff functions.)

2 Definingn-body Games

Consider a game ofn players. Let the set of players beN = {1 . . . n}. Denote bySi agent
i’s finite set of actions.2 Denotesi ∈ Si as i’s action (also known as pure strategy). A
pure strategy profile, denoteds = (s1, . . . sn), is a tuple of then player’s actions. We also
defines−i = (s1, . . . , si−1, si+1, . . . , sn), the pure strategy profile of players other thani.
Let S =×i∈NSi be the set of all pure strategy profiles. Playeri’s payoffui is a function
of all n players’ actions, i.e.ui : S 7→ R.

We say a game is ann-body game if it has the following properties:

1. EachSi is a subset ofS, whereS is a metric space with distance measured. Two
action setsSi andSj may (partially or completely) overlap with each other.

2. ∀i, ui = K(d(s1, si), . . . , d(si−1, si), d(si+1, si), . . . , d(sn, si)). That is, each
playeri’s payoff depends only on thedistancebetweeni’s action choice and each
of the other players’ action choices.

3. K is monotonic in its distance arguments. That is, holding all but one ofK ’s
arguments constant,K must increase or decrease (weakly) monotonically as the
remaining distance argument increases.

Although we have obtained results about many classes ofn-body games, due to space
constraints in this paper we will consider only one family of payoff functions and two
special cases of this family. Intuitively, we consider onlyn-body games which can be
constructed from functionsK that take only two arguments (i.e., which depend on the

2In fact, most of our results generalize to the case of continuous action spaces, with the caveat that
most quantities must beε-approximated rather than computed exactly. We focus on the finite case
for two reasons: first, it is simpler to explain given our limited space here; second, game theoretic
problems arise in the continuous case because e.g., Nash equilibria cannot generally be shown to
exist. In fact, we are able to show the existence of Nash equilibria for broad families of continuous
n-body games; we mention these results briefly in Section 6.

distances between only two players’ actions). It turns out that these payoff functions are
already sufficient to represent a large class of game-theoretic interactions.

Definition 1 (Pairwise Interactions). A General Pairwise Interactionspayoff function is
defined as

∀i, ui(s) = ∗
j 6=i

Kj(d(si, sj)) (1)

where∗ is a monotonic, commutative and associative operator with∗jKj = K1 ∗ . . .∗Kn

and eachKi is a monotonic kernel as defined above.

Below we define two special cases of pairwise interactions payoff functions which are very
useful representationally, and which yield computational benefits over the general case.

Definition 2 (Sum-Kernel). A Sum-Kernel, or Additivepayoff function is defined as

∀i, ui(s) = ui(si, s−i) =
∑

j 6=i

wjK(d(si, sj)) (2)

where the kernelK is a monotonic function of the distance between two actions, and the
weightswj ∈ W ⊆ R.

Definition 3 (Max-Kernel). A Max-Kernelpayoff function is defined as

∀i, ui(s) = ui(si, s−i) = max
j 6=i

wjK(d(si, sj)) (3)

whereK is monotonic andwj ∈ W ⊆ R.

Analogously we can define Min-Kernel payoff functions. An example of a min-kernel
payoff function isNearest Neighbor:

∀i, ui(s) = ui(si, s−i) = min
j 6=i

d(si, sj) (4)

Of course, we can represent many other interesting game-theoretic interactions as special
cases of general pairwise interactions. For example, single-shot pursuit-evasion scenarios
can be written in this way; for more details see the full version of our paper.

2.1 Representation Size

According to the definition above, to represent ann-body game we need to specify the
action setsSi and the weightswi for each player, and the kernel functionK. Let M =
maxi |Si|. Storing the action sets takesO(nM) space. We need to specifyK for each
possible values ofd(si, sj), and in the worst case where action sets are totally disjoint,d can
haveO((nM)2) different values (recall that we assume that the action space is finite). So
the worst case space complexity for representing ann-body game isO((nM)2). However,
we are most interested in cases whereK can be expressed analytically, and so we will not
need to explicitly store its values. Some examples of useful analytic kernel functions are:

1. Gaussian Kernel: K(d(si, sj)) = e−λ||si−sj ||2

2. Coulombic Kernel: K(d(si, sj)) = − 1
||si − sj ||a

When the kernel has an analytic expression, as in these cases, the space complexity of
representing the game isO(nM), because it is unnecessary to storeK(d(si, sj)) for each
si andsj . Regardless, the space complexity of representing ann-body game is much less
than the space complexity of the same game’s normal form, which isO(nMn).

2.2 Example

Due to space constraints we present only one example, though it is easy to construct many
more. Here we give a discrete and multidimensional generalization of Hotelling’s famous
location problem [12], represented as ann-body game with Additive payoffs:

Example 1. Coffee Shop Game
n vendors are trying to decide where to open coffee shops in a downtown area. The area is
rectangular, withr rows andc columns of blocks; each vendor chooses to open shop in one
of these blocks. Vendors prefer to be far away from other vendors’ shops. Vendori’s payoff
is the sum of all other vendors’ influence oni, wherej’s influence oni is an increasing
function on the Manhattan distance betweeni andj’s chosen blocks. Formally,

ui(si, s−i) =
∑

j 6=i

K(d(si, sj)) (5)

whered(si, sj) is the Manhattan distance betweeni’s locationsi andj’s locationsj :

d(si, sj) = |row(si)− row(sj)|+ |col(si)− col(sj)|
andK is a monotonically increasing function (e.g., linear; log).

2.3 Computation onn-body Games

As noted above, then-body game representation is much more compact than the normal
form. However, evaluating a player’s payoff now takesO(n) time, where for normal form
games this just requires a table lookup. Evaluating alln players’ payoffs under a pure strat-
egy profile would then takeO(n2) time using the obvious method. For some applications—
even when the space complexity of the normal form is not a concern—this might still be
faster than constructing the exponential-sized normal form representation and then doing
computation on it. This is because computational tasks quite often require the evaluation
only of payoffs under a small subset of pure strategy profiles, so payoffs that are not rele-
vant to us will not be evaluated when using then-body representation.

Nevertheless, payoff computations are in the inner loops of most computation tasks on
games, thus theO(n2) complexity would severely limit the size of games we are able to
analyze. Can we speed up this computation by exploiting then-body structure of the payoff
function? Intuitively, if a certain set of players chose actions that are “close together” in
S, we could treat them as “approximately the same” during computation. This allows us
to approximate the computation of payoffs by partitioning the action spaceS, and approx-
imating the points in each partition by representative point(s). This is the intuition behind
manyn-body methods, e.g. the fast multipole algorithms and the dual-tree algorithm using
kd-trees or metric trees. (We survey these approaches in more detail in Section 3.) Such
methods are often able to reduce average-case complexity fromO(n2) to O(n log n) or
evenO(n).

In the rest of this paper, we consider a number of computational tasks: computing payoffs
under pure strategy profiles, payoffs under mixed strategy profiles, finding best responses,
computing pure strategy Nash equilibria and computing mixed strategy Nash equilibria. We
demonstrate that the structure ofn-body games allows each of these tasks to be performed
far more efficiently than in the general case.

3 Evaluating Payoffs under Pure Strategy Profiles

The computation of payoffs under pure strategy profiles is required by essentially all com-
putational tasks in game theory. Our later discussion of more complex tasks will be based

on results here. Consider that we want to compute a playeri’s payoff wheni plays various
actions inSi and the other players play according tos−i:

Problem 1. One-Player All-Deviations Pure-Strategy Payoffs:

∀s′i ∈ Si, ui(s′i, s−i)

3.1 Additive payoff functions

In the Additive payoff function special case, Problem 1 has the form

∀s′i ∈ Si, compute
∑

j 6=i

wjK(d(s′i, sj)) (6)

A mathematically equivalent problem arises often in statistics (e.g., Gaussian processes and
kernel density estimation) and physics (e.g., gravitation and electro-magnetics); the com-
plexity of solving the problem using a naive approach isO(|Si|n). Let h = max{n, |Si|}.
Very recently, several techniques were proposed for solving this problem inO(h log h)
and evenO(h) steps (depending on the kernel function used). These methods guarantee
an approximate solution within a specified error tolerance. (Later, we will see that in the
max-kernel and best response cases, we can even achieve an exact solution.) The most gen-
eral and popular examples of these fast methods for the sum-kernel problem include fast
multipole expansions [10], box-sum approximations [3] and spatial-index methods [19].

Fast multipole methods tend to work only in low (typically three) dimensions and need to
be re-engineered every time a new kernel function is adopted. The most popular multipole
method is the fast Gauss transform (FGT) algorithm [11], which as the name implies applies
to Gaussian kernels. In this case, it is possible to attack larger (e.g., ten) dimensions by
adopting clustering-based partitions as in the improved fast Gauss transform [23]. Both the
computational and storage cost of fast multipole methods isO(h).

Spatial-index methods, such as KD-trees and ball trees, are very general, easy to implement
and can be applied in high-dimensional spaces [9, 7, 8]. Furthermore, they apply to any
monotonic kernels defined on a metric space, and can be easily extended to other problems
besides sum-kernel. Building the trees costsO(h log h) and in practice the run-time cost
behaves asO(h log h), while storage is stillO(h) [16]. A detailed empirical analysis of the
FGT and tree methods is presented in [16].

To provide some intuition on how these fast algorithms work, we will present a brief ex-
planation of tree methods. The first step in these methods involves partitioning a set of
points recursively as illustrated in Figure 1. Along with each node of the tree we will store
statistics such as the sum of the weights in the node. Now imagine we want to evaluate the
effect of pointssj in a specific nodeB on the query pointsi, that is:

ui =
∑

j∈B

wjK(d(si, sj)).

As shown in Figure 2, this sum can be approximated using upper and lower bounds:

ui ≈ 1
2

(
uupper

i + ulower
i

)
=

∑
j∈B wj

2
(
K(dlower) + K(dupper)

)
,

wheredlower anddupper are the closest and farthest distances from the query point to node
B. The error in this approximation is:

e =
1
2

(
uupper

i − ulower
i

)
.

One only needs to recurse down the tree to the level at which a pre-specified error tolerance
is guaranteed.

Figure 1: KD-tree partition of the action space.

s i s i s i

d d

s in node Bj

lower upper

Figure 2: To bound the influence of node pointssj on the query pointsi, we move all the
node points to the closest and farthest positions in the node. To compute each bound, we
only need to carry out a single kernel evaluation.

Since there are many query points, it is possible to improve the efficiency of these tree
methods by building trees for the source and query points. Then, instead of comparing
nodes to each separate query point, one compares nodes to query nodes. A detailed expla-
nation of these dual tree techniques appears in [9, 7, 8]. When the kernel depends on more
than two agents, saym agents, one can adoptm trees to solve the sum-kernel problem
efficiently.

If there are positive as well as negative weights, we can split the set of playersN into the
setN+ with non-negative weights and the setN− with negative weights. Then the sum
above can be decomposed into two sums with non-negative weights:

∀s′i ∈ Si,
∑

j∈N+,j 6=i

wjK(d(s′i, sj))−
∑

j∈N−,j 6=i

|wj |K(d(s′i, sj)) (7)

Since we can compute each of the two sums independently of the other, we have decom-
posed the problem into two smallern-body problems, each of which can be solved effi-
ciently using e.g. the dual tree algorithm.

3.2 Max-kernel payoff functions

With theMax-kernel payoff function, Problem 1 has the form

∀s′i ∈ Si, max
j 6=i

wjK(d(s′i, sj)) (8)

d

ddAB
upper

lower
dAB

AC

lower

AC
upper

CBA

Figure 3: Assuming that all particles have equal weights, it is clear in this picture that
dupper

AB < dlower
AC and, hence, nodeB will have a stronger influence than nodeC on node

A. As a result, all the points in nodeC can be discarded in one single pruning step.

Exact payoffs can be computed using dual-tree methods [14], as shown in Figure 3. This
figure illustrates the fact that in the max-kernel case, a set of players’ actions can be disre-
garded whenever it can be proven that no element in the set is the furthest fromi’s action,
and hence that dropping these actions will not change the max. Thus, in this case we use the
upper and lower bounds not to produce an approximation toui, but rather to compute the
exact value ofui more quickly. Note that we use a dual-tree approach here which queries
using a set of pointsA rather than a single point as in Figure 2. If the actions are defined
on a regular grid, then the distance transform [2, 4] providesO(h) solutions with very low
constant factors. The distance transform is known to work for quadratic and conic kernels
[4].

3.3 General pairwise interactions payoff functions

Let us now consider general pairwise interactions. Problem 1 can be written as

∀s′i ∈ Si, ∗
j 6=i

Kj(d(s′i, sj)) (9)

If the kernels are identical, then we can apply dual-tree methods to approximate the payoffs
efficiently. In particular, we can compute the upper and lower bounds of the kernel value
between two nodes from the upper and lower bounds of the distance between those nodes.

If the kernels are not identical, then it is not obvious how to compute the upper and lower
bounds of the kernel between two nodes. However, if the kernel functions areordered,
i.e. sayK1(d(si, sj)) > K2(d(si, sj)) > . . . > Kn(d(si, sj)) for all si, sj , we can
compute the upper and lower bound using the largest and smallest kernel in thats−i node.
Otherwise, we could still use a single-tree algorithm where we only partitionSi. Then it is
straightforward to compute upper and lower bounds of the kernel value between a node in
theSi tree and a singlesj , since we know the kernel isKj .

3.4 Related problems

There are several similar problems that we may want to consider. First, imagine that we
are given a pure strategy profile of then players:s = (s1, . . . , sn), and that we would like
to compute the payoffs of alln players unders. This can be formulated as the following
problem, which takesO(n2) by naive computation.

Problem 2. All-Players One-Action-Profile Pure-Strategy Payoffs:

∀i ∈ N, ui(s)

We can also apply dual-tree methods to this problem. We need one tree to partition then
players’ actionssi, and one tree to partition the actionssj (actions of players other than
i). Since these two trees contain the same data, we can actually just build one tree that
partitionss, and run the dual-tree algorithm on this tree.

We may also want to compute a combination of Problems 2 and 1: given a pure strategy
profiles, we want to compute for alli ∈ N the payoffs wheni plays every action inSi and
the other players playss−i.
Problem 3. All-Player All-Deviations Pure-Strategy Payoffs:

∀i ∈ N, ∀s′i ∈ Si, ui(s′i, s−i)

We can treat this asn instances of Problem 1 and solve them separately. However, by
considering them together, some of the data structure can be shared. In particular, to solve
each instance of Problem 1 using a dual-tree algorithm, we need to build two trees, one to
partitioni’s action setSi, the other to partition then− 1 other players actionss−i. Instead
of building a tree ons−i for eachi, we could build a tree that partitions everyone’s actions
s. Then when we computei’s payoffs, we hidesi from the tree to yield a tree on then− 1
particless−i. Thus we only need to buildn + 1 trees, instead of2n trees.

If the action sets completely overlap with each other, i.e.Si = Sj for all i, j ∈ N , we
can achieve further savings on space and time complexity. Firstly, since the action sets
overlap, we only need one tree to partition them. Thus we only need to build two trees in
total, one for the action setS1 and one for the actionss. Furthermore, since both trees are
shared among then sub-problems, much of the computation of distances between nodes
can be cached. If the action sets only partially overlap with each other, we can still apply
the same ideas as above, although more book-keeping is required. In particular, we use one
tree to partition all the action setsS1, . . . , Sn, and in each node of the tree we keep separate
statistics about each player’s actions in that partition.

In summary, payoffs under pure strategy profiles can be approximated efficiently, with
guaranteed error bounds. In certain cases exact payoffs can also be computed efficiently. It
turns out that for many of the tasks discussed in this paper, exact payoffs are not required,
instead approximate payoffs with upper and lower bounds are sufficient.

4 Payoffs under Mixed Strategy Profiles

A mixed strategy of playeri, denotedσi, is a probability distribution overSi. Playing a
mixed strategyσi means probabilistically playing an action inSi according to the distri-
butionσi. Denote asσi(si) the probability of playing actionsi under the mixed strategy
σi. A mixed strategy profile is denotedσ = (σ1, . . . , σn). We use the shorthandui(σ) to
denote playeri’s expected payoff under mixed strategy profileσ.

A very fundamental computational problem is to computei’s expected payoffs for playing
each of her pure actions inSi, given that the other players follow the mixed strategyσ−i.
Problem 4. One-Player All-Deviations Mixed Payoff:

∀si ∈ Si, ui(si, σ−i)

For computing expected payoffs, the naive method is to sum out all possible outcomes,
weighted by their probabilities of occurring, e.g.

ui(si, σ−i) =
∑
s−i

ui(si, s−i) Pr(s−i|σ−i)

=
∑
s−i

ui(si, s−i)
∏

j 6=i

σj(sj) (10)

But the number of terms to sum is exponential to the number of players (Remembers−i

is a pure strategy profile of the(n − 1) players other thani, i.e. we are summing over
all possible combinations of actions of the(n − 1) players). We need a more efficient
algorithm.

4.1 Additive payoff functions

If the game’s payoff function is of theAdditive type (Equation 2), then due to linearity of
expectation, we can compute expected payoffs easily. For example, consider a case where
playerj with weight wj plays action 1 with probability14 and action 2 with probability
3
4 . Linearity of expectation allows us to essentially “replace” playerj with a player with
weight 1

4wj playing action 1 and a player with weight3
4wj playing action 2. Thus Problem

4 reduces to the pure strategy case (Problem 1), with the number of particles equal to the
sum of the supports of the players’ mixed strategies. Formally,

ui(si, σ−i) =
∑
s−i

ui(si, s−i)
∏

k 6=i

σk(sk)

=
∑
s−i

∑

j 6=i

wjK(d(si, sj))
∏

k 6=i

σk(sk)

=
∑

j 6=i

∑
s−i

wjK(d(si, sj))
∏

k 6=i

σk(sk)

=
∑

j 6=i

∑
sj

wjK(d(si, sj))σj(sj)
∑

s−i,−j

∏

k 6=i,j

σk(sk) (11)

=
∑

j 6=i

∑
sj

wjσj(sj)K(d(si, sj)) (12)

wheres−i,−j denotes a pure strategy profile for all players excepti andj. From (11) to
(12) we are able to eliminate the sum of the mixed strategies of players other thani and
j, since they always sum to 1. This result allows us to use dual-tree methods to efficiently
approximate expected payoffs for Additive payoff functions.

4.2 Max-kernel payoff functions

If the game’s payoff function is of theMax-kernels type (Equation 3), the task is more
complex since we cannot use linearity of expectations. Instead, we can combine dual-
tree methods with dynamic programming techniques to efficiently approximate expected
payoffs.

First, let us look at the naive way of computing the expected payoff:

ui(si, σ−i) =
∑
s−i

max
j 6=i

[wjK(si, sj)]
∏

k 6=i

σk(sk) (13)

For each possibles−i, we need to solve the maximization problemmaxj 6=i [wjK(si, sj)],
and add up these values, weighted by

∏
k 6=i σk(sk). Since the number of possibles−i is∏

j 6=i |Sj |, this method is exponential inn.

We have seen previously that dual-tree methods, by partitioning the particles into clusters
and considering interactions between clusters of particles instead of individual particles,
can speed up the computation ofn-body problems. Let us apply this intuition here. Let us
partition the action spaceS using e.g. akd-tree or a ball-tree. DenotẽS the set of partitions
in a partitioning ofS, corresponding to a frontier of the tree, ands̃ one of the partitions,
corresponding to one node in that frontier. The partitioning ofS induces a partitioning for

eachSj , denotedS̃j . Essentially, we are approximating the original game using a game
with action sets̃Sj , where different actions in the original game that belongs to the same
partition is treated as approximately the same action in the new game. For alls̃ ∈ S̃ and all
j 6= i, let σ̃j(s̃) =

∑
sj∈s̃ σj(sj), i.e. σ̃j(s̃) is the probability ofj playing an action in the

regions̃. In other words,̃σj is playerj’s mixed strategy in the approximated game onS̃.
We also partition playeri’s action spaceSi using another tree. Let us denote a node in this
tree asX. For each nodeX in theSi tree and each nodẽs in theS tree, we can compute
the upper and lower bounds of the distance between the two nodes, denoteddu(X, s̃) and
dl(X, s̃) respectively. Assuming the kernelK is monotonically decreasing ind, we can
compute the upper and lower bounds of the expected payoff wheni plays an action inX,
and the other players play the mixed strategy profileσ̃−i:

u
{u,l}
i (X, σ̃−i) =

∑

s̃−i

max
j 6=i

[
wjK(d{l,u}(X, s̃j))

] ∏

k 6=i

σ̃k(s̃k) (14)

Compared to Equation 13, we have effectively reduced the action setsSj to smaller sets
S̃j by grouping nearby actions. Unfortunately, since we are still considering each possible
action profiles̃−i of then − 1 players, the number of summands isO(|S̃|n−1), i.e. still
exponential inn. This is unacceptable.

Can we do better? We observe that the pure strategy payoffmaxj 6=i

[
wjK(d{l,u}(X, s̃j))

]

depends on the nodẽs ∈ S̃ that achieves this maximum of the weighted kernels, and the
weightwj of the player whose action achieves this maximum. Since this weight can be one
of n − 1 different values, the payoff can be at most(n − 1)|S̃| different values. If we can
compute the probability distribution of these payoff values given the mixed strategy profile,
then by the definition of the expected value, the expected payoff is just a weighted sum of
these payoff values, with the weights being the probabilities of each value. Formally,

ui(X, σ̃−i) =
∑

v

Pr(ui(X, s̃−i) = v|σ̃−i) · v (15)

=
∑

v

Pr(max
j 6=i

[wjK(d(X, s̃j))] = v|σ̃−i) · v (16)

wherePr(ui(X, s̃−i) = v|σ̃−i) is the probability ofi’s payoff beingv, given that the other
players are playing the mixed strategyσ̃−i. Sincev has at most(n − 1)|S̃| possible val-
ues, the number of summands is at most(n − 1)|S̃|. The difficult part is to compute the
probability distributionPr(ui(X, s̃−i)|σ̃−i). From (16), we observe that this is the distri-
bution of the maximum of(n − 1) independent random variables, each with distribution
Pr(wjK(d(X, s̃))|σ̃j) which is the distribution of playerj’s weighted kernel given her
mixed strategỹσj . Note that the Cumulative Distribution Function (CDF) of the highest
order statistic ofn − 1 independent random variables is the product of the CDFs of each
random variable. So a simple algorithm to compute the distribution of the maximum is to
first compute the CDFs of the random variables, multiply them together to get the CDF of
the maximum, and then convert the CDF back to a probability distribution.

1. Sort the partitions iñS by their distances toX, i.e. d(X, s̃).

2. For eachj 6= i:

(a) For each̃s ∈ S̃: Pj(wjK(d(X, s̃)) ← σ̃j(s̃)
(b) Compute the CDF ofPj , denotedFj . SincePj is already sorted,Fj is the

cumulative sum ofPj .

3. For each of the possible values ofv, compute the CDF of the maximum:F (v) =∏
j 6=i Fj(v)

4. Compute the probability distribution from the CDFF (v).

This process needs to be done twice: once for the upper bound and once for the lower
bound. The complexity of the algorithm isO(|S̃| log |S̃|+n2|S̃|). This is much better than
the exponential complexity of (14). Since we only need upper and lower bounds on the
expected payoff, we can further speed up this computation. Intuitively, although there are
O(n|S̃|) possible outcomes ofv, we can “merge” possible outcomes at the sames̃ but with
different weights, and replace them using maximum (minimum) of the weights. This way
we only have to consider|S̃| outcomes. This yields anO(|S̃| log |S̃| + n|S̃|) algorithm,
although it would produce looser bounds.

Once we have computed an approximated expected payoff on query nodeX and partition-
ing S̃, and later want to approximate the expected payoff on one ofX ’s childrenX ′ and
a finer partitioningS̃′, can we save any computation by using the earlier results? Unfor-
tunately the earlier results cannot be directly used for computing the payoff on the finer
resolution; but the good news is that we can use the earlier results (especially the distribu-
tion of v) to prune parts of the spaceS. Following is an outline of our dual-tree algorithm
(the pseudo-code of this algorithm will be included in the full version of this paper):

1. Get the query nodeX from a depth-first traversal of thekd-tree onSi; and get the
partitioningS̃ as the frontier of a breath-first traversal of thekd-tree onS.

2. Prune away parts of̃S, using earlier results.

3. Compute the distribution over payoffs.

4. Compute the expected payoff using (16).

4.3 General pairwise interactions payoff functions

Let us now considern-body games with general pairwise interactions (Equation 1). As-
sume that upper and lower bounds on the kernel value between two nodes can be computed,
so that dual tree methods can be applied. From our discussion on the Max-Kernel case,
we note that the expected payoff can be written as Equation 15. If the number of possi-
ble values ofv (i.e. the number ofi’s distinct payoff values under pure strategy profiles)
grows exponentially with respect ton, then Equation 15 is still an exponential-sized sum.
However, if the number of possible values ofv is polynomial inn (as is the case for Max-
Kernel), then the expected payoff can be computed efficiently. To compute the distribution
of payoffsPr(ui(X, s̃−i)|σ̃−i), we use a dynamical programming algorithm that applies
one player’s mixed strategy at a time. LetQj(v) = Pr(Kj(d(si, sj)) = v|σ̃j), then the
algorithm computes the following recurrence:

Pk(v) =
∑

x∗y=v

Pk−1(x)Qk(y)

for k = 1, . . . , i − 1, i + 1, . . . , n. The resultPn is the distribution of payoffs needed
in (15). Let the number of possiblev in (15) beV . Then this algorithm’s complexity is
O(nV |S̃|), which is polynomial ifV is polynomial inn. This is essentially the dynamical
programming algorithm for exploitingcausal independencein Bayes networks [24].

4.4 A more general problem

Another often-encountered task is to computei’s expected payoff when all players are
playing mixed strategies:

Problem 5. One-Player Expected Payoff under Mixed Profile

ui(σ) =
∑

si∈Si

σi(si)ui(si, σ−i)) (17)

A straightforward way to compute this is to first computeui(si, σ−i) for all si (Problem
4), then do the above weighted sum. A more efficient way is to integrate the computation
of this weighted sum into the dual-tree algorithm of Problem 4. In particular, for any
partitioning ofSi and partitioning ofS, we can compute the upper and lower bound on
ui(σ) by summing the bounds forui(X, σ̃−i) for all nodeX in that partitioning ofSi,
weighted by the probability of playing an action inX:

u
{u,l}
i (σ) =

∑

X

u
{u,l}
i (X, σ̃−i)

∑

si∈X

σi(si)

Thus we can keep a running estimation ofui(σ), and undo parts of the above approximation
as we descend down the tree onSi. As a result, we could achieve the desired accuracy
before we reach the leaves of theSi tree.

5 Computing Best Response

5.1 Pure strategy best response

Playeri’s best response (BR) under a pure strategy profiles or mixed strategy profileσ is
i’s optimal action3 against the other players’ strategies. Formally, if the other players are
playing pure strategy profiles−i, theni’s best response, denotedBRi(s−i), is

BRi(s−i) ∈ arg max
si∈Si

ui(si, s−i) (18)

An important observation is that in order to find the best response (i.e. to evaluate the
arg max operation), we do not need to compute the exact payoffs. If we could efficiently
compute upper and lower bounds on payoffs of the candidate actions, we could quickly
prune candidate actions that cannot be a best response. (For example, in the case of additive
payoffs with no negative weights, if the upper bound on the sum for a nodeA is lower than
the lower bound on the sum for another nodeB, then nodeB can be pruned because
no action inB could possibly be a best response. Note that we are able to perform this
pruning without having computed the exact expected utility of actions inB; nevertheless,
in the end we will compute the exact best response.) Once we have pruned all candidate
actions but one, we can return the action left as the best response. The dual-tree algorithm
also partitions the set of candidatesSi and operates on chunks ofSi, so it can prune chunks
of candidate actions which is much faster than pruning individual candidate actions.

Sometimes we do not need exact best responses; instead we just want an action that is
achieves a payoff of withinε of the best response’s payoff. The dual-tree methods described
below can be straightforwardly extended to compute suchε-best responses, though we do
not discuss this further here.

5.2 Best response against a mixed strategy profile

We can similarly define the problem of computing a best response against other players’
mixed strategy profiles,

BRi(σ−i) ∈ arg max
si∈Si

ui(si, σ−i). (19)

3Technically, mixed strategies can also be best responses. However we only need to compute pure
strategy best responses (against other players’ pure or mixed strategies), because any mixed strategy
BR is a mixture of pure strategy BRs, and any mixture of pure strategy BRs is a mixed strategy BR.

This problem can be solved in a way very similar to the problem considered in the previous
section. The only difference is that we must compute expected payoffs (i.e., solve Problem
4), instead of payoffs under pure strategy profiles (i.e., solve Problem 1).

6 Computing Nash Equilibria

A Nash equilibrium of a game is a strategy profileσ, such that each player is playing a best
response to the other players’ strategy profile:∀i, σi ∈ BRi(σ−i). A Nash equilibrium
where all players are playing only pure strategies is called a pure strategy Nash equilibrium.

An important computational task is determining a sample Nash equilibrium of a given
game. A mixed-strategy Nash equilibrium is always guaranteed to exist; however, no poly-
nomial algorithm is known for finding such equilibria in general games. Pure-strategy
equilibria can be easier to find; however, they do not always exist. In this section we con-
sider both kinds of equilibria.

6.1 Existence of Pure-Strategy Nash Equilibria

We can prove that certain sub-classes ofn-body games always have pure-strategy Nash
equilibria.
Theorem 1 (Coordination Equilibria). If an n-body game has a pairwise-interaction
payoff function with an monotonically non-decreasing operator∗ (e.g. Additive or Max-
kernel), and each kernelKj achieves its maximum when the distance is zero, and the inter-
section of the action sets

⋂
Si is nonempty, then for any actions ∈ ⋂

Si, the action profile
where everyone playss is a Nash equilibrium.

In other words, if everyone prefers to play actions that are closer to other actions, then
every pure strategy profile where everyone plays the same action is an equilibrium. Such
games are examples ofcoordination gameswell studied in economics.

Let us now consider the other cases, where everyone prefers to “stay away” from everyone
else. It turns out that we can prove the existence of pure strategy equilibria for a large set
of n-body games, using the concept ofgeneralized ordinal potentialfrom [18].
Definition 4 (Monderer & Shapley [18]). A functionP : S 7→ R is ageneralized ordinal
potentialfor a gameΓ if for every i ∈ N and for everys−i, and for everysi, s

′
i ∈ Si,

ui(s′i, s−i)− ui(si, s−i) > 0 implies that P (s′i, s−i)− P (si, s−i) > 0
Several subclasses of generalized ordinal potentials are: ordinal potential, potential and
weighted potential. We refer the readers to [18] for their definitions.
Theorem 2 (Monderer & Shapley [18]). LetΓ be a finite game with a generalized ordinal
potential. ThenΓ has at least one pure strategy equilibrium.

This implies that we can prove the existence of pure strategy equilibria for a class of games
if we can find a generalized ordinal potential function.

6.1.1 General pairwise interactions payoff functions

Let us first considern-body games with general pairwise interaction payoff functions
(Equation 1). We have the following result:
Theorem 3. SupposeΓ is ann-body game with pairwise interactions (Equation 1) satis-
fying the following properties:

1. The kernels are identical. Formally,

ui(si, s−i) = K(d(si, s1))∗. . .∗K(d(si, si−1))∗K(d(si, si+1))∗. . .∗K(d(si, sn))

2. The binary operator∗ is strictly monotonically increasing in its arguments. For-
mally, for all x, x′, y from the range ofK, x > x′ iff x ∗ y > x′ ∗ y.

ThenΓ has an ordinal potential function:

P (s) = ∗
i,j∈N,i 6=j

[K(d(si, sj))] (20)

which implies thatΓ has at least one pure strategy equilibrium.

Proof. By re-arranging terms inP (s) into terms that depend oni’s strategysi and terms
that does not, we observe that the terms that depend onsi is exactlyi’s payoffui:

P (s) = ui(s) ∗ (terms not dependent onsi)

Then the monotonicity of the operator∗ implies thatP is an ordinal potential function.

A straightforward corollary is that if∗ is instead monotonically decreasing, then−P (s) is
an ordinal potential function.

6.1.2 Additive payoff functions

The addition operator+ is monotonically increasing, so if the weightswj are identical,
then following Theorem 3 the game has at least one pure strategy equilibrium.

If the weights are not identical, Theorem 3 cannot be applied. Nevertheless, we can prove
the existence of pure strategy equilibria for the case of non-negative weights.

Theorem 4. If an n-body game has Additive payoffs and non-negative weights, then the
game has at least one pure strategy equilibrium.

Proof Sketch.Let us first consider the case when all weights are strictly positive. We claim
that the following is a generalized ordinal potential:

P (s) =
∑

i,j∈N,i 6=j

wiwjK(d(si, sj))

This is because if we collect the terms ofP that depend onsi, it is exactlywiui(s).

Now suppose that some of the players’ weights are zero. Then an increase inui would not
necessarily increaseP . It turns out that we can easily get around this problem. LetI be
the set of players with positive weights, andO be the set of players with weight 0. Lets∗I
be the pure strategy profile ofI that maximizes the “partial weighted potential”PI , i.e. the
weighted sum of the interactions among players inI:

s∗I = arg max
sI

PI(sI) = arg max
sI

∑

i,j∈I,i 6=j

wiwjK(d(si, sj))

Let s∗O be the pure strategy profile ofO that maximizes thesocial welfare(the sum of the
n players’ payoffs) given that the players inI is playings∗I , i.e.

s∗O = arg max
sO

W (s∗I , sO) = arg max
sO

∑

i∈N

ui(s∗I , sO)

Then the strategy profile(s∗I , s
∗
O) is a Nash equilibrium. Intuitively, since the players inO

do not affect the payoffs of players inI, we can “optimize” withinI first, then optimize
within O given the partial solution inI.

Can we formulate a generalized ordinal potential for this class of games? We make use of
the following Lemma:

Lemma 1. SupposeΓ is a finite game. If there exist a functionP : s 7→ Rk such that
for everyi ∈ N and for everys−i, and for everysi, s

′
i ∈ Si, ui(s′i, s−i) > ui(si, s−i)

implies thatP (s′i, s−i) is lexicographically greater thanP (si, s−i) (denotedP (s′i, s−i) >l

P (si, s−i), thenΓ has a generalized ordinal potential.

SinceΓ is finite, we can sort all pure strategy profiles byP . Then we can construct a
generalized ordinal potential that mapss to its index in the sorted list. For convenience,
we callP (s) a generalized lexicographical ordinal potential (GLOP)and use it as regular
generalized ordinal potentials. For Additiven-body games with non-negative weights, it is
straightforward to verify that the tupleP ′(s) = (PI(sI),W (sI, sO)) is a GLOP.

If the weights are instead non-positive, then following the same argument, pure strategy
equilibria still exist. However if there are positive and negative weights, then pure strategy
equilibria might not exist. One simple example is a game with two players with opposite
weights (w1 = −w2). Let S1 = S2 = {H,T} andd(H,T) = 1. Then one player prefers
to choose the same action as the other, while the other player prefers to be different. This
is the classic game of Matching Pennies which do not have pure-strategy equilibrium.

6.1.3 Max-kernel payoff functions

Let us considern-body games with Max-Kernel payoff functions. Themax operator is
only weakly increasing in its operands, so Theorem 3 cannot be applied even for the case
with identical weights.

We look at Nearest Neighbor games (Equation 4), which is a subclass of Min-Kerneln-
body games with identical weights.

Theorem 5. A Nearest Neighbor game as defined by Equation 4 has at least one pure
strategy equilibrium.

Proof. We define therank vectorV (s), which is a vector of all distances between pairs of
actions ins, sorted in increasing order:

V (s) = sort{d(si, sj) : i, j ∈ N, i 6= j}
Now suppose playeri deviates fromsi to s′i, and achieves a better payoff. This must be
because the distance betweens′i and its nearest neighbor,sj , is greater than the distance be-
tweensi and its nearest neighbor,sk: d(s′i, sj) > d(si, sk). Now let’s consider this devia-
tion’s effect on the rank vector. ComparingV (s′i, s−i) andV (si, s−i) lexicographically, we
see that the change ini’s nearest neighbor distance dominates the changes ini’s distances to
the other actions. And sinced(s′i, sj) > d(si, sk), we must haveV (s′i, s−i) >l V (si, s−i).
ThusV (s) is a GLOP.

This result can be generalized to the case with non-identical weights, by using the weighted
rank vector

WV (s) = sort{wiwjK(d(si, sj)) : i, j ∈ N, i 6= j}
as a GLOP. We omit the details of the proof.

All of our existence results for finiten-body games can be extended ton-body games with
continuous action spaces, with the additional restriction that the action setsSi are compact
and the kernelK is bounded. Due to space constraints we omit the proofs.

6.2 Iterated Best Response Dynamics

We’ve shown that a large set ofn-body games always have pure strategy equilibria. Here,
we show that these equilibria can be computed relatively inexpensively by repeatedly com-
puting best responses to pure strategy profiles.

Definition 5 (Monderer & Shapley [18]). A sequence of pure strategy profilesγ =
(s0, s1, . . .) is an improvement pathwith respect toΓ if for every k ≥ 1 there exists an
unique player, sayi, such thatsk = (sk

i , sk−1
−i) for somesk

i 6= sk−1
i , and furthermore

ui(sk
i , sk−1

−i) > ui(sk−1
i , sk−1

−i). In other words, at each step of an improvement path, one
“myopic” player unilaterally deviates to an action with a better payoff.Γ has thefinite
improvement property (FIP)if every improvement path is finite.

Theorem 6 (Monderer & Shapley [18]). Let Γ be a finite game. ThenΓ has the FIP if
and only if it has a generalized ordinal potential.

This immediately suggests a method to find an equilibrium by iteratively improving the
strategy profiles. One such method is iterated best response dynamics:

1. start from an initial pure strategy profiles

2. repeat the following until eithers converges or maximum number of iterations
reached:

(a) for each playeri, updatesi to be one ofi’s best responses tos−i, if it would
improvei’s payoff.

It is obvious that the resulting path of pure strategy profiles is animprovement path. Thus
for n-body games with generalized ordinal potentials, the path is finite and terminates at an
equilibrium. The bottleneck of the above procedure is the computation of best responses.
As discussed in Section 5 this can be done efficiently4.

6.3 Mixed Strategy Equilibria

Quite a few algorithms for computing mixed-strategy equilibria of finite games have been
proposed, e.g. simplicial subdivision [22], simple search for small support equilibria [20],
and Govindan & Wilson’s continuation method [5]. These algorithms all require the sub-
tasks of computing expected payoffs under given mixed strategies and/or computing best
responses. For example, the computation of the integer labels in simplicial subdivision
algorithms depends on the computation of best responses against mixed-strategy profiles.
Since we have already shown that we can efficiently compute these values forn-body
games, it is immediate to see that we can speed up all of these algorithms.

7 Conclusion

We have presentedn-body games, a new compactly representable class of games upon
which many important computational game-theoretic questions can be answered efficiently.
We also showed that manyn-body games have pure-strategy Nash equilibria which can be
found using iterated best response dynamics. Of course, we have only scratched the surface
of this rich research area. Among other topics, we are currently investigating games built
around higher-dimensional kernels, games with continuous action spaces, more efficient
computational techniques (e.g., for best response), other special cases (e.g., pursuit-evasion
games) and connections with other compact representations (e.g., action-graph games).

4An alternative is thebetter response dynamics: at each iteration, just try to find a better response
than the current one. Due to space constraints, we omit the details on computation of better responses.
For continuousn-body games with differentiableK and operator∗, gradient-following algorithms
could be even more efficient. Again, we leave the detailed discussion to the full version of the paper.

References
[1] N. Bhat and K. Leyton-Brown. Computing Nash equilibria of action-graph games. InConfer-

ence on Uncertainty in Artificial Intelligence (UAI), 2004.

[2] G Borgefors. Distance Transformations in digital images.Computer Vision, Graphics, and
Image Processing, 34:344–371, 1986.

[3] P F Felzenswalb, D P Huttenlocher, and J M Kleinberg. Fast Algorithms for Large-State-
Space HMMs with Application to Web Usage Analysis. InAdvances in Neural Information
Processing Systems 16, 2003.

[4] P F Felzenszwalb and D P Huttenlocher. Distance Transforms of Sampled Functions. Technical
Report TR2004-1963, Cornell Computing and Information Science, September 2004.

[5] S. Govindan and R. Wilson. A global newton method to compute Nash equilibria.Journal of
Economic Theory, 2003.

[6] A. Gray and A. Moore. “n-body” problems in statistical learning. InNIPS, 2000 (proceedings
appeared 2001).

[7] A Gray and A Moore. Nonparametric density estimation: Toward computational tractability. In
SIAM International Conference on Data Mining, 2003.

[8] A Gray and A Moore. Rapid evaluation of multiple density models. InArtificial Iintelligence
and Statistics, 2003.

[9] A G Gray and A W Moore. ‘N-Body’ Problems in Statistical Learning. InAdvances in Neural
Information Processing Systems 4, pages 521–527, 2000.

[10] L Greengard and V Rokhlin. A fast algorithm for particle simulations.Journal of Computa-
tional Physics, 73:325–348, 1987.

[11] L Greengard and X Sun. A new version of the Fast gauss transform.Documenta Mathematica,
ICM(3):575–584, 1998.

[12] H. Hotelling. Stability in competition.Economic Journal, 39:41–57, 1929.

[13] M.J. Kearns, M.L. Littman, and S.P. Singh. Graphical models for game theory. InUAI, 2001.

[14] M Klaas, D Lang, and N de Freitas. Fast maximum a posteriori inference in Monte Carlo state
spaces. InArtificial Intelligence and Statistics, 2005.

[15] D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving games. In
IJCAI, 2001.

[16] D Lang, M Klaas, and N de Freitas. Empirical testing of fast kernel density estimation al-
gorithms. Technical Report TR-2005-03, Department of Computer Science, UBC, February
2005.

[17] K. Leyton-Brown and M. Tennenholtz. Local-effect games. InInternational Joint Conferences
on Artificial Intelligence (IJCAI), 2003.

[18] D. Monderer and L.S. Shapley. Potential games.Games and Economic Behavior, 14:124–143,
1996.

[19] A W Moore. The Anchors Hierarchy: Using the triangle inequality to survive high dimensional
data. Technical Report CMU-RI-TR-00-05, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, February 2000.

[20] R. Porter, E. Nudelman, and Y. Shoham. Simple search methods for finding a Nash equilibrium.
In Proc. AAAI, pages 664–669, 2004.

[21] R.W. Rosenthal. A class of games possessing pure-strategy Nash equilibria.Int. J. Game
Theory, 2:65–67, 1973.

[22] G. van der Laan, A.J.J. Talman, and L. van der Heyden. Simplicial variable dimension algo-
rithms for solving the nonlinear complementarity problem on a product of unit simplices using
a general labelling.Mathematics of operations research, 12(3):377–397, 1987.

[23] C Yang, R Duraiswami, N A Gumerov, and L S Davis. Improved fast Gauss transform and
efficient kernel density estimation. InICCV, Nice, 2003.

[24] N.L. Zhang and D. Poole. Exploiting causal independence in bayesian network inference.Jour-
nal of Artificial Intelligence Research, 5:301–328, 1996.

