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Abstract. This article makes two contributions. First, we present a platform for running
and analyzing multiagent reinforcement learning experiments. Second, to demonstrate this
platform we undertook and evaluated an empirical test of multiagent reinforcement learning
algorithms from the literature, which to our knowledge is the largest such test ever conducted.
We summarize some conclusions from our experiments, comparing algorithms on a variety
of metrics including reward, regret, convergence to a Nash equilibrium and behavior in self
play1.
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1. Introduction

Recently, there has been much interest in the design and analysis of algo-
rithms for game theoretic settings, for example by Singh et al. (2000), Bowl-
ing and Veloso (2001a), Tesauro (2003), Bowling (2004) and Powers and
Shoham (2004). Such work has typically introduced new algorithms, compar-
ing them against one or two existing algorithms on a small set of well-known
repeated games. Algorithm performance is then evaluated using one or two
metrics. This focus has led to a wealth of different algorithms for multiagent
learning in repeated games, but a relative lack of general understanding of
these algorithms’ strengths and weaknesses.

The research described in this article makes two contributions. First, we
describe the design and implementation of a platform for running large ex-
periments on multiagent reinforcement learning algorithms (Section 2). As
we argue in this article, a standardized platform offers several advantages
over one-off solutions for running experiments (though clearly the creation
of a platform requires a large up-front expenditure of effort). Second, we
present an analysis of an empirical test that was conducted using our platform
(Section 3). We make a series of claims and argue for them on the basis of our
experimental evidence. For example, we show how algorithm performance
differs depending on the game and opponent. Furthermore, we identify algo-
rithms which perform well according to different measures of performance

1 We would like to gratefully acknowledge a variety of contributions to this work by Nando
De Freitas, and helpful comments from three anonymous reviewers.
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such as the amount of reward attained by the agent and whether the agent
converges to playing a Nash equilibrium strategy. This article describes work
which is presented in more detail in Lipson (2005).

1.1. SETTING

In this article we consider two-player repeated games—an environment in
which a single normal-form game (or “stage game”) is played repeatedly
by a pair of self-interested agents1. Our environment is thus game theoretic;
readers desiring an introduction to the topic should consult e.g., (Fudenberg
and Tirole, 1991; Osborne and Rubinstein, 1994; Fudenberg and Levine,
1999). A game can be understood as having a set of game-theoretic properties
including the set of Nash equilibria, the set of strategies that survive iterated
removal of dominated strategies, Pareto-optimal outcomes and safety levels.
In a given stage game agents are aware of the past history (actions that were
played in previous stage games) but are not aware of which strategy their
opponent will play in the current stage game or which algorithm the opponent
is using to determine this strategy. This assumption is based on the principle
that an agent’s strategy should be based on observing the opponent’s play,
rather than on knowledge of the opponent’s internal state.

1.2. RELATED WORK: MULTIAGENT REINFORCEMENT LEARNING
ALGORITHMS

Fundamentally, a main goal of our work is to deepen our understanding of the
empirical behavior of multiagent reinforcement learning algorithms. In this
section we give high-level descriptions of the algorithms we studied along
with pointers to papers which give more information about each algorithm.

1.2.1. Fictitious Play
Fictitious play is the earliest example of a learning algorithm for repeated
games (Brown, 1951). The agent observes the actions of her opponent and
estimates the opponent’s mixed strategy by counting the number of times the
opponent has played each of her actions so far. The agent then chooses to
play the action (i.e., the pure strategy) that maximizes her expected payoff
given her estimate of the opponent’s strategy. The updates and strategy are as
follows:

1 One might also be interested in broader classes of stochastic games, or games with in-
complete information. We did not pursue either direction, since in neither setting does there
exist a widely-used distribution of benchmark games upon which to test. Considering such
games would be a worthwhile topic for future work.
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− At time t+1, the player selects a best response pure strategy overlineat+1

to the estimate of the opponent’s strategy Ĉt :

at+1 = bri(Ĉt) = arg max
ai

E[ui(Ĉt, ai)]

− The player then updates her estimate of the opponent’s strategy based on
the opponent’s action ot+1 :

Ct+1 = Ct + eot+1 ; Ĉt+1 = normalize(Ct+1).

1.2.2. Q-Learning
One of the most popular reinforcement learning approaches in single agent
environments is Q-learning (Watkins and Dayan, 1992), in which the agent
does not know what rewards are assigned to actions. Q-learning repeatedly
takes actions and obtains rewards, thereby learning a policy. Specifically, at
each iteration/time step the agent does an update based on the state s she
is in, the action a taken and the obtained reward r(s, a). Let Q(s, a) be the
discounted value of taking action a in state s and s′ is the new state that is the
agent finds herself in after taking action a. The update at each step is then:

Q(s, a) = (1− α)Q(s, a) + α[r(s, a) + γ max
a′

Q(s′, a′)].

The value of state s is V (s) = maxa Q(s, a) and the policy is π(s) =
arg maxa Q(s, a). γ is the discount factor and α is the learning rate, which
is traditionally decayed over time. It can be shown that if α is decayed and
each action is played in each state an infinite number of times, then Q(s, a)
is guaranteed to converge to the optimal Q∗(s, a) (Kaelbling et al., 1996).

Q-learning can be used as a learning algorithm in multiagent environ-
ments. However, note that doing so ignores the presence of an opponent, and
so violates the stationarity assumption necessary to the theoretical guarantees
upon which the algorithm is built. Nevertheless, this is not an altogether un-
reasonable idea—for example, if Q-learning converges in self play, it is easy
to show that it will have converged to a Nash equilibrium.

1.2.3. Minimax-Q
There have also been efforts to extend the ideas behind Q-learning to multi-
agent environments by taking the opponent’s actions into account and stor-
ing discounted Q-values for the joint actions of the agent and its opponent.
Minimax-Q (Littman, 1994) is one such approach. Instead of computing a
Q-value Q(s, a) over the state and action, the algorithm computes a Q-value
Q(s, a, o) over the state, action and opponent’s action, with o representing
the opponent’s action at a given iteration. The maxa operation in Q-learning
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is replaced by a maxa mino operation in minimax-Q, which means that the
agent plays a safety level (or “max-min”) strategy.

Minimax-Q-IDR is an algorithm which iteratively removes dominated strate-
gies from the game matrix and then applies the minimax-Q algorithm to the
reduced game. We are not aware of any other published work that discusses
this algorithm, though the idea is straightforward.2

1.2.4. Win-or-Learn-Fast
The Infinitesimal Gradient Ascent (IGA) algorithm (Singh et al., 2000) is
a policy search reinforcement learning algorithm for single-agent settings.
Bowling and Veloso (2001a) used a so-called Win-or-Learn-Fast (WoLF)
heuristic with IGA to produce the WoLF-IGA algorithm. The idea is to use
a variable step size that changes according to how well an agent is doing. If
an agent is achieving high payoffs (relative to a Nash equilibrium) she uses a
small step size, thereby slowing down her learning rate. If the agent is doing
badly then she uses a larger step size, allowing her to adapt faster.

An improved version of WoLF-IGA does not compare performance to a
Nash equilibrium, but rather keeps track of the agent’s regret with respect
to the counterfactual possibility of having played a stationary pure strategy
(Bowling, 2004). This version, GIGA-WoLF, offers the theoretical guarantee
that long-run regret will not be positive. This algorithm does not directly
utilize a variable step size, but rather the step size is affected by the magnitude
of the gradient.

1.2.5. Global Stochastic Approximation
Global Stochastic Approximation (GSA) (Spall, 2003) draws on ideas from
annealing and stochastic approximation. It is very similar to IGA, but adds
a random perturbation term to the stochastic approximation update equa-
tion. This adds some “jumps” to the update equation in order to explore the
space and avoid local maxima. To our knowledge, the GSA algorithm has not
previously been applied to a repeated game setting.

1.2.6. Alternative Algorithms
We have not implemented all algorithms that have been used in repeated
game research. This includes the work of Yoav Shoham (Shoham et al., 2004;
Shoham et al., 2006), Rob Powers (Powers and Shoham, 2004; Powers and
Shoham, 2005) and Thuc Vu (Vu et al., 2005) who have presented algorithms
for learning against specific classes of opponents, in addition to critically
looking at the direction of research in multiagent learning.

Though we have presented a number of different metrics, we have not
covered all of the possible equilibrium types. Algorithms such as Nash-Q

2 Note that while minimax-Q generalizes straightforwardly to stochastic games, minimax-
Q-IDR does not have this property.
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(Hu and Wellman, 1998) which focus on learning strategies that converge
to playing Nash equilibrium3 and Correlated-Q Learning (Hart and Mas-
Colell, 2000; Greenwald and Hall, 2003) which use correlated equilibrium,
as opposed to Nash equilibrium. We have presented research based on the
concept of an agent’s regret, but these are not the only algorithms that utilize
this concept (Freund and Schapire, 1996; Foster and Vohra, 1997). These
algorithms should be looked at in the future.

1.3. RELATED WORK: EXPERIMENTAL METHODS

A wide variety of choices about experimental setup must be made before an
experiment can be run. Unfortunately, papers in the literature vary widely
in the way they make these choices. Furthermore, some papers do not even
discuss the parameters used in their implementations of the algorithms, which
can make it difficult to reproduce experiments. Table I shows how six recent
research papers ran experiments, illustrating the fact that the researchers used
very different experimental setups.

Table I. Testing methodologies in different research papers.

Paper # iterations # games # runs/trials Settling in/
recording period

Littman (1994) 1.1M 1 3 1M/100k
- minimax-Q

Claus and Boutilier (1997) 50 or 2500 3 100 0/50 or 2500
- Joint Action Learners

Bowling (2004) 1M 1 unknown 0/1M
- GIGA-WoLF

Nudelman et al. (2004) 100k 13 GAMUT 100 instances/game 90k/10k
- GAMUT generators 10x per instance

Powers and Shoham (2004) 200k 21 or 35 GAMUT unknown 180k/20k
- MetaStrategy generators

Tesauro (2003) 1.6M 1 unknown 0/1.6M
- Hyper-Q

Overall, most of the tests performed in these papers (and in other papers
from the literature) considered quite small numbers of algorithms. Tesauro
(2003) and Bowling (2004) reported tests of their new algorithms against two
and one algorithms respectively. Nudelman et al. (2004) used three agents but

3 Bowling (2000) discusses some of the convergence results of Nash-Q
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many games;4 however, the purpose of that paper was primarily the demon-
stration of the GAMUT software. The experiments by Littman (1994) were
performed with four algorithms, two minimax-Q and two Q-learning algo-
rithms. Claus and Boutilier (1997) utilized two algorithms. Powers and Shoham
(2004) conducted one of the largest experiments but only used reward as a
metric.

Tests have also tended to consider small numbers of different games. For
example, many papers (Bowling and Veloso (2001b), Tesauro (2003), Bowl-
ing (2004)) tested on a single repeated game. Some used a single new game
to demonstrate properties of an algorithm, e.g., Littman (1994), Claus and
Boutilier (1997), Littman (2001) and Bowling and Veloso (2002). To some
extent, this reflects the difficulty of creating a large number of different games
for use in tests. Recently, some papers including Nudelman et al. (2004) and
Powers and Shoham (2004) have tested on larger sets of games, using the
GAMUT software (Nudelman et al., 2004) to produce test data.

Experiments also differed substantially in the number of iterations con-
sidered (i.e., the number of repetitions of the normal form game). First, note
that the iterations in a repeated game are often split into “settling in” and
“recording” phases, allowing the algorithms time to determine a strategy
before results are recorded. This is done to reduce the sensitivity of exper-
imental results to different algorithms’ learning rates. Littman (1994) used a
simple two-player soccer game that took a variable number of iterations to
play once; nevertheless, tests ran for a fixed number of iterations rather than a
fixed number of games. The experiments in Claus and Boutilier (1997) were
run with different numbers of iterations (though far fewer than were used by
any other researchers). In Powers and Shoham (2004), different results were
shown in the paper for a 21 game distribution and an “all” game distribution
from GAMUT, which currently includes 35 generators.

An alternative style for a tournament would be to run one that is based
around evolutionary ideas, as in Axelrod (1987). Though such an approach
would try and play the “genetically best” agents from a population against one
another, the initial population has strategies defined by specific actions for
each stage games. It is not clear how such an approach could utilize learning
algorithms as described in this paper, where the learning strategies do not
specify what actions to take in each stage game prior to the stage game being
played.

4 The term generator in Table I refers to an algorithm which produces random normal-form
games satisfying certain constraints (e.g., n-player prisoner’s dilemma games). An instance is
a particular normal form game produced by such a generator.
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2. A Platform for Multiagent Reinforcement Learning

One common approach to running experiments is to write one-off code tai-
lored to the particular experiment. Often the code is not used again. While
this approach is appropriate for quick and dirty experiments meant to test
specific features of a new algorithm, it can make replication of the experiment
difficult, and can discourage the sort of exploratory experimentation that is
needed to gain understanding of the complex interactions between multia-
gent reinforcement learning algorithms. This section describes an open and
reusable platform that we have implemented for conducting experiments with
multiagent reinforcement learning algorithms in repeated games.

The platform software is available for download at http://www.cs.
ubc.ca/˜kevinlb/malt. This website also gives the configuration files
used to run all the experiments described in this article.

2.1. THE PLATFORM ARCHITECTURE

Our multiagent learning platform was written in object oriented Matlab. We
chose Matlab for its rapid prototyping ability, excellent collection of numer-
ical algorithms and built-in data visualization routines. The user does not
need to interact with Matlab’s command line, as all parameter setting, metric
specification and visualization routines are conducted through GUIs.

Experiments are run in a tournament fashion, with each algorithm running
against all other algorithms, including in self play. Each pairing of algorithms
is run twice, with each agent taking turns to play as the row and the column
player against the other agent. While in zero-sum and symmetric games it
makes no strategic difference to an agent whether she plays as the row or col-
umn player, in general games the role each agent plays is important. Allowing
each algorithm to play both as the row and the column player prevents bias.
Each pairing of algorithms plays on a set of instances of game generators,
with each pairing playing on the same instances.

If there are n agents, g games and i instances of each game, then the total
number of runs is 2 ×

[∑n
j=1 j

]
× g × i. This shows the degree of

parallelism available, as each of these runs can occur in parallel. Individual
runs cannot be split up as every iteration in the run relies on the previous
iteration.

Each run can be identified by the following characteristics: the pair of
algorithms involved, which algorithm is the row player and which is the
column player, which game generator is being used and which instance of
that generator is being played.
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2.1.1. Algorithms/Agents
Figure 1 gives the class structure for the algorithms described in Section 1.2
and implemented in the platform.

Figure 1. Class hierarchy for the agent/algorithm classes. The root node of agent contains
the basic information relevant to all agents, including the algorithm name, number of actions
and strategy.

Fictitious play is an implementation of the algorithm described in Sec-
tion 1.2.1. Pareto agent and determined agent are algorithms that play the
strategy corresponding to the most beneficial Pareto outcome or Nash equi-
librium respectively. The gradient agent is an implementation of the Infinites-
imal Gradient Ascent (IGA) algorithm from Singh et al. (2000). GIGA-WoLF
(Bowling, 2004) and WoLF-IGA (Bowling and Veloso, 2001a) are the (gradient-
based) algorithms described in Section 1.2.4. The global stochastic approx-
imation agent is an implementation of the stochastic approximation algo-
rithm of Spall (2003), which was discussed in Section 1.2.5. The random
agent is an algorithm that selects among all actions with uniform probabil-
ity. The Q-learning algorithm (Watkins and Dayan, 1992) applies a single
agent algorithm to the multiagent setting as discussed in Section 1.2.2. The
minimax-Q algorithm differs slightly from the implementation in Littman
(1994) by randomizing over actions that return the safety level of the game.
The minimax-Q-IDR plays a minmax strategy on the reduced game after
iteratively removing dominated strategies as discussed in Section 1.2.3.

2.1.2. Games
The testing platform obtains all of its normal form games from the game
generator GAMUT (Nudelman et al., 2004). A user inputs specific parameter
values for the generators in GAMUT and these values are checked to ensure
they are valid. If invalid, the platform returns the GAMUT error message.

Each game has its payoffs normalized to the range [−1, 1]. Normal-
ization is done for two reasons. Firstly, it allows easier comparisons to be
made across games. All games have different default payoff bounds and it
is difficult to obtain average statistics across such varied bounds. Second,
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normalization standardizes the performance of the gradient-based algorithms
by ensuring that gradients remain well-behaved.

2.1.3. Performance Metrics
A key difference between the single- and multiagent reinforcement learning
settings is that there is no single way of evaluating the performance of a mul-
tiagent reinforcement learning algorithm. That is, in a multiagent setting there
is no well-defined notion of optimality. For example, while it is desirable for
an agent to play a best response to its opponent’s strategy, the fact that the
opponent may also adapt raises the possibility that an agent could be better
off forgoing immediate rewards in order to condition her opponent to behave
in a desirable way.

The most basic metric, reward, is the sum of the payoffs that the agent
received from the sequence of stage games. However, using reward as an
isolated metric is difficult. (For example, is it good or bad for an agent to
obtain a reward of 0.5?).

Regret considers how much better off the agent would have been if she
had played the best among some family of candidate strategies, making the
assumption that the opponent’s sequence of actions would not have been
affected. Here we consider regret with respect to stationary pure strategies,
as did Bowling (2004) for the GIGA-WoLF algorithm. This is a fairly weak
notion of regret, because it is stated with respect to a very restricted class of
strategies. Positive regret means the agent would have been better off playing
some strategy from the candidate set (e.g., some pure strategy). Negative
regret means the agent’s strategy outperformed every strategy from the can-
didate set. Equation (1) gives the formula for calculating total regret. ai is
a pure strategy for agent i and ui(σ−i, ai) is the payoff received by agent i
from playing the pure strategy against the opponent’s strategy σ−i.

R = max
ai∈Ai

T∑
t=1

(u(t)
i (σ−i, ai)− u

(t)
i (σ−i, σi)) (1)

Incentive to deviate is based on the ideas of Walsh et al. (2003). This value
is the difference between the reward that an agent would have received if she
had played a best response at every stage game and the reward she actually
received. This can be seen as a more extreme version of regret, because it
is stated with respect to any possible strategy that an agent could play. Equa-
tion (2) gives the formula for calculating agent i’s best response strategy to an
opponent’s mixed strategy σ−i. E[ui(σ−i, σi)] is the expected payoff to agent
i, with σi being agent i’s strategy and σ−i being the opponent’s strategy.
Equation (3) gives the formula for calculating the incentive to deviate from a
mixed strategy σ at time t; in this equation, bri(a−i) is agent i’s best response
to her opponent’s action a−i.
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bri(σ−i) = arg max
σi

E[ui(σ−i, σi)] (2)

IDσt = max(0, ui(a−i, br(a−i))− ui(a−i, ai)) (3)

The number of wins metric is calculated each stage game. If agent A re-
ceives a higher reward than agent B, then A is said to have won that stage
game. This metric has the drawback that it implicitly assumes that the agent
cares about receiving a greater reward than its opponent. This ought not to
be the case as by definition an agent should care only about maximizing its
own reward, regardless of the reward that its opponent receives. However, this
metric is good for indicating pairwise dominance amongst algorithms.

Walsh et al. (2003) uses the `2 norm as a measure of convergence to a
Nash equilibrium. The result is the minimum of the distances between the
agent’s current strategy and any equilibrium from the set of equilibria E. The
formula for this is given in Equation (4). One problem with this metric is that
it measures how close an individual agent’s strategy is to a Nash equilibrium
strategy, without considering whether the opponent is playing close to the
same Nash equilibrium. We thus introduce a second measure of convergence.
This uses the `1 norm and takes into account how far both players are from all
equilibria. When the value of this metric is 0, we have convergence to an exact
Nash equilibrium. The formula for the joint `1 norm is given in Equation (5).
ei denotes player i’s strategy in the Nash equilibrium e, σi is player i’s mixed
strategy, Na is the total number of actions for each agent.

l2i(t) = min
e∈E

Na∑
a=1

√
(σi(a)− ei(a))2 (4)

l1(t) = min
e∈E

(
Na∑
a=1

|σ1(a)− e1(a)| +
Na∑
a=1

|σ2(a)− e2(a)|
)

(5)

2.2. SETTING UP AND RUNNING AN EXPERIMENT

The pipeline for running an experiment is split into three phases. The first is
the set up phase: selecting the agents, games, number of runs or instances,
number of iterations and the metrics to be recorded. The second phase is the
actual running of the experiment. This phase can be done on a single machine
in a batch process, or in parallel on a cluster. The final phase is to visualize
the metrics and to analyze the resulting data. The entire pipeline is shown in
Figure 2.

The GUI for setting up an experiment, phase 1 of the pipeline, is shown in
Figure 3. The user selects the agents, games, metrics and parameters for the
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Figure 2. The pipeline for running experiments on the platform. The illustration is shown for
a single combination of two agents and a single game generator.

experiment. A configuration file describing this setup can be saved prior to
running the experiment. This file contains all of the information necessary to
rerun the experiment. This file can be made available for download, allowing
researchers to reproduce one another’s experiments.

Once an experiment has been run, we need to visualize the results. Due to
the volume of data collected in a typical experiment, we would not want to
see a statistic for each run, but instead want to be able to visualize statistics
over multiple runs. Although visualization could be performed by the user at
the command line, it can be cumbersome to specify to the system which data
to vary in a visualization, which data to aggregate, and which data to omit.
For this reason we built a GUI-driven visualization system. This system is
described in an appendix.

3. Our Empirical Evaluation of Multiagent Reinforcement Learning
Algorithms

3.1. EXPERIMENTAL SETUP

The experiment was set up using a subset of the available algorithms, metrics
and games. In total, six algorithms, seven metrics and thirteen game gener-
ators were chosen. The experiment was conducted in a tournament fashion,
with each algorithm playing each other algorithm. The algorithms and their
parameters are listed in Table II. The parameters for each algorithm were
either set to values from the paper in which they were introduced or to decay
below a certain value after 100 000 iterations. Each agent’s beliefs about its
opponent’s strategy was initialized to a uniform distribution over the oppo-
nent’s actions. The initial belief update rate was set to 0.9 for all agents that
used a discounted stochastic approximation technique to estimate an oppo-
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Figure 3. The graphical user interface for phase one of an experiment, where the parameters
are set.

nent’s strategy. The decay rate for this parameter was set to decay the initial
belief update rate to 10−6 after 100 000 steps (i.e., a decay rate of 0.999886).
The update values for GIGA-WoLF and GSA that are displayed in Table II
are based on information supplied in Spall (2003).

The algorithms were tested on thirteen game generators, which are split
into two groups. The first twelve generators were used to produce games
with ten actions; these generators are listed in Table III. We generated 100
instances from each of these generators. The thirteenth generator was the
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Table II. The six algorithms used in the experiment and the values of their associated
parameters. t reflects the value of the current iteration. Minimax-Q, minimax-Q-IDR
and Q-learning have the same set of parameters. Fictitious play has no parameters.

Algorithm Parameters

GIGA-WoLF γt : 10
(A+t)0.602 ; A : 5000 = 5% of 100000

This ensures that the update is large at the start and gradually decays over
time to < 10−3 after 100 000 iterations.

GSA-Agent αt : 10
(t+1+A)0.602 ; A : 5000; βt : 0.3

(t+1)0.301log(t+1)

This provides the same decrease rate for α as in GIGA-WoLF. We want
βt to decrease at a faster rate and this setting causes it to be < 10−4 after
100 000 iterations.

minimax-Q Initial exploration rate: 0.2; Exploration rate decay: 10(log0.01)/100000

minimax-Q-IDR α : 1; αdecay : 10(log0.01)/100000; γ: 0.9

Q-learning Values taken from the minimax-Q paper (Littman, 1994). The decay rates
were adapted from the paper, which used one million iterations.

Fictitious play None

Table III. The twelve game generators that were used to generate the
games with ten actions.

Generators of games with ten actions

Arms Race Bertrand Oligopoly Cournot Duopoly
Covariant Game Dispersion Game Guess Two Thirds Average
Grab The Dollar Location Game Minimum Effort Game
Majority Voting Traveler’s Dilemma War Of Attrition

TwoByTwo game generator, which generates from all of the 85 distinct 2× 2
games, see Rapoport et al. (1976). The goal with the 2×2 games was to obtain
results over a random distribution of 2× 2 games. The ability to sample from
the set of possible 2 × 2 games comes at the expense of being unable to
view results for a specific 2×2 game, for example Prisoner’s Dilemma. Such
experiments would be a worthwhile avenue for future work. Using the 2× 2
generator we generated twelve times as much data as we did with each of the
twelve 10× 10 generators, giving us a total of 1200 10× 10 and 1200 2× 2
game instances.

A subset of the possible metrics were recorded during the experiment.
The metrics were selected based on them measuring different aspects of an
algorithm’s performance. The metrics are listed in Table IV.

A single run on a game instance consisted of 100 000 stage games, with
the first 90 000 allowing the agent’s learning parameters to settle and statistics
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Table IV. List of the seven metrics recorded during the experiment.

Metrics

K-competitiveness Sum of incentives to deviate `1 norm convergence sum
Number of wins Regret Reward obtained
`1 norm strategy estimation

being recorded on the last 10 000 stage games. Each instance of a game was
played twice, with the agents taking turns to be the row and column players.

We used Gambit (McKelvey et al., 2004) to compute sets of actions that
survive iterated dominance removal and Nash equilibria. We used the Kolmogorov-
Smirnov Z test to test for statistical similarity between distributions. (This
test was performed by the SPSS statistics package, with the data imported
from Matlab.) We used a p-value ≤ 0.05 to indicate a statistically significant
difference between the distributions being compared.

Most of the graphs presented in this article are box plots. The middle
line of the box represents the median of the distribution, the leftmost and
rightmost edges of the box are the 25th and 75th percentile values. These per-
centiles correspond to the values in the distribution, below which are 25% and
75% of the distribution respectively. The two “whiskers” are 1.5 ∗ IQR from
the edges of the box, with Inter Quartile Range (IQR) = (75th percentile −
25th percentile). Any crosses (+) are outliers that lie outside the 1.5 ∗ IQR
distance.

3.2. REDUCING THE SIZE OF THE EXPERIMENT SPACE

Earlier, we discussed the idea that the configuration of an individual exper-
iment can be thought of as corresponding to a single cell of a four dimen-
sional table indexed by (iteration, instance, game, algorithm pairing). For
the experiments we conducted this table would have contained 21*24*100*
10 000 = 504 million cells. This would clearly have been too much data to
permit us to examine every cell, so we needed to find a way to reduce the
table’s dimensionality. We consider how (and whether) each dimension can
be reduced, examining each in turn.5

CLAIM 1. The iterations dimension can be reduced by averaging metric
values across iterations.

We have observed that metric values often differ from one iteration to
the next, which means that it would be inappropriate to keep only a single

5 To keep this article to a reasonable length, we do not display graphs for the claims in this
section. They are provided in Lipson (2005).
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iteration as representative of the whole sequence. It is nevertheless desirable
to keep only a single value for each metric and each run; therefore, we average
over the iterations. We observed no cases where metric values are not either
constant or drawn from a small set of values. For the instances where the
metric values converged, averaging over these values is clearly suitable: it
does not hide or remove any of the underlying information. For the cases
where the metric values do not converge, but rather come from a small set of
values, averaging over these values does hide some of the underlying detail,
but nevertheless preserves information about all the values. Clearly we could
choose other aggregation approaches: we could take both the average and the
standard deviation, or we could take the median. This point notwithstanding,
our choice agrees with choices made by others in the literature: averaging
has also been used in the same way by e.g., Powers and Shoham (2004) and
Nudelman et al. (2004).

CLAIM 2. The instances dimension can be reduced by averaging metric
values across instances.

Instances from the same generator that are qualitatively the same can pro-
duce different behavior because of payoff differences. This means that we
should not judge performance on a single instance, since reporting statistics
from one instance would not be representative of an agent’s general per-
formance on that generator. Reporting results by aggregating over different
instances reduces the effect of the payoffs from any single instance. As above,
the choice of averaging rather than aggregating in another way strikes us as
reasonable, although other aggregation methods could also be defended.

CLAIM 3. Generators from the same game theoretic group did not exhibit
consistently similar properties according to any of the metrics we measured.

If similar games led to similar metric values, we would have been able
to reduce the games dimension by discarding some of our games. One way
of attempting to cluster games is according to their game theoretical proper-
ties. Nudelman et al. (2004) taxonomized the games GAMUT can generate
according to categories such as dominance solvability and the absence of a
pure strategy equilibrium. In our experiment we observed that games from
the same category do not cause consistently similar dynamics among agents,
but rather produce different behavior across the different generators. This was
also true for other clustering approaches that we considered.

CLAIM 4. No two of our algorithms were similar in performance against
all opponents on all games.

If two algorithms performed similarly against all opponents on all games,
we would be able to avoid using both algorithms in an experiment. We could
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use just one of the algorithms and take its performance as being representa-
tive of the other algorithm. Unfortunately, as will be evident from the results
presented in the rest of this section, we did not find this to be the case.

3.3. EXPERIMENTAL RESULTS: REWARD-BASED METRICS

We now move on to considering different algorithms’ performance according
to the performance metrics we defined in Section 2.1.3. The first group of
metrics we consider are those based on reward.

3.3.1. Raw Reward
In a sense the average amount of reward obtained by an agent is the most
fundamental metric, as agents’ explicit goals are to maximize this quantity.

CLAIM 5. None of our algorithms obtained the highest average reward
against every opponent in either the 2× 2 or 10× 10 sets of generators.

Tables V and VI display the average reward obtained by each agent against
each other agent in the set of 2×2 and 10×10 game generators respectively.6

In the 2×2 set of games, GSA and minimax-Q-IDR each obtained the highest
average reward against an opponent once and GIGA-WoLF and Q-learning
each obtained the highest average reward twice.

In the 10 × 10 set of games shown in Table VI, the three algorithms that
estimate their opponent’s strategy—fictitious play, GIGA-WoLF and GSA—
obtained the highest average reward. Fictitious play obtained the highest av-
erage reward once, GIGA-WoLF twice and GSA three times. Q-learning now
obtained a higher average reward than minimax-Q-IDR against all opponents,
which was not the case in the 2× 2 set of games.

An interesting point to note is that no single algorithm achieved the best
average reward against a given opponent for both 2 × 2 and 10 × 10 gen-
erators. For the 10 × 10 set of generators, no estimation algorithm clearly
outperformed the other estimation algorithms, in the sense that each one of
the estimation algorithms obtained the highest average reward against one of
the other estimation algorithms.

Although we cannot identify a best algorithm, we do observe from Ta-
bles V and VI that the Minimax-Q algorithm performed consistently badly
across opponents. We will examine the behavior of this algorithm in more
detail in Section 3.3.4.

CLAIM 6. Q-learning achieved the highest mean and median reward against
all opponents in the 2× 2 set of generators.

6 These two tables are reproduced as bar graphs in Figures 18 and 19 in Appendix B at the
end of this article.
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Table V. Average reward obtained by each agent against each other agent in the set of 2 × 2 generators.
Larger scores are better.

Fictitious play GIGA-WoLF GSA minimax-Q minimax-Q-IDR Q-learning

Fictitious play vs 0.217 0.231 0.261 0.242 0.242 0.218

GIGA-WoLF vs 0.475 0.213 0.254 0.242 0.242 0.223

GSA vs 0.455 0.464 0.218 0.233 0.241 0.222

minimax-Q vs 0.235 0.235 0.229 0.099 0.070 0.113

minimax-Q-IDR vs 0.410 0.410 0.422 0.364 0.129 0.162

Q-learning vs 0.370 0.391 0.422 0.342 0.428 0.176

Table VI. Average reward obtained by each agent against each other agent in the set of 10×10 generators.
Larger scores are better.

Fictitious play GIGA-WoLF GSA minimax-Q minimax-Q-IDR Q-learning

Fictitious play vs 0.339 0.297 0.383 0.379 0.247 0.383

GIGA-WoLF vs 0.357 0.284 0.304 0.379 0.247 0.423

GSA vs 0.290 0.357 0.257 0.384 0.248 0.403

minimax-Q vs 0.087 0.087 0.088 0.190 0.078 0.118

minimax-Q-IDR vs 0.154 0.148 0.153 0.210 0.122 0.176

Q-learning vs 0.257 0.236 0.204 0.301 0.162 0.344

Though we cannot say that a single algorithm beat all the other algorithms
or that there is a consistent pattern to the ranking of all of the algorithms, we
can identify a “best” algorithm based on average reward over all opponents.
Q-learning obtained the highest median and mean reward in the 2 × 2 set of
games when we average over all of the opponents. Figure 4 (top) displays
the reward distributions that each agent received against all opponents on the
2× 2 set of games. Recall that the middle line in a box plot is the median of
the distribution. Table VII provides the results of a Kolmogorov-Smirnov Z
test performed on the reward distributions obtained by Q-learning and the
algorithm that achieves the next highest median reward, GSA. There is a
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Table VII. Kolmogorov-Smirnov test comparing the distribu-
tion of reward obtained by Q-learning and GSA in the set of
2× 2 game generators.

Distributions are statistically different: p ≈ 0

Statistic Q-learning GSA

mean 0.355 0.305
median 0.490 0.356
25th percentile -0.040 -0.139
75th percentile 0.804 0.086

statistically significant difference between the Q-learning and GSA reward
distributions in the set of 2× 2 game generators, p ≈ 0.

CLAIM 7. Fictitious play obtained the highest median and mean reward in
the 10× 10 set of generators.

Figure 4 (bottom) displays the reward distribution obtained by each agent
against all opponents in the 10×10 set of generators. Fictitious play obtained
the highest median reward, with the other strategy estimating algorithms,
GIGA-WoLF and GSA performing similarly. Q-learning did not perform as
well on the 10 × 10 set of generators as in the 2 × 2 set of games. The three
estimation algorithms all obtained higher median, 25th and 75th percentile
reward values than Q-learning. The estimation algorithms also obtained the
three highest mean reward positions in the 10 × 10 set of generators. The
larger game size appear to benefit the algorithms that estimate their oppo-
nent’s strategy. However, we also observed that there is no trend in perfor-
mance as the number of actions in the game increases (see Observation 3 in
Section 3.5). This reminds us that it is the structure of the games rather than
simply their size that affected the performance of the algorithms.

Figure 5 displays the reward distribution obtained by each agent against all
opponents on all generators. (That is, the game generators are not divided into
2× 2 and 10× 10 games as in Figure 4.) Q-learning had the highest median
reward, due to its performance in the 2 × 2 set. GSA obtained a higher 75th

percentile value, which caused it to achieve the highest mean reward.

3.3.2. Regret
We now consider other metrics that ask counterfactual questions about re-
ward, considering whether the agent could have obtained a higher reward by
playing a different action. First we consider regret, asking whether the agent
would have gained more reward by playing a stationary pure strategy.

The GIGA-WoLF algorithm (Bowling, 2004) offers the theoretical guar-
antee that it will obtain at most zero average regret. However, to our knowl-
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Figure 4. Distribution of reward obtained by each agent against all algorithms in the set of
2× 2 (top) and 10× 10 (bottom) game generators.
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Reward obtained (larger is better)

Figure 5. Distribution of reward obtained by each agent against all algorithms on both sets
of game generators.
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Table VIII. Kolmogorov-Smirnov test comparing the distribution of regret obtained by
GIGA-WoLF and Q-learning.

Regret in 2× 2 game distribution Regret in 10× 10 game distribution

Distributions are Distributions are
statistically different: p ≈ 0 statistically different: p ≈ 0

Statistic GIGA-WoLF Q-learning GIGA-WoLF Q-learning

mean -0.0004 0.0052 0.0003 0.0263
median 0 0 0 0
25th percentile 0 0 0 0
75th percentile 0 0 0.0001 0

edge it has not been shown experimentally how the regret achieved by this
algorithm compares to the regrets achieved by other algorithms; nor has it
been demonstrated whether GIGA-WOLF often achieves better than zero
regret in practice.

CLAIM 8. GIGA-WoLF achieved lower average regret than our other algo-
rithms, and often achieves negative regret.

Figure 6 shows a box plot of the regret distribution for each algorithm
against all other algorithms on the set of 2×2 (top) and 10×10 (bottom) game
generators. GIGA-WoLF had a substantially smaller variance than any other
algorithm and consistently achieved negative regret. Averaging over all of the
opponents, GIGA-WoLF achieved negative average regret in the 2× 2 set of
games and an average regret of≈ 0 in the 10×10 set of generators. The other
algorithms did tend to achieve zero median regret but had higher average
regret. Q-learning was sometimes able to achieve negative regret on both sets
of generators, and fictitious play did so on the 10× 10 set of generators.

To confirm that there is a statistical difference between the regret distribu-
tions obtained by GIGA-WoLF and Q-learning, we performed a Kolmogorov-
Smirnov Z test. Table VIII provides the results of this test. In both the 2 × 2
and 10×10 generator sets there is a statistically significant difference between
the regret distributions achieved by GIGA-WoLF and Q-learning.

3.3.3. Incentive to Deviate
We now consider agents’ incentive to deviate, which can be understood as
their regret with respect to arbitrary nonstationary strategies. In other words,
incentive to deviate measures how much extra reward an agent would have
obtained had she managed to play a best response to her opponent’s action in
each stage game.
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Figure 6. Box plot of the distribution of regret obtained by each agent against all other agents
in the 2× 2 (top) and 10× 10 (bottom) set of generators. In this plot all medians are at 0. The
+’s indicate outliers—points that lie more than 1.5 times the interquartile range away from
the edges of the box.

CLAIM 9. GIGA-WoLF consistently achieved a lower incentive to deviate
score against its opponents than our other algorithms.

Table IX displays the incentive to deviate score achieved by each agent
against each other agent averaged over the set of 2 × 2 games7 . The values
are sorted according to ascending incentive to deviate values obtained across
all games (i.e., the averages of the values in Table IX and Table 21.) Against
all agents GIGA-WoLF achieved the lowest score, with fictitious play always
a close second. The table also shows a fairly regular order of incentive to
deviate: GIGA-WoLF, fictitious play, GSA, minimax-Q-IDR, Q-learning and

7 Tables IX and X are shown in a bar graph format in Figures 20 and 21 in Appendix B at
the end of this article.
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Table IX. Average incentive to deviate values achieved by each agent in a table row against each of the
agents listed in the columns in the set of 2× 2 games. Smaller scores are better.

Fictitious play GIGA-WoLF GSA minimax-Q minimax-Q-IDR Q-learning

GIGA-WoLF vs 0.034 0.036 0.014 0.045 0.018 0.054

Fictitious play vs 0.037 0.038 0.019 0.046 0.018 0.056

GSA vs 0.045 0.054 0.031 0.053 0.019 0.06

Q-learning vs 0.115 0.120 0.103 0.124 0.098 0.118

minimax-Q-IDR vs 0.093 0.096 0.097 0.102 0.131 0.100

minimax-Q vs 0.254 0.254 0.254 0.187 0.189 0.161

Table X. Average incentive to deviate values achieved by each agent in a table row against each of the
agents listed in the columns in the set of 10× 10 games. Smaller scores are better.

Fictitious play GIGA-WoLF GSA minimax-Q minimax-Q-IDR Q-learning

GIGA-WoLF vs 0.014 0.017 0.012 0.098 0.036 0.050

Fictitious play vs 0.023 0.024 0.017 0.097 0.036 0.058

GSA vs 0.026 0.030 0.022 0.098 0.036 0.062

Q-learning vs 0.147 0.159 0.132 0.177 0.114 0.187

minimax-Q-IDR vs 0.213 0.227 0.215 0.268 0.162 0.247

minimax-Q vs 0.265 0.266 0.278 0.288 0.206 0.274

minimax-Q. This order only differed when minimax-Q-IDR was an opponent,
in which case Q-learning obtained a lower score than minimax-Q-IDR.

Table X displays the results for the 10 × 10 set of generators. Results are
generally the same as in the previous table, but now the order of the algo-
rithms’ scores is the same for all opponents. Q-learning now always achieved
a better score than Minimax-Q-IDR, which is the opposite of what occurred
in the 2 × 2 games. Again, GIGA-WoLF consistently achieved the lowest
incentive to deviate against all opponents. These results are interesting since
incentive to deviate may be seen as a kind of regret, and GIGA-WoLF is
designed to minimize regret of a different kind.
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3.3.4. Minimax-Q and Domination
Although for the most part we cannot make broad claims about how effective
each algorithm was at attaining reward, we can say more about one algorithm:
Minimax-Q.

CLAIM 10. Minimax-Q-IDR consistently achieved higher levels of reward
than minimax-Q.

Minimax-Q-IDR obtained higher median reward than minimax-Q against
all opponents in every game drawn from the 2 × 2 generator. This was also
true in the majority of 10×10 generators. Due to this performance difference,
minimax-Q will sometimes be dropped from the results in the next section.

The games in which minimax-Q obtained higher reward are character-
ized generally by having a single equilibrium. The generators are Cournot
Duopoly, Bertrand Oligopoly, Arms Race, Location game, Traveler’s Dilemma,
Covariant game, Dispersion game and War of Attrition. Minimax-Q-IDR as-
sumes that its opponents will not play dominated actions, which of course is
not always true. For example, in the Traveler’s Dilemma game both play-
ers can achieve higher rewards by playing dominated strategies than they
can by playing non-dominated strategies. (That is why this game is called
a dilemma!) This suggests that while minimax-Q-IDR plays the Nash equi-
librium strategy in these games, minimax-Q does not.

CLAIM 11. Minimax-Q-IDR dominated GIGA-WoLF in Traveler’s Dilemma
when judged by percentage of wins.

Nudelman et al. (2004) compared minimax-Q, Q-learning and one of the
earlier variants of WoLF across a distribution of games. They found that for
the percentage of wins metric, minimax-Q dominated WoLF in the Trav-
eler’s Dilemma generator: that is, that Minimax-Q always achieved the higher
reward in interactions between the two algorithms. This was shown for a
two-action version of the game.

We were interested in whether this claim would hold true for different
sizes of the game, and for the updated version of WoLF. We ran a relatively
small additional experiment that considered 20 instances of a 2 × 2 and
10 × 10 version of Traveller’s Dilemma. The configuration file for the main
experiment was used to ensure consistency among all parameters. The results
showed that the claim that minimax-Q dominates WoLF does not extend to
GIGA-WoLF. However, we saw that minimax-Q-IDR did substantially out-
perform both minimax-Q and GIGA-WoLF in both the 2 × 2 and 10 × 10
versions of Traveller’s Dilemma.

We show a subset of the win percentages for the minimax-Q, minimax-
Q-IDR and GIGA-WoLF algorithms on the two-action version of Traveler’s
Dilemma in Figure 7 (top). GIGA-WoLF now won 74% of the interactions
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Percentage of wins for the first algorithm (larger is better)
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Figure 7. Percentage of wins that minimax-Q and minimax-Q-IDR obtain against minimax-Q,
minimax-Q-IDR and GIGA-WoLF in a 2× 2 (top) and 10× 10 (bottom) Traveler’s Dilemma.

against minimax-Q, but only 25% of the interactions against minimax-Q-
IDR. GIGA-WoLF also won more than 50% of the games against Q-learning
and GSA. Minimax-Q won less than 50% of the interactions against any
opponent. Minimax-Q-IDR won more than 50% of the interactions against
every opponent.

The results are slightly different in a ten-action version of Traveler’s Dilemma,
with the distributions of win percentage values shown in Figure 7 (bottom).
Minimax-Q-IDR did even better in the larger game, winning more than 90%
of the interactions against all non-self play opponents. The results changed
most substantially for minimax-Q against GIGA-WoLF, with minimax-Q now
having won 55% of their encounters, compared to 25% in the 2 × 2 version
of Traveler’s Dilemma. Other than against minimax-Q-IDR, minimax-Q won
more than 50% of the games against all opponents. GIGA-WoLF only won
more than 50% of the interactions against fictitious play. This again demon-
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strates how testing algorithms on a game at one size can give results that are
not representative of performance at other sizes of that game.

3.4. EXPERIMENTAL RESULTS: CONVERGENCE TO A NASH
EQUILIBRIUM

We now examine whether algorithms converge to a Nash equilibrium. Note
that we cannot ask this question about a single algorithm because the concept
of equilibrium depends on both players’ strategies.

There has been some debate in the literature about whether it is reasonable
to evaluate algorithms according to their ability to converge to an equilibrium.
For example, Shoham et al. (2003) argue that an unconditional focus on Nash
equilibrium is misguided. They suggest that the focus should be on meeting
an objective (e.g., achieving high reward) given information about the types
of agents who inhabit the environment. In this scenario, “the equilibrium
concept [is not considered] central or even necessarily relevant at all” Shoham
et al. (2003). However, the Nash equilibrium retains broad appeal as the “so-
lution” to a game. These are at least “focal” strategies in some sense; if two
algorithms are playing Nash equilibrium strategies, both are best responding
to each other and neither can obtain a higher payoff by unilaterally changing
her strategy.

3.4.1. Linking Reward and Convergence
The first experimental question to ask is whether it turns out that good perfor-
mance under reward- and equilibrium-based metrics are correlated; if so, the
philosophical debate about choosing between the metrics would appear less
important.

CLAIM 12. There was no relationship between obtaining large reward and
converging to a Nash equilibrium.

Our experiments do not support the idea that there is a link between the
reward that an agent receives and its convergence to a Nash equilibrium. Two
agents can be equally far from an equilibrium and not obtain similar rewards.
Two different pairs of agents could also converge to different equilibria that
have different payoffs.

At a high level, Figure 8 displays the combined `1 score for convergence
to a Nash equilibrium and the reward obtained by each agent in the set of
2 × 2 (top) and 10 × 10 (bottom) game generators.8 The results for each
agent are aggregated against all opponents. Minimax-Q is not included in
these tests. In these figures, we compare the reward and convergence scores
between agents, rather than comparing these scores for the same agent. Note

8 Recall the definition of this performance measure in Section 2.1.3.
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Figure 8. Distributions of the reward and `1 distance to a Nash equilibrium obtained in the
2× 2 (top) and 10× 10 (bottom) set of generators. FP represents fictitious play.

that in the top figure all convergence box plots have their mass at zero, with
the pluses indicating outliers. This means that the vast majority of data points
had a value of zero, contrary to the visual impression given by the graph.

Focusing on the 10×10 plot of Figure 8 (bottom), it can be seen that GSA
obtains a higher median reward than Q-learning but has a worse convergence
rate. GIGA-WoLF obtains a similar reward distribution to GSA, but has a
very different Nash convergence distribution.

In Figure 9 we examine only the Arms Race generator, showing rates of
convergence to a Nash equilibrium and the reward obtained for Q-learning
and fictitious play in self play. (This configuration is provided only as an ex-
ample; qualitatively similar results were obtained for many other algorithm-
generator combinations.) Both agents converge to an equilibrium, but obtain
very different reward distributions.

We did find one robust connection between reward and convergence to
a Nash equilibrium. If algorithm A plays B and A also plays C and in both
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Figure 9. Distributions of the reward and `1 distance to a Nash equilibrium obtained in the
Arms race game by fictitious play and Q-learning in self play.
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Figure 10. Minimax-Q-IDR obtains similar distributions of the `1 distance to a Nash
equilibrium against two opponents. The resulting reward distribution is also similar.

cases A obtains similar convergence rates, then A can be expected to achieve
a similar reward distribution in both cases. An example that follows this
rule is shown in Figure 10, where the distributions for the reward obtained
and distance to the Nash equilibrium are shown for minimax-Q-IDR against
fictitious play and GIGA-WoLF. The algorithms play similar strategies lead-
ing to the same set of rewards. We performed a Kolmogorov-Smirnov test
comparing the resultant Nash and reward distributions, which showed that
there was no significant difference between the metric values that minimax-
Q-IDR obtained against fictitious play and against GIGA-WoLF (p ≈ 1 in
both cases). Similar examples of this connection can be found for all of the
algorithms tested in our experiment.
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Fictitious playminimax−Q−IDR Q−learning GIGA−WoLF minimax−Q GSA
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Figure 11. Percentage of repeated games where an algorithm and its opponent converge
exactly to a Nash equilibrium in the two generator sets.

Interestingly, our experimental evidence does not allow us to generalize
the rule described above to say that when algorithm A plays C and algorithm
B plays D, if A and B obtain similar Nash convergence distributions, then they
should also obtain similar reward distributions.

The results of this experiment suggest that convergence to Nash equilib-
rium and reward are not necessarily correlated and that one metric cannot
substitute for both. Thus, we believe that when possible, future studies should
report both statistics.

3.4.2. Exact Convergence to a Nash Equilibrium
We now investigate the extent to which our algorithms converged exactly
(within machine precision) to Nash equilibria.

CLAIM 13. Our algorithms often converged to Nash equilibria, but also
often failed to converge.

Results are shown for the percentage of interactions in which an algorithm
and its opponent converged to a Nash equilibrium. In the 2× 2 set of games,
the majority of algorithms converged more than half the time, while in the
10 × 10 set of generators no algorithm did so. In the literature, convergence
to an equilibrium strategy is often considered for self play on a single game.
Here we consider each algorithm in self play and against six opponents,
across our full sets of 2× 2 and 10× 10 generators.

Figure 11 displays the empirical probability of each of the algorithms
converging with their opponent to a Nash equilibrium. The algorithms are
sorted according to decreasing overall probability of convergence, averaged
across both sets of games.
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Figure 12. Percentage of repeated games where an algorithm and its opponent converge on
average to an `1 distance of within 0.005 of an equilibrium.

Fictitious play had the highest success in both sets of games, converging
more than two thirds of the time in the 2×2 set. Surprisingly, it was followed
by minimax-Q-IDR, perhaps an indication of how often the 2×2 games could
be iteratively reduced to a Nash equilibrium. Equally surprisingly is the fact
that GIGA-WoLF was not as successful and was in fact beaten by Q-learning
in both families of generators. Q-learning regularly converged, despite the
facts that it always plays a pure strategy and that it ignores its opponent’s
ability to adapt. GSA almost never converged to an equilibrium, because its
property of jumping out of local minima prevented it from converging at all.

For all of the algorithms, we observed a higher percentage of convergence
in the 2× 2 set of games than in the 10× 10 set of generators. One possible
reason for this is that pure strategy equilibria were more prevalent in our
2× 2 games. Coordination problems may also have been simpler to solve in
the smaller games.

3.4.3. Joint `1 Measure of Convergence to a Nash Equilibrium
We can now ask the question of whether our algorithms converge to a strat-
egy that is close to a Nash equilibrium, regardless of whether they converge
exactly. To answer this question, we use the `1 measure of convergence to a
Nash equilibrium, and ask how often the algorithms converged to strategies
that were less than 0.005 from a Nash equilibrium.

CLAIM 14. Our algorithms often converged to strategies that are close to a
Nash equilibrium.

Figure 12 displays the percentage of repeated games in which the average
joint `1 distance to the closest Nash equilibrium was less than 0.005. The
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algorithms are listed in the same order as Figure 11. The results show that in
the 2×2 and 10×10 sets every algorithm had a substantially higher chance of
being “near” an equilibrium than of converging exactly to it. The percentage
increase in convergence rates for the 2 × 2 games was a minimum of 13%,
a maximum of 74% and a median of 16%. For the 10 × 10 games it was
somewhat smaller, with a minimum of 7%, a maximum of 33% and a median
of 10%. The biggest increase was for the GSA algorithm, where the values
increased by 74% and 33% in the 2 × 2 and 10 × 10 set of generators re-
spectively. This supports our earlier claim that the “jumping” step in the GSA
algorithm caused it not to converge exactly to Nash equilibria, even when it
got very close. Our algorithms were still more likely to nearly converge in
the 2 × 2 set than the 10 × 10 set of generators. In the 2 × 2 set of games,
Q-learning got close to an equilibrium marginally more often than fictitious
play. In the 10× 10 set of generators the situation was reversed, and fictitious
play reached the window more than half the time.

The most important conclusion to draw is that all of our algorithms con-
verged to near-equilibrium strategies much more often than they converged
exactly. Researchers conducting future experimental work should therefore
consider reporting convergence to strategies that are near equilibria as well as
to exact equilibria.

3.4.4. Convergence in Self Play
We now differentiate between self and non-self play to see where our algo-
rithms are more likely to converge to equilibria. Arguably, the property of
convergence to a Nash equilibrium in self play is more important than the
property of convergence to a Nash equilibrium against an arbitrary opponent,
for two reasons. First, we pointed out above that convergence to a Nash equi-
librium is a metric that measures both algorithms playing the game; however,
in self play this metric really does describe only a single algorithm. Second,
if an algorithm is successful then it could be widely adopted, meaning that it
should expect to encounter itself in self play.

CLAIM 15. Our algorithms converged more often to an exact Nash equilib-
rium in self play than in non-self play.

The majority of theoretical results for convergence in the literature are for
self play. We are not aware of previous empirical comparisons between self
and non-self play convergence rates. Figure 13 shows the percentage of re-
peated games in which an algorithm converged exactly to a Nash equilibrium.
The results are shown for self and non-self play in the two generator sets and
are sorted according to the self play probabilities averaged across all games.

For all algorithms except GSA, the convergence probabilities dropped
when moving from self to non-self play; GSA almost never converged in
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Fictitious playGIGA−WoLF Q−learningminimax−Q−IDRminimax−Q GSA

Self play 2x2
Non−self play 2x2
Self play 10x10
Non−self play 10x10

Figure 13. Percentage of repeated games where an algorithm converged on average to an
exact Nash equilibrium in self and non-self play.

Fictitious playGIGA−WoLF Q−learningminimax−Q−IDRminimax−Q GSA

Self play 2x2 Non−self play 2x2 Self play 10x10 Non−self play 10x10

Figure 14. Percentage of repeated games where an algorithm converged on average to an `1
distance of within 0.005 of an equilibrium, in self and non-self play.

either self or non-self play. Interestingly the difference in convergence rate
for minimax-Q between self play (57%) and non-self play (52%) in our 2× 2
games was quite small. Q-learning, which ignores what the opponent is do-
ing, was very successful. Since Q-learning only plays pure strategies, this
indicates that many of our 2× 2 games had pure strategy equilibria.

CLAIM 16. The difference in convergence rates to strategies close to a Nash
equilibria between self and non-self play is smaller than the difference in
convergence rates for self and non-self play for exact convergence rates.

Figure 14 presents the rates for algorithms converging to a strategy close to
a Nash equilibrium in self and non-self play in the 2×2 and 10×10 generator
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sets. In the 2 × 2 set, all algorithms except for minimax-Q had a difference
of less than 5% between self play and non-self play convergence rates. This
is different from the results displayed in Figure 13, where minimax-Q was
the only algorithm with a small difference between self and non-self play
convergence rates in the 2× 2 set of games.

GSA and GIGA-WoLF are the only algorithms that have any significant
difference in self play percentages between convergence to the exact equilib-
rium and convergence to a strategy close to an equilibrium. This indicates an
important difference between self-play and non-self-play convergence: when
most algorithms converge in self play, they tend to converge to the exact Nash
equilibrium. This was true for both the 2×2 and 10×10 generators (compare
Figures 13 and 14). In the 10 × 10 set, the only algorithms that got close
to an equilibrium more often than they converged to the exact equilibrium
were the three tracking algorithms. In non-self play, this was not the case and
there were large differences in the convergence rates when comparing exact
convergence to convergence to strategies close to an equilibrium.

3.5. OBSERVATIONS FROM EMPIRICAL PLAY

We now present a series of high level observations that we have made from
our empirical study. We list these to provide the reader with an overview of
our results and to single out some noteworthy points.

OBSERVATION 1. No algorithm in our test set dominated.

In our sets of 2× 2 and 10× 10 generators there was no single algorithm
that beat every other algorithm on all games. While an algorithm might have
performed well according to one metric (e.g., GIGA-WoLF on regret), there
is no algorithm that dominated on both reward and Nash convergence metrics.

OBSERVATION 2. An algorithm needs to be tested on a variety of genera-
tors in order to obtain accurate performance information.

We feel that this is one of our more important observations. We observed
a great deal of variance in our experimental results as we varied the game
generators and their payoff structures. We can therefore conclude that it is
dangerous to claim anything about an algorithm’s general performance based
on an experiment involving a single instance of one game. Instead, testing
needs to be done over a wide variety of games.

OBSERVATION 3. We observed no relationship between the reward an al-
gorithm obtained and the number of actions in a game. Thus it is a good idea
to test on games with different numbers of actions.

submission.tex; 25/09/2006; 1:24; p.32



Empirically Evaluating Multiagent Reinforcement Learning Algorithms 33

We ran a small additional experiment to check for a relationship between
the reward that algorithms obtain and the number of actions in a game. We
used two generators, the Covariant game and Grab the dollar, generating
twenty random instances of each game from two to ten actions. A linear re-
gression test showed that there was no linear relationship between the reward
that an agent obtained and the number of actions in these game generators.
Subjectively, we could see no evidence of a nonlinear relationship either.
When claims are made about algorithm performance it should be with ref-
erence to the specific game size tested, since the performance of an algorithm
on other game sizes may not always be similar. While it may be possible that
a trend exists for other generators, at the least our experiment shows that such
a trend does not exist for all generators.9

OBSERVATION 4. Having information about the games and opponents be-
ing played can provide insight into which algorithm to use in a given envi-
ronment.

This argument follows from the observation that algorithms perform dif-
ferently on different generators and against different opponents. We note that
a learning algorithm that makes use of such prior information was proposed
by Powers and Shoham (2004).

OBSERVATION 5. The choice of which algorithm to use in an environment
should depend on which metrics of performance are considered important;
success on one metric often fails to transfer to success on another.

We mentioned in our discussion of Claim 12 that success in converging
to a Nash equilibrium and success in obtaining reward were not equivalent.
When deciding what algorithm to use in a given scenario or when designing
a new algorithm, our results suggest that one should choose a specific metric
that will be used for evaluation. It may then be easier to identify an algorithm
that would achieve the desired objective; e.g., GIGA-WoLF was observed to
be very effective at minimizing regret.

OBSERVATION 6. Fictitious play was best at converging to a Nash equilib-
rium.

Fictitious play obtained the highest rates of convergence to a Nash equi-
librium, as we showed in Section 3.4.10 This was especially true for the larger
10× 10 set of generators.

9 Freund and Schapire (1996) presents work on large games with regret matching
algorithms.

10 One of our anonymous reviewers suggested that the algorithms in (Foster and Vohra,
1997) may be expected to converge to a Nash equilibrium even more reliably than fictitious
play.
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OBSERVATION 7. If reward is important, then GSA or Q-learning are good
options.

Figure 4 showed that GSA and Q-learning obtained the highest reward av-
eraged over all opponents and generators. Q-learning had the highest median
reward and GSA had the highest mean reward. These algorithms both scored
relatively well against each of the other opponent algorithms.

OBSERVATION 8. Iterated removal of dominated actions may benefit algo-
rithms other than minimax-Q.

As discussed in Claim 10, minimax-Q-IDR consistently achieved higher
reward than minimax-Q and generally outperformed it. These algorithms play
the same strategy except for the iterative removal of dominated strategies.
As far as we know, the combination of IDR with the minimax-Q strategy is
new to this paper; the approach of removing dominated strategies could be
beneficial to other algorithms. We mention this as an open question in the
conclusion.

OBSERVATION 9. Our platform made it easier to run large experiments.

Our platform proved extremely useful for this research. It was a straight-
forward process to set up the parameters for each experiment. The platform
then automatically split up the experiment into individual jobs for our cluster
and these jobs were run in parallel. This system ran for seven weeks with
an approximate total CPU time of two years. We were forced to rerun some
portions of the experiments due to small cluster outages; nevertheless, our
platform made it easy to combine all of our experimental results once all of
our data had been collected.

The platform also served us well in the analysis phase of our experimental
work. The GUI greatly speeded the selection of parameters of interest, and
probably meant that we ran many more iterations of analysis (visualization,
formation of a hypothesis, testing of the hypothesis through a new visual-
ization, and so on) than we otherwise would have done. There was rarely
a need to run new experiments when testing a new hypothesis as all of the
data combinations were already present. When a smaller sub-experiment was
necessary to test a hypothesis, this was set up by loading the configuration
file from the main experiment, ensuring consistency with the parameters in
the main experiment.
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4. Conclusion

This article has described a platform for conducting experiments with multia-
gent reinforcement learning algorithms and the results of an experimental in-
vestigation conducted with this platform. One of the main lessons we learned
is that it can be misleading to use a single metric to judge an algorithm’s
performance: each of our metrics described a different facet of an algorithm’s
performance, and performance as measured with different metrics was often
only weakly correlated.

We end with some questions that were raised by our work, and that could
serve as interesting directions for future study:

1. What sorts of algorithms will dominate Q-learning?

Q-learning proved to be surprising resilient for an algorithm that ignores
the existence of other agents in the environment. Why was it able to ob-
tain such impressive results? While of course algorithms could be specif-
ically designed to target Q-learning, what sorts of general approaches
would perform well against Q-learning and also perform well in other
settings? What can we learn from the fact that Q-learning performs so
well?

2. Could other algorithms be improved by iteratively removing dominated
actions and then applying the algorithm’s strategy to the remaining pay-
off space?

Minimax-Q-IDR produced better results over minimax-Q by following
this strategy. Would this technique be useful to other algorithms?

3. Why were our results on our set of 10x10 games qualitatively different
from our results on our set of 2x2 games?

We conducted an exploratory experiment with two generators, look-
ing for a relationship between algorithm performance and game size.
The results suggest that there was no clear relationship between re-
ward performance and the number of actions in the game for any of
the agents. However, we obtained consistently different results for the
two generator sets. (For example, Figure 11 on page 28 showed that
algorithms converge to an equilibrium less often in the set of generators
with ten actions.) Was this due to different game structures, were the
results random, or is there another explanation?
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Appendix

A. Visualization

In this appendix, we describe the visualization interface that we built as part
of our platform.

Figure 2 presented a pipeline diagram for running experiments on the
platform. The visualization phase was not shown in that diagram, but the
process for visualizing results is now given in Figure 15. This process allows
the user to visualize the results of metrics over a set of agents, generators,
instances and iterations. The user is able to make these selections through the
GUI displayed in Figure 16.

Figure 15. The pipeline for visualizing the results of an experiment

The first step in the visualization process is to select which set of agents
we want to visualize. When we select agents A and B, we are pulling the
data from A as the row player and B as the column player and vice versa.
We can also choose to limit some of the agents to be row players and others
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Figure 16. The graphical user interface for controlling and setting the visualization process.
This allows a user to specify what data they want to view, which metrics, how they should be
combined and how to visualize these statistics.

to be column players. In the upper left block of Figure 16, the fictitious play
and minimax-Q-IDR agents have been selected. When a user clicks to select
agents, a popup window such as the one shown in Figure 17 is displayed.
This lists all of the agents that were used in the experiment and those agents
that have been selected for visualization. Users are able to move agents be-
tween the two listboxes. Once users are satisfied with their choices, the new
selection is shown in the relevant box in the interface shown in Figure 16.

Figure 17. GUI for step 1 of the visualization process, selecting the agents
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The next step in the process is to decide from which runs or instances of
the game generators we want to view metrics. A user can thus decide to use
all instances, or perhaps only one instance per generator. Each instance or run
is composed of a number of iterations. We can similarly chose from which
iterations of the selected instances we want to view metrics. This provides
control down to single stage game interactions between agents.

Once the user has selected the agents, runs and iterations that will be used
in the visualization process, the next step is to select the game generators. The
generators that are currently selected are displayed in the top middle listbox
in the GUI of Figure 16.

The third step is to select free variables. These are the variables whose val-
ues will be varied in the visualization. The possible free variables are agent,
agent, games, iterations and runs/instances. Agent is repeated twice because
it allows metrics to be visualized over either pairs of agents or individual
agents. The free variables form a four dimensional table. The dimensions are
defined by (algorithm pairing, game, run/instance, iteration), which corre-
spond to the possible free variables. Each cell in the table contains the results
of all metrics recorded for that pairing of agents playing on a specific instance
of a generator in one iteration/stage game. Selecting one or two free variables
means that we want to project the table down to one or two dimensions. The
dimensions of the table that are kept correspond to the free variables that
are selected. The dimensions corresponding to the free variables that are not
selected are the dimensions that are aggregated across in the projection. For
example, if we wanted to view the performance of specific agents on specific
games, then the free variables would be agent and games. The graph would
show results for each agent on each game, but aggregated over all opponents,
instances and iterations. If we want to obtain a statistic of how every agent
did, but want an aggregated result against all opponents, on all games and all
instances and iterations, the free variable would then just be agent. To view
the performance of each agent against each opponent, the free variables would
be agent and agent and the graph would show results for each combination
of agents, aggregated over all the games, instances and iterations.

The fourth step in the process is to select the dependent variable. This
corresponds to the metric that we want to visualize in a plot. The metrics that
are available are those that were recorded during the experiment that we are
visualizing.

The fifth step in the visualization process is to select the visualization
routine that will be used to present the metric. Currently, there is a standard
line plot, bar plot, box plot and scatter plot implemented.

Once free variables have been selected, the 4D table containing our data is
reduced in dimensionality. The dimensions which correspond to the free vari-
ables that were not selected are eliminated through an aggregation method.
The final step in the visualization process is to select this aggregation method.
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Our platform currently supports three methods for achieving this aggregation,
no aggregation, averaging the data and totalling/summing the data. The no
aggregation method is used in the box and scatter plots, where the plot itself
provides a view of the entire data set. The line and bar plot use the averaging
and totalling methods.

Putting this all together, if the selected free variable is agent, the dependent
variable is reward and the aggregation method is averaging, then a single
reward statistic is calculated for each agent. This corresponds to the average
reward that each agent achieved against all opponents, on all of the selected
game generators. If a user selected agent and agent as the free variables,
regret as the dependent variable and total as the aggregation method, then
the graph would display the total regret that each agent achieved against each
opponent, over all game generators.
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