
Boosting as a Metaphor for Algorithm Design

Kevin Leyton-Brown, Eugene Nudelman,
Galen Andrew, Jim McFadden, and Yoav Shoham

{kevinlb;eugnud;galand;jmcf;shoham}@cs.stanford.edu

Stanford University, Stanford CA 94305??

1 Introduction

Although some algorithms are better than others on average, there is rarely a best al-
gorithm for a given problem. Instead, different algorithms often perform well on differ-
ent problem instances. Not surprisingly, this phenomenon is most pronounced among
algorithms for solvingNP-hard problems, when runtimes are highly variable from in-
stance to instance. When algorithms exhibit high runtime variance, one is faced with the
problem of deciding which algorithm to use; in 1976 Rice dubbed this the “algorithm
selection problem” [8]. More recent work on this problem includes [5, 4].

Our previous work [7] demonstrates that statistical regression can be used to learn
surprisingly accurate models of an algorithm’s runtime. In a recent extended abstract
[6] we discussed the use of these runtime models for algorithm selection, and also for
the automated tuning of instance generators. This companion paper extends these ideas,
describing new techniques for making algorithm portfolios more practical and for mak-
ing benchmarks harder. As in [7, 6] we evaluate our techniques in a case study on the
combinatorial auction winner determination problem (WDP)—anNP-hard combina-
torial optimization problem formally equivalent to weighted set packing. We consider
three algorithms for solving WDP: ILOG’s CPLEX package; GL (Gonen-Lehmann)
[3], a simple branch-and-bound algorithm with CPLEX’s LP solver as its heuristic; and
CASS [2], a more complex branch-and-bound algorithm with a non-LP heuristic.

What does it mean to see boosting as a metaphor for algorithm design? Boosting
is a machine learning paradigm [9] based on two insights: (1) poor classifiers can be
combined to form an accurate ensemble when the classifiers’ areas of effectiveness are
sufficiently uncorrelated; (2) new classifiers should be trained on problems on which the
current aggregate classifier performs poorly. We argue that algorithm design should be
informed by two analogous ideas: (1) algorithms with high average running times can
be combined to form an algorithm portfolio with low average running time when the
algorithms’ easy inputs are sufficiently uncorrelated; (2) new algorithm design should
focus on problems on which the current algorithmportfolio spends most of its time.

?? Thanks to Ryan Porter, Carla Gomes and Bart Selman for helpful discussions. This work was
supported by DARPA grant F30602-00-2-0598, the Intelligent Information Systems Institute
at Cornell, and a Stanford Graduate Fellowship.

0

100

200

300

400

500

600

700

800

CPLEX P
0

100

200

300

400

500

600

700

800

CPLEX P

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

0

1000

2000

3000

4000

5000

6000

GL CASS CPLEX

T
im

e
(s

)

Fig. 1. Algorithm and Portfolio Runtimes

2 Making Algorithm Portfolios Practical

We have demonstrated that algorithm portfolios can offer significant speedups over
winner-take-all algorithm selection (see Fig. 1, reproduced from [6]). It is thus worth-
while to consider modifications to the methodology that make it more useful in practice.

2.1 Transforming the Response Variable

Average runtime is an obvious measure of portfolio performance if one’s goal is to min-
imize computation time over a large number of instances. Since our models minimize
root mean squared error, they appropriately penalize 20 seconds of error equally on in-
stances that take 1 second or 10 hours to run. However, another reasonable goal may be
to perform well on every instance regardless of its hardness; in this case, relative error
is more appropriate. Letrp

i andr∗i be the portfolio’s runtime and the optimal runtime
respectively on instancei, andn be the number of instances. One measure that gives an
insight into the portfolio’s relative error ispercent optimal: 1

n#{i|rp
i = r∗i }. Another

measure of relative error isaverage percent suboptimal: 1
n

∑
i

rp
i−r∗i
r∗i

.

Taking a logarithm of runtime is a simple way to equalize the importance of relative
error on easy and hard instances. Thus, models that predict a log of runtime help to
improve the average percent suboptimal, albeit at some expense in terms of the port-
folio’s average runtime. Other transformations achieve different tradeoffs. In Figure 2
(overleaf) we show three different functions; linear (identity) and log are the extreme
values; clearly, many functions can fall in between. The functions are normalized by
their maximum value, since this does not affect regression, but allows us to better visu-
alize their effect. In our case study (section 2.4) we found that the cube root function
was particularly effective.

2.2 Smart Feature Computation

Feature values must be computed before the portfolio can choose an algorithm to run.
We expect that portfolios will be most useful when they combine several exponential-
time algorithms having high runtime variance, and that fast polynomial-time features

should be sufficient for most models. Nevertheless, on some instances the computa-
tion of individual features may take substantially longer than one or even all algorithms
would take to run. In such cases it would be desirable to perform algorithm selection
without spending as much time computing features, even at the expense of some accu-
racy in choosing the fastest algorithm—if an instance is easy for all algorithms, we can
tolerate a much greater prediction error. We partition the features into sets ordered by
time complexity,S1, . . . , Sl, with i > j implying that each feature inSi takes signifi-
cantly longer to compute than each feature inSj . The portfolio can start by computing
the easiest features, and iteratively compute the next set only if the expected benefit to
selection exceeds the cost of computation. More precisely:

1. For each setSj learn or provide a modelc(Sj) that estimates time required to
compute it. Often, this could be a simple average time scaled by input size.

2. Divide the training examples into two sets. Using the first set, train modelsM i
1 . . . M i

l ,
with M i

k predicting algorithmi’s runtime using features in
⋃k

j=1 Sj . Note thatM i
l

is the same as the model for algorithmi in our basic portfolio methodology. Let
Mk be a portfolio which selects argmini M i

k.
3. Using the second training set, learn modelsD1 . . . Dl−1, with Dk predicting the

difference in runtime between the algorithms selected byMk andMk+1 based on
Sk. The second set must be used to avoid training the difference models on data to
which the runtime models were fit.

Given an instancex, the portfolio now works as follows:

4. For j = 1 to l

(a) Compute features inSj

(b) If Dj [x] > c(Sj+1)[x], continue.
(c) Otherwise, return with the algorithm predicted to be fastest according toMj .

2.3 Capping Runs

The methodology of [7] requires gathering runtime data for every algorithm on every
problem instance in the training set. While the time cost of this step is fundamentally
unavoidable for our approach, gathering perfect data for every instance can take an un-
reasonably long time. When algorithma1 is usually much slower thana2 but in some
cases dramatically outperformsa2, a perfect model ofa1’s runtime on hard instances
may not be needed for discrimination. The process of gathering data can be made much
easier by capping the runtime of each algorithm and recording these runs as having
terminated at the captime. This is safe if the captime is chosen so that it is (almost)
always significantly greater than the minimum of the algorithms’ runtimes; if not, it
might still be preferable to sacrifice some predictive accuracy for dramatically reduced
model-building time. Note that if one algorithm is capped, it can be dangerous (particu-
larly without a log transformation) to gather data for another algorithm without capping
at the same time, because the portfolio could inappropriately select the algorithm with
the smaller captime.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Runtime (% of max)

Tr
an

sf
or

m
at

io
n

Linear

Cube Root

Log

Fig. 2. Transformation

 Average Runtime % Optimal Average % Suboptimal

(Optimal) 216.4 s 100 0

Log 236.5 s 97 9

Cuberoot 225.6 s 89 17

Linear 225.1 s 81 1284

Fig. 3. Portfolio Results

2.4 Case Study Results

Table 3 shows the effect of our response variable transformations on average runtime,
percent optimal and average percent suboptimal. The first row has results that would be
obtained by a perfect portfolio. As discussed in section 2.1, the linear (identity) transfor-
mation yields the best average runtime, while the log function leads to better algorithm
selection. We tried several transformation functions between linear and log. Here we
only show the best, cube root: it has nearly the same average runtime performance as
linear, but also made choices nearly as accurately as log. Notice that the three models
shown here are not equally accurate on our dataset (they are non-linear transformations
of each other). The effect of the transformations is to shift model accuracy to achieve
different tradeoffs. That fact that all of these models achieve good portfolio performance
illustrates the robustness of our portfolio results with respect to model accuracy.

When using smart feature computation described in section 2.2, the average time
spent computing features is cut almost in half, without any significant effect on the
actual algorithms’ running time (the graph is omitted due to the lack of space). This
result becomes quite significant for easy instances.

3 Inducing Hard Distributions

Once we have decided to select among existing algorithms using a portfolio approach, it
is necessary to reexamine the way we design and evaluate algorithms. Since the purpose
of designing new algorithms is to reduce the time that it will take to solve problems,
designers of new algorithms should aim to complement an existing portfolio. First, it is
essential to choose a distributionD that reflects the problems that will be encountered
in practice. LetHf be a model of portfolio runtime based on instance features, con-
structed as the minimum of the models that constitute the portfolio. By normalizing,
we can reinterpret this model as a density functionhf . Given a portfolio, the greatest
opportunity for improvement is on instances that are hard for that portfolio, common in
D, or both. More precisely, the importance of a region of problem space is proportional
to the amount of time the current portfolio spends working on instances in that region
(formally, importance is measured byD · hf). This is analogous to the principle from
boosting that new classifiers should be trained on instances that are hard for the existing
ensemble, in the proportion that they occur in the original training set.

Sampling fromD ·hf is problematic, sinceD may be non-analytic (an instance gen-
erator), whilehf depends on features and so can only be evaluated after an instance has
been created. One way to handle this is rejection sampling [1]: generate problems from
D and keep them with probability proportional tohf . (In fact, the technique described

0%

10%

20%

30%

40%

50%

60%

70%

80%

-1 0 1 2 3 4 5
Log Runtime (s)

Original
Harder

10

Fig. 4. Inducing Harder Distributions

below is approximate rejection sampling, which saves us from having to normalizeHf

and always outputs an instance after a constant number of samples.) This method works
best when another distribution is available to guide the sampling process toward hard
instances. Test distributions usually have some tunable parameters−→p , and although the
hardness of instances generated with the same parameter values can vary widely,−→p
will often be somewhat predictive of hardness. We can generate instances fromD · hf

in the following way:

1. Create a hardness modelHp with features−→p , and normalize it to create a pdf,hp.
2. Generate a large number of instances fromD · hp.
3. Construct a distribution over instances by assigning each instances probability

proportional toHf (s)
hp(s) , and select an instance by sampling from this distribution.

Note, that ifhp is helpful, hard instances fromD · hf will be encountered quickly.
Even in the worst case wherehp directs the search away from hard instances, we’ll still
sample from the correct distribution, since the weights are divided byhp(s).

Figure 4 shows the results of applying this procedure to our dataset. Since our run-
times were capped, the induced distribution doesn’t generate any instances that are or-
ders of magnitude harder than previous instances. In [6] we showed that this can also
be achieved, making extremely easy distributions between 50 and 100 times harder.

References

1. A. Doucet, N. de Freitas, and N. Gordon(ed.).Sequential Monte Carlo Methods in Practice.
Springer-Verlag, 2001.

2. Y. Fujishima, K. Leyton-Brown, and Y. Shoham. Taming the computational complexity of
combinatorial auctions: Optimal and approximate approaches. InIJCAI, 1999.

3. R. Gonen and D. Lehmann. Linear programming helps solving large multi-unit combinatorial
auctions, April 2001. TR-2001-8, Leibniz Center for Research in Computer Science.

4. E. Horvitz, Y. Ruan, C. Gomes, H. Kautz, B. Selman, and M. Chickering. A Bayesian ap-
proach to tackling hard computational problems. InUAI, 2001.

5. M. Lagoudakis and M. Littman. Algorithm selection using reinforcement learning. InICML,
2000.

6. K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham. A portfolio ap-
proach to algorithm selection. InIJCAI, 2003.

7. K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness of opti-
mization problems: The case of combinatorial auctions. InCP, 2002.

8. J. R. Rice. The algorithm selection problem.Advances in Computers, 15:65–118, 1976.
9. R. Schapire. The strength of weak learnability.Machine Learning, 5:197–227, 1990.

