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Abstract. There exist many algorithms for learning how to play repeated bimatrix games. Most of these algorithms are
justified in terms of some sort of theoretical guarantee. On the other hand, little is known about the empirical performance
of these algorithms. Most such claims in the literature are been based on small experiments, which has hampered
understanding as well as the development of new multiagent learning (MAL) algorithms. We have developed a new
suite of tools for running multiagent experiments: the MultiAgent Learning Testbed (MALT). These tools are designed
to facilitate larger and more comprehensive experiments byremoving the need to build one-off experimental code. MALT
also provides baseline implementations of many MAL algorithms, hopefully eliminating or reducing differences between
algorithm implementations and increasing the reproducibility of results. Using this test suite, we ran an experiment
unprecedented in size. We analyzed the results according toa variety of performance metrics including reward, maxmin
distance, regret, and several notions of equilibrium convergence. We confirmed several pieces of conventional wisdom,
but also discovered some surprising results. For example, we found that single-agentQ-learning outperformed many
more complicated and more modern MAL algorithms.
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1. Introduction

Urban road networks, hospital systems and commodity markets are all examples of complicated
multiagent systems that are essential to everyday life. Indeed, any social interaction can be seen as
a multiagent problem. As a result of the prominence of multiagent systems, a lot of attention has
been paid to designing and analyzing learning algorithms for multiagent environments. A multitude
of different algorithms exist for a variety of different settings. Some prominent examples include
algorithms by Littman (1994), Singh et al. (2000), Hu and Wellman (2003), Greenwald and Hall
(2003), Bowling (2004a), Powers and Shoham (2005), Banerjee and Peng (2006), and Conitzer and
Sandholm (2007).

We take the position that the best multiagent learning (MAL)algorithm is the one that achieves
the highest possible average reward.1 Under this view, the problem faced by the designer of a
MAL algorithm is qualitatively the same as the problem facedby the designer of a single-agent
reinforcement learning algorithm. However, there is a fundamental difference between the two
settings. In the stationary environment faced by classicalreinforcement learners, the concept of an
optimal policy is well defined, and hence learning algorithms can attempt to identify this policy. In
a multiagent environment, the best policy to follow dependson the actions taken by the opponent,
and thus on the ways in which the opponent’s future behavior will be affected by the learner’s
present actions. The best policy depends on the opponent’s strategy, and so there can be no global
“optimum.”

1 For alternatives, see Shoham et al. (2007)—who called the approach that we espouse the “prescriptive, non-
cooperative agenda”—or Sandholm (2007).
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It is this added conceptual complexity that makes MAL problems interesting; however, it has
also made them harder to analyze. Theoretical claims about MAL algorithms generally do not speak
directly about average reward. Instead, they tend to describe alternative aspects of the algorithm’s
performance that are intended to ‘stand in’ for reward. Somework has insisted that algorithms
should converge to stage-game Nash equilibria, or should doso at least in the case of “self play.”
Others have insisted on other sorts of convergence properties or on regret bounds. Still others have
offered different guarantees for performance against different classes of opponents.

Because many MAL algorithms are incomparable on the basis oftheir theoretical properties,
and further because it is unclear the extent to which these various properties correlate with an
algorithm’s ability to achieve high average reward in practise, it is generally argued that MAL
algorithms should be compared empirically. Many such experimental comparisons have been per-
formed in the literature (see, e.g., (Nudelman et al., 2004;Powers and Shoham, 2005)). However,
for the most part these experiments have been designed to advocate for a newly-designed algorithm
rather than to survey the whole landscape. As a consequence,most of these experiments have been
small in terms of the number of game instances and opposing algorithms considered. Furthermore,
different experiments have in many cases measured performance in different ways, making it
difficult to compare their results and draw an overall conclusion. There is therefore considerable
opportunity to expand our understanding of how existing MALtechniques compare in practice.

Part of the reason for the relative paucity of large-scale empirical work is that neither a cen-
tralized algorithm repository nor a standardized test setup exists. This is unfortunate, not only
because considerable work has to be invested in designing one-off testbeds and reimplementing al-
gorithms, but also because centralized and public repositories increase reproducibility and decrease
the danger that different experiments will achieve different results because of differences in imple-
mentations. Publicly available and scrutinized implementations offer the promise of experiments
that are easier to run, reproduce, and compare.

In this article we make two main contributions. First, we describe the design and implementation
of a platform for running MAL experiments (§3). This platform offers several advantages over
one-off setups. We hope that it will facilitate new and larger-scale empirical work.

Our second main contribution is the analysis of such an empirical study. This experiment is,
to our knowledge, unprecedented in terms of scale. We make suggestions about how empirical
MAL performance data should be analyzed (§4), and offer a detailed discussion of different al-
gorithms’ average reward in practice (§5). Furthermore, we draw connections between different
performance metrics that have been explored in theoreticalwork (§6), and show that some of the
least sophisticated algorithms achieve extremely competitive performance.

2. Algorithms and Past Experimental Work

MAL algorithms have been studied for over half a century. This rich investigation has produced not
only a profusion of competing algorithms but also various distinct problem formulations. Does an
algorithm know the game’s reward functions before the game starts, or do reward functions need
to be learned? How many opponents can an algorithm face? Whatsignals about the opponent’s
actions can an algorithm observe? Can an algorithm rely on being able to determine stage-game
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Nash equilibria or other computationally-expensive game properties? Each of these assumptions
changes the learning problem.

In this section we describe the algorithms we study in this paper, and also survey past experimen-
tal evaluations of MAL algorithms. The creators of the algorithms that we describe answered the
above questions in different ways, reflecting the community’s broader disagreement about precisely
what problem MAL algorithms should aim to solve. In order to permit the study of a broad range
of algorithms, we have answered the above questions permissively: we allow algorithms access to
the reward functions, to signals about the opponent’s actions, and to computationally-costly game
properties. Thus, we are able to compare algorithms that require this information to others that are
capable of learning it. (Where possible, we have implemented such learning-capable algorithms in
such a way that they make use ofa priori available information directly instead of learning it, to
ensure that these algorithms are not disadvantaged.)

The other important experimental choice we faced was the class of games upon which to eval-
uate algorithms. We chose to restrict ourselves to 2-playerrepeated games. (Note, however, that
we do not restrict the number of actions in the repeated game.) We chose this setting instead of
n-player repeated games or either2- or n-player stochastic games for two reasons. First, the case
of two-player repeated games has received the most past study (though see e.g., (Vu et al., 2005)).
Second, considerably more work has been done to identify experimentally-interesting test data for
this case. We restricted our attention to algorithms that can play two-player games of any size and
with any payoff structure. We thus did not make use of work that insists (e.g.) on two-action games
(Singh et al., 2000) or constant-sum games (Littman, 1994).We also mention as an aside that MAL
experiments have been conducted in settings that are neither generalizations nor restrictions of our
setting, such as the population-based work by Axelrod (1987) and Airiau et al. (2007).

2.1. FICTITIOUS PLAY

Fictitious play (Brown, 1951) is probably the earliest example of a learningalgorithm for
two-player games repeated games. Essentially,fictitious play assumes that the opponent
is playing an unknown and potentially mixed stationary strategy, and tries to estimate this strategy
from the opponent’s empirical distribution of actions—thefrequency counts for each of its actions
normalized to be probabilities. Clearly, in order to collect the frequency countsfictitious
play must be able to observe the opponent’s actions. The algorithm then, at each iteration, best re-
sponds to this estimated strategy. Becausefictitious play needs to calculate a best response,
it also assumes complete knowledge of its own payoffs.

Fictitious play is guaranteed to converge to a Nash equilibrium in self play for a restricted set
of games. These games are said to have thefictitious play property(see, for instance Monderer and
Shapley (1996); for an example of a simple2×2 game without this property see Monderer and Sela
(1996)).Fictitious play will also eventually best respond to any stationary strategy. This
algorithm’s general structure has been extended in a numberof ways, includingsmooth fictitious
play (Fudenberg and Kreps, 1993), and we will see later thatfictitious play provides the
foundation for several more modern algorithms.

Fictitious play is known to be subject to miscoordination problems, particularly in self
play, and particularly in games that reward asymmetric coordination (e.g., dispersion games). There
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are some clever measures that can be taken to avoid some of these kinds of problems (e.g., best
response tie-breaking rules and randomization), but miscoordination remains a general problem for
the fictitious play approach.

2.2. DETERMINED

Determined or ‘bully’ (see, for example, Powers and Shoham (2005)) is analgorithm that solves
the multiagent learning problem by ignoring it. MAL algorithms typically change their behavior by
adapting to signals about the game. However,determined , as its name suggests, simply relies
on other algorithms to adapt their strategies to it.

Determined enumerates the stage-game Nash equilibria and selects the one that maximizes
its personal reward in equilibrium; then, it plays its corresponding action forever.2 Certainly,det-
ermined can lead to some obvious problems. For instance, in self playtwo determined agents
can stubbornly play actions from different equilibria, leading to sub-equilibrium average reward.
Additionally, enumerating all the Nash equilibria not onlyrequires complete knowledge of every
agents’ reward functions, but is also computationally costly, limiting the use of this strategy to rel-
atively small stage games. All the same,determined serves as a useful baseline for comparison.
Also, slight variations of this algorithm are, likefictitious play , at the heart of some more
modern algorithms.

2.3. TARGETED ALGORITHMS

We next focus on two so-calledtargetedalgorithms, which focus on playing against particular
classes of opponents. Both these algorithms are based around identifying what the opponent is
doing (with particular attention paid to stationarity and Nash equilibrium), and then updating their
behavior based on this assessment.

Meta (Powers and Shoham, 2005) switches between three simpler strategies: a strategy similar
to fictitious play , a determined -style algorithm that stubbornly plays a Nash equilib-
rium, and the maxmin strategy. Strategy selection depends on recorded histories of average reward
and empirical distributions of the opponents’ actions across different periods of play.Meta was
shown both theoretically and empirically to be nearly optimal against itself, close to the best re-
sponse against stationary agents, and to approach (or exceed) the security level of the game in all
cases.

AWESOMEalso tracks the opponent’s behavior in different periods ofplay and tries to maintain
hypotheses about its play. For example, it attempts to determine whether the other algorithm is play-
ing a particular stage-game Nash equilibrium. If it is,AWESOMEresponds with its own component
of that special equilibrium. This special equilibrium is known in advance by all implementations
of AWESOMEto avoid equilibrium selection issues in self play. There are other situations where it

2 The determined algorithm need not play an action from a Nash equilibrium. For example, it could instead
choose the action whose best response yields the algorithm the highest payoff. Note that this differs from a stage-game
Nash equilibrium because thedetermined algorithm need not itself play a best response. Such an outcome amounts
to an equilibrium of the Stackelberg version of the stage game. That is, we can change the game so that instead of the
two players moving simultaneously, thedetermined agent moves first.
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acts in a similar fashion tofictitious play , and there are still other discrete modes of play
that it engages in depending on its beliefs.

Because both of these algorithms switch between simpler strategies depending on the situation,
they can be viewed as portfolio algorithms. Note that both manage similar portfolios that include a
determined -style algorithm and afictitious play algorithm.

2.4. Q-LEARNING ALGORITHMS

A broad family of MAL algorithms are based onQ-learning (Watkins and Dayan, 1992), which
is a algorithm for finding the optimal policy in Markov Decision Processes (MDPs). This family of
MAL algorithms does not explicitly model the opponent’s strategy choices. They instead settle for
learning the expected discounted reward for taking an action and then following a stationary policy
encoded in theQ-function. In order to learn theQ-function, algorithms typically take random
exploratory steps with a small (possibly decaying) probability.

Each algorithm in this family has a different way of selecting its strategy based on thisQ-
function. For instance, one could try a straight forward adaptation of single-agentQ-learning to
the multiagent setting by ignoring the impact that the opponent’s action makes on the protagonist’s
payoffs. The algorithm simply updates its reward function whenever a new reward observation is
made, where the new estimate is a convex combination of the old estimate and the new information:

Q(ai) = (1 − αt)Q(ai) + αt

[

r + γ max
a

Q(a)
]

. (1)

This algorithm essentially considers the opponent’s behavior to be an unremarkable part of a noisy
and non-stationary environment. The non-stationarity of the environment makes learning difficult
but this idea is not entirely without merit:Q-learning has been shown to work in other non-
stationary environments (see, for instance, Sutton and Barto (1999)).

Minimax-Q (Littman, 1994) is one of the first explicitly multiagent applications of theQ-
learning idea. TheQ-function that it learns is based on the action profile and notjust the protago-
nist’s action: it learnsQ(ai, a−i). Minimax-Q uses the mixed maxmin strategy calculated from the
Q-function as its strategy:

Q(ai, a−i) = (1 − αt)Q(ai, a−i) + αt

[

r + γ max
σi∈

∏

(Ai)

[

min
a−i∈A−i

∑

ai

σi(ai)Q(ai, a−i)

]]

. (2)

Such a strategy is sensible to the extent that the protagonist believes that the opponent aims to
minimize his payoff, or that the protagonist cares about worst-case guarantees. It should be noted
that since its maxmin strategies are calculated from learned Q-values, they may not be the game’s
actual maxmin strategies and thus fail to reflect the security value. LikeQ-learning , mini-
max-Q also takes the occasional exploration step.

There are further modifications to this general scheme.Nash-Q (Hu and Wellman, 2003) learns
differentQ-functions for itself and its opponents and plays a stage-game Nash equilibrium strategy
for the game induced by theseQ-values.Correlated-Q (Greenwald and Hall, 2003) does
something similar except that it chooses from the set of correlated equilibria using a variety of
different selection methods. Both of these algorithms assume that they are able to observe not only
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the opponents’ actions but also their rewards, and additionally that they have the computational
wherewithal to compute the necessary solution concept.

2.5. GRADIENT ALGORITHMS

Gradient ascent algorithms, such asGIGA-WoLF (Bowling, 2004a) andRVσ(t) (Banerjee and
Peng, 2006), maintain a mixed strategy that is updated in thedirection of the payoff gradient.
The specific details of this updating process depend on the individual algorithms, but the common
feature is that they increase the probability of actions with high reward and decrease the probability
of unpromising actions. This family of algorithms is similar to Q-learning because they do not
explicitly model their opponent’s strategies and instead treat them as part of a non-stationarity
environment.

GIGA-WoLF is the latest algorithm in a line of gradient learners that started withIGA (Singh
et al., 2000).GIGA-WoLFuses an adaptive step length that makes it more or less aggressive about
changing its strategy. It compares its strategy to a baseline strategy and makes the update larger if
it is performing worse than the baseline.GIGA-WoLF guarantees non-positive regret in the limit
(regret is discussed in greater detail in§6.1) and strategic convergence to a Nash equilibrium when
playing againstGIGA (Zinkevich, 2003) in two-player two-action games.

There are two versions ofGIGA-WoLF. The first version assumes prior knowledge of personal
reward and the ability to observe the opponent’s action—this is the version used in the proofs for
GIGA-WoLF’s no-regret and convergence guarantees. There is also a second version—on which
all the experiments were based—that makes limited assumptions about payoff knowledge and
computational power. Instead, likeQ-learning , it merely assumes that it is able to observe
its own reward.

RVσ(t) (Banerjee and Peng, 2006) belongs to a second line of gradient algorithms that started
with ReDVaLeR(Banerjee and Peng, 2004). This algorithm also uses an adaptive step size when
following the payoff gradient, likeGIGA-WoLF, but does so on an action-by-action basis. This
means that, unlikeGIGA-WoLF, RVσ(t) can be aggressive in updating some actions while being
cautious about updating others. These updates are performed by comparing current reward to the
reward at a Nash equilibrium. Therefore,RVσ(t) requires complete information about the game and
sufficient computational power to discover at least one stage-game Nash equilibrium.RVσ(t) also
guarantees no-regret in the limit and additionally provides some convergence results for self play
in a restricted class of games.

GIGA-WoLFandRVσ(t) differ in the way that they ensure that their updated strategies remain
valid probability distributions.GIGA-WoLFretracts: it maps an unconstrained vector to the vector
on the probability simplex that is closest inℓ2 distance. This approach has a tenancy to map vectors
to extreme points of the simplex, reducing some action probabilities to zero.RVσ(t) normalizes,
which is less prone to removing actions from its support.

2.6. PREVIOUS EXPERIMENTAL RESULTS

As discussed in the introduction, surprisingly little pastwork has aimed primarily to use large-scale
experiments to compare the performance of MAL algorithms. Nevertheless, a considerable number
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Table I. This table shows a summary of the experimental setupfor a selection of pa-
pers. The summary includes the number of algorithms, the number of game distributions,
the number of game instances drawn from these distributions, the number of runs or tri-
als for each instance, and the number of iterations that the simulations were run for.
In some cases, the setup was unclear, indicated with a ‘?’. Inmany cases, fewer than
[Algorithms × Distributions × Instances × Runs] runs were simulated, due to some
sparsity in the experimental structures.

Paper Algorithms Distributions Instances Runs Iterations

Littman (1994) 6 1 1 ? ?

Claus and Boutilier (1997) 2 3 1 - 100 ? 50-2500

Greenwald and Hall (2003) 7 5 1 2500 - 33331 × 105

Bowling (2004b) 2 6 1 ? 1 × 106

Nudelman et al. (2004) 3 13 100 10 1 × 105

Powers and Shoham (2005) 11 21 ? ? 2 × 105

Banerjee and Peng (2006) 2 1 1 1 16000

Conitzer and Sandholm (2007) 3 2 1 1 2500

of papers from the literature describe experimental comparisons, often in the context of arguing for
a particular MAL algorithm or approach. We briefly survey that literature here.

Setting up a general-sum repeated two-player game experiment requires a number of design
choices. What set of algorithms should be considered? On what set of games should these algo-
rithms be run? If one is dealing with randomized algorithms (which includes any algorithm that is
able to submit a mixed strategy), how many different runs should be simulated? For a particular
game, for how many iterations should a simulation be run? As can be seen in Table I, experiments
from the literature varied in all of these dimensions. Additionally, some papers do not describe all
experimental parameters, making it difficult to compare results.

Overall, most of the tests performed in these papers considered few algorithms. In most cases,
a newly proposed algorithm was evaluated by playing againstone or two opponents. Some papers
superficially appear to have used many algorithms, but in fact considered algorithms that varied
only in small details. For example, in Littman (1994) two versions ofminimax-Q and two ver-
sions ofQ-learning were tested, with each version differing only in its training regime. In
Greenwald and Hall (2003), four versions ofCorrelated-Q were tested againstQ-learning
andFriend-Q andFoe-Q (Littman, 2001).Foe-Q is the same asminimax-Q .

To our knowledge, the experiment that considered the greatest variety of algorithms was Powers
and Shoham (2005). While four of the eleven algorithms tested in this study were simple stationary-
strategy baselines, the remaining seven were MAL algorithms includingHyper-Q (Tesauro, 2004),
WoLF-PHC(Bowling and Veloso, 2002), and a joint action learner (Claus and Boutilier, 1997).

Previous experiments have tended to investigate only smallnumbers of game instances, and
these instances have tended to come from an even smaller number of game distributions. For
example, Banerjee and Peng (2006) used only a single3 × 3 action “simple coordination game”
and Littman (1994) probed algorithm behavior with a single grid-world version of soccer. Initially,
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this limitation was partly due to the difficulty of creating alarge number of diverse game instances.
However with the creation of GAMUT (Nudelman et al., 2004), asuite of game generators, gen-
erating large game sets is now easy. Indeed, Nudelman et al. (2004) also performed one of the
largest previous MAL experiments, using three MAL algorithms (minimax-Q , WoLF(Bowling
and Veloso, 2001), andQ-learning ) on100 game instances from each of thirteen distributions.
Some recent papers have also leveraged GAMUT, such as Powersand Shoham (2005).

Finally, previous experiments have differed substantially in the number of iterations considered,
ranging from 50 (Claus and Boutilier, 1997) to1 × 106 (Bowling, 2004b). Iterations in a repeated
game are typically divided into “settling in” (also called a“burn-in” period) and “recording” phases,
allowing the algorithms time to converge to stable behaviorbefore results are recorded. Powers and
Shoham (2005) recorded the final20 000 of 200 000 iterations and Nudelman et al. (2004) used
the final10 000 of 100 000 iterations.

3. Platform

The empirical experiments just described were generally conducted using one-off code tailored
to the investigation of a particular feature of a given algorithm. This experimental design has a
number of negative consequences. First, it decreases the reproducibility of experiments by, for
instance, obscuring the details of algorithm implementation. Even when source code for the original
experiment is available, its special-purpose nature can make it difficult to repurpose for follow-on
studies or new experiments. Finally, rewriting similar code again and again wastes time that could
be spent running more comprehensive experiments.

In this section, we describe our solution to this problem: anopen and reusable platform called
MALT (MultiAgent Learning Testbed) 2.0. It is available forfree download athttp://www.
cs.ubc.ca/ ˜ kevinlb/malt . This platform is designed for running two-player, general-sum,
repeated-game MAL experiments. Basic visualization and analysis features are also included, as is
support for running experiments using a computer cluster. Version 1.0 of MALT was introduced by
Lipson (2005); the version described here is a complete reimplementation of that work in a faster
programming language (Java vs. Matlab), offering a wide variety of new features, bug fixes, and
efficiency gains. Overall, we hope that other researchers will see MALT not as a finished product,
but as a growing repository of tools, algorithms and experimental settings, and that they will use it
as a base upon which to build (e.g., for the study ofN -player repeated games or stochastic games).
We have worked hard to make MALT easily extensible. For example, adding a new algorithm to the
MALT GUI is as simple as providing a text file with a list of parameters, and adding an algorithm
to the engine requires very little coding beyond the implementation of the algorithm itself.

3.1. DEFINITIONS

We now define some terms. An ordered pair of two algorithms is apairing. This pair is ordered
because many two-player games are asymmetric: the payoff structure for the row player is different
than the payoff structure for the column player. The case where an algorithm is paired with a copy
of itself (but with different internal states and independent random seeds) is calledself play.
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Figure 1: The five steps for running an analyzing an experiment using MALT.

We concentrate on drawing games from distributions calledgame generators. A particular sam-
ple from a game generator is agame instance. Prisoner’s Dilemmais a game generator and an
example game instance is a particular set of payoffs that obey thePrisoner’s Dilemmapreference
ordering. Other game generators are more heterogeneous; for example, one that we will discuss
later samples from the space of all strategically distinct2 × 2 games.

A pairing and a game instance, taken together, are called amatch. A match with one of the
algorithms in the pairing left unspecified is apartially specified match(PSM). If two algorithms
play the same PSM, we conclude that any differences between their performances are due to the
algorithms themselves (including any internal randomization) because all else is held constant.

A particular simulation of a match is called arun or trial . For pairs of deterministic algorithms, a
single run is sufficient to characterize a match; for randomized algorithms (including any algorithm
that plays a mixed strategy) multiple runs may each yield different behavior. In such cases, the
match must be characterized by a solution quality distribution (SQD)—the empirical distribution
of a performance metric.3 Each run consists of a number ofiterations. In each iteration, the algo-
rithms select strategies and then receive some feedback: e.g., their reward; the action choice of their
opponent. Algorithms are allowed to select mixed strategies; in this case, a single action is sampled
from the mixing distribution by the game. The iterations areseparated intosettling-in iterations
andrecorded iterations.

3.2. PLATFORM STRUCTURE

In this section we give an overview of the structure of the platform. The five steps for running an
experiment with the platform are summarized in Figure 1. There are three major components to

3 We use the term SQD because it is standard in the empirical study of algorithms. We note nevertheless that in MAL
there is no clear notion of a game having a ‘solution’, and that these distributions might be more meaningfully called
‘metric distributions’.
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this platform: the configuration GUI, the experiment engine(the piece that simulates the repeated
games) and the visualization GUI. We describe each in turn.

The first step is to set up the experiment. First, a group of algorithms must be picked and algo-
rithm parameters set. Second, a set of GAMUT game distributions must be selected and parameters
for these games chosen. Third, general experimental parameters must be established, such as the
number of iterations for each simulation. These decisions are encoded in human-readable text files,
and can either be generated using a provided GUI or using batch scripts.

The second step is to generate a job file for each desired match. Each job file references the
agent, game, equilibrium, and maxmin-strategy files. Thesefiles are referenced, making altering
the job files simple even after they have been generated.

The third step is to run the jobs. This primarily involves running the MALT “engine”; however,
MALT calls GAMBIT’s (McKelvey et al., 2004) implementationof Lemke-Howson (Lemke and
Howson, 1964) when an algorithm needs to find the set of Nash equilibria for a game instance, and
CPLEX when an algorithm needs a maxmin strategy. Jobs may be run in several ways. The most
basic is to run them in a batch job on a single machine. However, for large experiments this can
be prohibitively expensive. Because each job is independent, it is straightforward to use a compute
cluster. To facilitate such parallelization, each job creates an individual data file upon completion
that records the history of play. For each recorded iteration and for each agent in the pair, the
strategy, sampled action, reward received, and beliefs about the opponents are recorded.

Step four is to compute performance metrics based on these data files. A plain-text file specifies
the metrics to be calculated, based on an extensible libraryof available metrics. As above, metrics
can be computed in a batch or can be distributed across a cluster.

Finally, step five is to analyze and visualize these results.To make this task easier, MALT
includes some basic analysis tools and a visualization GUI.

3.3. ALGORITHM IMPLEMENTATIONS

To carry out this study, we selected and implemented eleven MAL algorithms, most of which we
discussed previously in§2.6. In cases where reference code was available, we performed extensive
validation experiments to ensure that our implementation was correct.

3.3.1. Fictitious play
Parameters forfictitious play are given in Table II. We note that the initial action frequen-
cies were set to one for each action, which is a uniform and easily overwhelmed prior. Actions
were selected from non-singleton best-response sets by favoring an action that was played in the
previous iteration if present, and selecting uniformly at random otherwise.

3.3.2. Determined
Our implementation ofdetermined (see Table III) repeatedly plays the Nash equilibrium that
obtains the highest personal reward, but if there are multiple equilibria with the same protagonist
reward, then the equilibrium with the highest opponent reward is selected. If there are any equilibria
that are still tied we use the one found first by GAMBIT’s implementation of Lemke-Howson.
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Table II. Design decisions forfictitious play

Design Decision Setting

BR Tie-Breaking Previous action if still BR

Uniform otherwise

Initial Beliefs Unit virtual action count

Table III. Design decisions fordetermined

Design Decision Setting

NE Tie-Breaking Highest opponent utility

Table IV. Design decisions forAWESOME

Design Decision Setting

Special Equilibrium(π∗
p) First found

Epoch period (N(t))









|A|
Σ

(

1− 1

2t−2

)

(ǫt
e)

2









Equilibrium threshold (ǫe(t)) 1
t+2

Stationarity threshold (ǫs(t)) 1
t+1

Table V. Design decisions formeta

Design Decision Setting

Security threshold (ǫ0) 0.01

Bully threshold (ǫ1) 0.01

“Generous” BR parameter (ǫ2) 0.005

Stationarity threshold (ǫ3) 0.025

Coordination/exploration period (τ0) 90 000

Initial period (τ1) 10 000

Secondary period (τ2) 80 000

Security check period (τ3) 1 000

Switching probability (p) 0.00005

Window (H) 1 000

‖·‖ ℓ2

3.3.3. AWESOME
AWESOME is implemented according to the pseduo-code in Conitzer andSandholm (2007), and
uses parameter settings given there; see Table IV. For the ‘special’ equilibrium we use the first
equilibrium found by GAMBIT’s implementation of Lemke-Howson. It would be interesting to
compare our implementation ofAWESOMEto one that used the more computationally-expensive
approach of picking, say, a socially optimal equilibrium.4

4 In our validation experiments we observed a small but statistically significant difference between the behavior of
our implementation ofAWESOMEand the original implementation from Conitzer and Sandholm(2007). (The original
implementation was in C and MALT 2.0 is written in Java, so theoriginal implementation could not be used directly.)
Specifically, a test involving ten different game instancesand 100 runs against the random agent showed a significant
difference between solution quality distributions on three instances. We used a two-sample Kolmogorov-Smirnov inde-
pendence test (see§4.2) withα = 0.05 to check for significance. For these three game instances, our implementation
probabilistically dominated (see§4.5) the original implementation in terms of reward (i.e., every reward quantile was
higher for our implementation). We were not able to track down the source of this behavior difference; however, we
spent a considerable amount of time verifying our implementation against the pseudocode in the paper and were unable
to find any difference, suggesting that the bug may be in the original C implementation.
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Table VI. Design decisions forGIGA-WoLF.

Design Decision Setting

Learning rate (α(t)) 1√
t

10
+100

Step size (η(t)) 1√
104t+108

Table VII. Design decisions forGSA.

Design Decision Setting

Learning rate (α(t)) 1√
t

10
+100

Step size (η(t)) 1√
104t+108

Noise Weight (λ(t)) 1√
105t+108

3.3.4. Meta
Meta is implemented according to the pseduo-code in Powers and Shoham (2005). The Powers
and Shoham (2005) implementation ofmeta used a distance measure based on the Hoeffding
Inequality, even though the pseudo-code called for using anℓ2 norm. We follow the pseudo-code
and use theℓ2 norm. We do not adjust the default threshold level (ǫ3) for distance, leaving it at the
original value. All parameters formeta are summarized in Table V.

3.3.5. Gradient Algorithms
Our implementation ofGIGA-WoLF follows the original pseudo-code and uses the learning rate
and step size schedules from the original experiments by Bowling (2004a) as defaults; see Table VI.
We note, however, that these step sizes were set for drawing smooth trajectories and may not
necessarily yield strong performance, and furthermore that the original experiments forGIGA--
WoLFinvolved more iterations than we simulated (106 as compared to105). For GIGA-WoLF’s
retraction map operation (the function that maps an arbitrary vector inℜn to the closest probability
vector in terms ofℓ2 distance) we used an algorithm based on the method describedin Govindan
and Wilson (2003).GIGA-WoLF has two variants: in one it assumes that it can counterfactually
determine the reward for playing an arbitrary action in the previous iteration, and in the other it
only knows the reward for the the action that it played and hasto approximate the rewards for the
other actions. We implemented the latter approach, as all ofGIGA-WoLF’s experimental results
are produced by this version. The formula for the approximation is given by

∀ȧ ∈ Ai r̂
(t+1)
ȧ = (1 − α)r(t)

Iȧ=a(t) + α(r̂
(t)
ȧ ). (3)

In this equation,r(t) is the reward that the algorithm experienced while playing action a(t) in
iterationt. The vector̂r(t) is an|Ai|-dimensional vector that reflects the algorithm’s beliefs about
rewards.

We also tested the Global Stochastic Approximation algorithm, GSA, of Spall (2003); see Ta-
ble VII. To our knowledge we were the first to suggest its use ina MAL setting (Lipson, 2005).
This algorithm is a stochastic optimization method that resemblesGIGA, but takes a noisy, rather
than deterministic, step. TheGSAstrategy is updated as

x(t+1) = P (x(t) + η(t)r(t) + λ(t)ζ(t)), (4)
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Table VIII. Design decisions forRVσ(t).

Design Decision Setting

σ-schedule (σ(t)) 1

1+ 1

25

√
t

Step size (η(t)) 1√
1000t+105

Table IX. Design decisions forQ-learning .

Design Decision Setting

Learning rate (α(t))
(

1 − 1
2000

)t

Exploration rate (ǫ(t)) 1
5

(

1 − 1
500

)t

Future discount factor (γ) 0.9

wherext is the previous mixed strategy,rt is the reward vector,ζt is a vector where each component
is sampled from the standard normal distribution (with variance controlled by the parameterλ(t)),
andP (·) is the same retraction function used forGIGA-WoLF.

RVσ(t) is a implementation of the algorithm given in Banerjee and Peng (2006). Some initial
experiments showed that the settings of the algorithm used in the paper performed very poorly, and
so we used some hand-picked parameter settings that were more aggressive and seemed to perform
better. These are given in Table VIII.

3.3.6. Q-Learning
Our implementation ofQ-learning is very basic.; see Table IX. Since in a repeated game there
is only one ‘state’,Q-learning essentially keeps track ofQ-values for each of its actions. We
use anǫ-greedy exploration policy (perform a random action with probability ǫ) with a decayingǫ.
400 exploration steps are expected for thisǫ-schedule, andǫ drops below a probability of0.05 at
approximately iteration2800. It is negligible at the end of the settling-in period (less than3E−9).
The learning rate (α) decays to0.01 at the end of the settling in period. The discount factor of
γ = 0.9 was set rather arbitrarily. There is no need to trade off current reward with future reward:
all actions take the algorithm back to the same state.

3.3.7. Minimax-Q andMinimax-Q-IDR
For minimax-Q, we solved a linear program to find the mixed maxmin strategy based on the
Q-values. This program was

Maximize U1

subject to
∑

j∈A1
u1(a

j
1, a

k
2) · σ

j
1 ≥ U1 ∀k ∈ A2

∑

σj
1 = 1

σj
1 ≥ 0 ∀j ∈ A1

(see, for example, Shoham and Leyton-Brown (2008)). We alsoconsidered a variant ofmini-
max-Q in which iterative domination removal (IDR) is used as a preprocessing step. To our
knowledge, we were the first to propose this algorithm in Lipson (2005); we dubbed itmini-
max-Q-IDR . In each step of the iterative IDR algorithm mixed-strategydomination is checked
using a linear program (see, for example, Shoham and Leyton-Brown (2008)). Both LPs are solved
with CPLEX 10.1.1. For bothminimax-Q andminimax-Q-IDR , the learning rate, exploration
rate, and future discount factor were set as inQ-learning ; see Table IX.
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3.3.8. Random
The final algorithm,random, is an simple baseline that uniformly mixes over the available actions.
Specifically, it submits a mixed strategyσ where∀a ∈ A, σ(a) = 1

|A| .

4. Experimental Setup and Statistical Methods

As described in the preamble, this paper makes two main contributions. The first is the MALT
platform, which we have now explained. The second is a demonstration of what MALT can do.
Specifically, we conducted an large-scale experiment with the goal of investigating the empirical
relationship between average reward and other performancemetrics (e.g., equilibrium convergence;
regret) that have been considered in the literature. In thissection we describe the setup of this
experiment and some of the statistical tools we used in our analysis.

We studied all eleven of the algorithms described in§3.3, and set their parameters as described
there. We note in passing that this choice was important, as some algorithms are very sensitive to
parameter settings. Nevertheless, we considered the issueof parameter optimization to be beyond
the scope of our study, and took parameter settings from the literature as given.

We selected thirteen game generators from the GAMUT game collection; these are summa-
rized in Table X. Details of each generator are available in GAMUT’s online documentation; see
gamut.stanford.edu .We normalized the rewards of all game instances to the[0, 1] interval in
order to make the results more interpretable and comparable. We generated a total of600 different
game instances. Specifically, we generated games of five different sizes:2×2, 4×4, 6×6, 8×8 and
10 × 10. For each size, we generated 100 game instances, drawing uniformly from the first twelve
generators. We drew an additional 100 instances from the last distribution, D13, which spans all
strategically distinct2×2 games (Rapoport et al., 1976). We call the distribution induced by mixing
over all 13 GAMUT generators thegrand distribution.

With eleven algorithms and600 game instances there were11 × 11 × 600 = 72 600 matches.
We ran each match once5 for 100 000 iterations, recording the last10 000 iterations. This generated
143GB of data and took about a third of a CPU-year to run. In order to interpret the results we
relied upon a variety of different empirical methods. We briefly describe some of them below.

4.1. BOOTSTRAPPING

If we conduct an experiment where two algorithms are run on a number of PSMs then a natural
way to compare their performance is to compare the sample means of some measure of their
performance (average reward, for example). However, if we have the conclusion that ‘the sample

5 We note that each match could have been run multiple times instead of just once, and indeed that doing so would
have been essential if we wanted to understand the behavior of randomized algorithms in individual matches. However,
holding CPU time constant, conducting more runs per match would have meant either experimenting with fewer games
or with fewer algorithms. Indeed, we show in Appendix A that not stratifying (holding one experimental variable fixed
while varying another; as opposed to varying both) on game instances reduces variance for sample estimates of summary
statistics like mean and median. Thus, we ran each match onlyonce, and therefore use the terms ‘run’ and ‘PSM’
interchangeably in what follows.
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Table X. The number and name of each game generator.

D1 A Game With Normal Covariant Random Payoffs

D2 Bertrand Oligopoly

D3 Cournot Duopoly

D4 Dispersion Game

D5 Grab the Dollar

D6 Guess Two Thirds of the Average

D7 Majority Voting

D8 Minimum Effort Game

D9 Random Symmetric Action Graph Game

D10 Travelers Dilemma

D11 Two Player Arms Race Game

D12 War of Attrition

D13 Two By Two Games

mean of algorithmA is higher than the sample mean of algorithmB’, how robust is this claim? If
we ran this experiment again are we confident that it would support the same conclusion?

A good way to check the results of an experiment is to run it multiple times. For example,
imagine that we ran an experiment100 times and found that95 of the experiments had a sample
mean for algorithmA of between[a, a], and that95 of the experiments had a sample mean for
algorithmB of between[b, b]. If a > b (the lower bound ofA’s interval was greater than the upper
bound ofB’s) then we can be confident thatA is significantly better in terms of mean. (Specifically,
these intervals are the95% percent confidence intervals of the sample mean distribution, and the
fact that they do not overlap serves as sufficient evidence that there is a significant relationship
between the means.)

While such repeated experimentation can be used to ensure that results are significant, it is also
expensive. To verify the summary statistics from one experiment, we had to run many more. This is
not always possible (e.g., our experiments took7 days on a large computer cluster, so to rerun them
a hundred more times would have taken the better part of two years). Bootstrapping is a technique
that allows us to use the data from asingleexperiment to construct confidence intervals of summary
statistics. Given an experiment withm data points, we can ‘virtually’ rerun the the experiment by
subsampling from the empirical distribution defined by those m points. For example, if we have a
sample with100 data points, we could subsample50 data points (with replacement) from these100
and look at the statistic for this subsample. We can cheaply repeat this procedure as many times
as we like, creating a distribution for each estimated statistic. From these bootstrapped estimator
distributions we can form bootstrapped confidence intervals and check for overlap.

There are two parameters that control the bootstrapped distribution: we form the distribution by
subsamplingl points from the originalm, and we repeat this processk times. For our analysis we
chosel to be⌊m/2⌉ andk to be around2 500. These particular parameters were chosen to ensure
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that there would be diversity among the subsamples (this explains the moderate size ofl) and that
the empirical distributions would be relatively smooth (this explains the largek).

4.2. KOLMOGOROV-SMIRNOV TEST

While bootstrapping is useful for seeing if summary statistics are significantly different, we will
also want to check if two distributions are themselves significantly different. A beta distribution
and a Gaussian distribution might coincidentally have the same mean, but are nevertheless different
distributions. We use the KolmogorovSmirnov (KS) test for determining whether two distributions
are different. This test is nonparametric, meaning that it does not assume that the underlying data
is drawn from a known (e.g., normal) probability distribution. The KS test works by examining
the maximum vertical distance between two CDFs. Two distributions are considered significantly
different if this maximum vertical distance exceeds a givensignificance level,α. In our analysis we
use the standardα = 0.05 unless otherwise noted.

4.3. SPEARMAN’ S RANK CORRELATION TEST

Spearman’s rank correlation test is a way to establish whether or not there is a significant monotonic
relationship between two paired variables. For example, wemight want to show that there is some
significant monotonic relationship between the size of a game’s action set size and an agent’s
average reward. Like the KS test, the Spearman’s rank correlation test is non-parametric. The
relationship between the two variables can be positive (high values of one variable are correlated
with high values of the other variable) or negative (high values of one variable are correlated with
low values of the other).

4.4. ASSESSINGCONVERGENCE

We are interested in studying the convergence behavior of MAL algorithms. One issue in doing so
based on empirical data is dealing with runs that appear “notquite” to have converged because of
random fluctuations in the empirical action frequency. A natural solution to this problem is to per-
form a statistical test to determine whether one part of the run exhibits the same action distribution
as a later part. For example, we might check whether a later empirical action distribution was drawn
from the same distribution as an earlier sample (establishing that empirical mixed strategies were
stationary) or that an empirical action distribution profile was drawn from a given mixed-strategy
profile (establishing convergence to a Nash equilibrium).

Two obvious candidates for such a test are the Fisher exact test (FET) and Pearson’sχ2-test,
which can be used for checking whether two multinomial samples are drawn from a distribution.
However, each test was unfortunately inappropriate for ourproblem. Theχ2 test does not handle
situations where some of the actions are rare or not present.The FET is very computationally
expensive, and the implementation of it that we used (R Development Core Team, 2006) failed on
some of the larger and more balanced action vectors (typically in the10 × 10 case).

Instead, we used the incomplete set of FET results to calibrate a threshold based on vector
distance, where we considered any two vectors that were closer than the thresholdθ to be the same.
We calibratedθ using a receiver operating characteristic (ROC) curve. We used the incomplete
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FET results as ground truth, and plotted the change in true positive rate and false positive rate
as we variedθ. We picked the threshold that led to an equal number of false positives and false
negatives. Based on this ROC analysis, we picked aθ of 0.02.

4.5. PROBABILISTIC DOMINATION

The concept of probabilistic domination can be used to arguethat one distribution should be pre-
ferred to another in terms of a given performance metric. Specifically, a solution quality distribution
(SQD)A dominates another SQDB if ∀q ∈ [0, 1], theq-quantile ofA is higher than theq-quantile
of B. If there are two algorithms,A andB, that are trying to maximize reward, andA’s SQD
probabilistically dominatesB then regardless of the reward valuer, there are more runs ofA than
of B that attain a reward of at leastr. Probabilistic domination is stronger than a claim about the
mean of the distributions: domination implies higher means.

Checking for probabilistic domination between two samplescan be performed visually. If one
of the CDF curves is below the other curve everywhere, than the former dominates the latter.
Intuitively, this is because the better SQD has less probability mass on low solution qualities, and
more mass on higher solution qualities; better distributions are right-shifted.

5. Empirical Evaluation of MAL Algorithms: Average Reward

As we discussed at the beginning of this paper, we consider average reward to be the most funda-
mental metric for assessing the performance of a MAL algorithm. We take the average with respect
to the sampled actions rather than the submitted mixed strategy. Formally, where the iterations1 to
T refer to the10 000 iterations we recorded, we define the average reward an algorithm i obtains
in a single match as̄r(T )

i = 1
T

∑T
t=1 r

(t)
i .

In this section, we investigate the average reward metric indetail. We begin in§5.1 by comparing
algorithms according to their “raw” average reward, averaging also across both generators and
opponents. Next, we investigate each of these dimensions separately. In§5.2 we explore algo-
rithm performance across different generators, and also examine the effect of game size. In§5.3
we explore algorithm performance across different opponents, and also analyze the equilibria of
the “algorithm game”, in which available actions are different choices of MAL algorithms.§5.4
investigates probabilistic domination relationships between different algorithms and§5.5 considers
each algorithm’s performance in self play. Finally,§5.6 explores similarities between different
algorithms.

5.1. “RAW” AVERAGE REWARD

First we consider each algorithm’s “raw” performance, averaged across both games and opponents.

OBSERVATION 1. Q-Learning andRVσ(t) attained the highest rewards on the grand distri-
bution.
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Figure 2: A plot that shows the mean reward (bar) for
each algorithm and one standard deviation in either
direction (the size of the lens).
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Figure 3: The distribution of mean reward estimates
for Q-learning and RVσ(t), constructed by boot-
strapping. The95% confidence intervals are indicated
by the dark circles and dashed-lines.

Q-learning had the highest mean reward at0.714, althoughRVσ(t) was close with an av-
erage of0.710 (see Figure 2). We noticed considerable variation within the reward data, and all
of the other algorithms’ sample means still were within one standard deviation ofQ-learning ,
including random (which obtained a sample mean of0.480).

These rankings were not all significant. The slight difference in means betweenQ-learning
andRVσ(t) does not in fact indicate thatQ-learning was a better algorithm (in terms of means)
on the grand distribution of games and opponents. These two algorithms attained significantly
higher reward than any other algorithm, however. We determined this by examining the95% per-
centile intervals on bootstrapped mean estimator distributions (see§4.1) and seeing which intervals
overlapped (see Figure 3). We obtained the distributions bysubsampling2 500 times, where each
subsample consisted of6 600 runs (half as many as the13 200 runs that each algorithm participated
in).

The distribution of reward was not symmetric, and specifically tended to exhibit negative skew-
ness, indicating that the proportion of runs that attained high reward was larger than the proportion
of runs that attained low reward. (random was the only exception).Q-learning ’s distribution
had the highest skewness,−0.720.

5.2. PER-GENERATOR AVERAGE REWARD AND THE EFFECT OFGAME SIZE

Now we go beyond performance on the grand distribution. First we consider each algorithm’s
performance across individual game distributions. As can be seen in Figure 4, every algorithm’s
performance varies considerably across the different gamegenerators. However, this figure makes it
difficult to determine the best algorithm for generators that all algorithms found challenging. Thus,
we also present a normalized version of these per-generatorreward results, obtained by dividing
the results for each algorithm on a particular generator by the maximum reward attained by any
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Figure 4: A heatmap showing the reward for the pro-
tagonist algorithm playing PSMs from a particular
generator, averaged over both iterations and PSMs.
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Figure 5: A heatmap showing the mean reward for the
protagonist algorithm, playing against the opposing
algorithm. These cells have been normalized. Each
column has been divided by the maximum average
reward attained by any algorithm on that particular
generator.

algorithm (Figure 5). We can see thatminimax-Q , minimax-Q-IDR and random were all
worse than the other algorithms across a broad range of generators, andQ-learning andRVσ(t)

tended to do well.

OBSERVATION 2. Q-Learning was the best or one of the best algorithms to use for most
generators.

We define the set of best algorithms for a generator as the set of algorithms whose bootstrapped
mean estimator95% percentile intervals overlapped with the algorithm with the best sample mean.
Q-Learning was the unique best algorithm or was one of the best algorithms for 10 of our
13 generators (see Table XI). It was the only algorithm that wasthe unique best choice for any
generator, taking this role for generators D1, D4, and D9. Furthermore,Q-learning also be-
longed to the set of best algorithms for generators D2, D3, D7, D10, D11, D12 and D13. While
Q-learning most frequently was a member of a generator’s best algorithmset,fictitious
play anddetermined were also frequently in these sets (6 and7 generators respectively).

The gradient algorithms were especially strong on D7; indeed, this was the only generator for
which all three gradient algorithms were in the best algorithm set. D5, D6, and D8 were interesting
distributions forAWESOMEandmeta . In D5, neitherAWESOMEnor meta managed to be one of
the best algorithms despite the fact that bothfictitious play anddetermined —two of
the algorithms that they manage—were. In D6,AWESOMEjoinedfictitious play anddet-
ermined but meta did not, and in D8 the reverse happened:meta , fictitious play and
determined were the three best algorithms. These three generators illustrate situations where
portfolio algorithms failed to capitalize on one of their managed algorithms. It would be interesting
to run further experiments to determine why this occurred and if it could be remedied.
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Table XI. The set of best algorithms for each generator.

Gen Set of Best Algorithms

D1 Q-learning

D2 Q-learning , RVσ(t)

D3 AWESOME, determined , fictitious
play , GSA, meta , Q-learning , RVσ(t)

D4 Q-learning

D5 determined , fictitious play

D6 AWESOME, determined , fictitious play

D7 GSA, Q-learning , RVσ(t)

D8 determined , fictitious play , meta

D9 Q-learning

D10 fictitious play , Q-learning

D11 determined , fictitious play , meta ,
Q-learning

D12 determined , Q-learning

D13 AWESOME, determined , GSA, Q-learning ,
RVσ(t)

x x x x

x x x x x

x x x x

x x x x x

x x x x x

x x x x x x
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Figure 6: A heatmap summarizing the correlations be-
tween size and reward for different agents on different
generators. A white cell indicates positive correlation,
a black cell indicates negative correlation, and a gray
cell with an ‘x’ indicated an insignificant result.

For all but one of our generators (D13:2 × 2 games) we generated games of varying sizes.
Now we consider how the size of a game’s action set affected performance. Our hypothesis was
that larger action spaces raise the possibility of more complicated game dynamics, and that such
complex dynamics can slow learning. Thus, we expected to seeaverage reward decreasing as the
size of the game grew.

OBSERVATION 3. There was no general relationship between game size and reward: for some
generators algorithms achieved higher rewards on larger games, and for other generators algo-
rithms achieved higher rewards on smaller games.

Our experiment showed that this intuition did not always hold. First, for many algorithms on
many generators we could not reject the null hypothesis of the Spearman rank correlation test—that
there was no significant correlation between size and performance—at a significance level ofα =
0.05. For instance, in D7 onlyGSAandGIGA-WoLFhad significant trends (both exhibited negative
correlation; reward was lower in larger games). Second, even when a significant correlation did
exist, it was not always negative. We did observe that for most distributions, significant correlations
were either entirely negative or entirely positive. For D2,D7, D8, D9, and D11 the correlation
was negative; for D3, D4, D5, D10, and D12 it was positive. D1 and D6 exhibited both kinds of
correlation for different algorithms.

Overall, the relationship between game size and reward appears to depend strongly on the choice
of generator. It could be the case that when the action spacesincrease in size, important game
features tied with high reward become more common, or it could be that larger actions spaces
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Figure 7: A heatmap showing the mean reward for
each protagonist algorithm (ordinate) playing against
each opposing algorithm (abscissa).
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Figure 8: Interpreting the mean reward results as
a one-shot game. The cells that are cross-hatched
are dominated and the ‘⋆’s indicate pure-strategy
Nash equilibria. Because thedetermined vs.
Q-learning equilibrium is asymmetric, it appears
twice. To indicate this, we make one of the corre-
sponding stars hollow.

make it easier for MAL algorithms to miscoordinate, which isdesirable for some games. Indeed,
D4—Dispersion Games—are show positive correlation between the number of actions and reward,
and this is a game where agents need to miscoordinate to do well.

As Figure 6 shows, D2 and D12 were the only two distributions on which we could reject the
null hypothesis for all algorithms, and they supported opposite conclusions. On instances from D2,
correlation was completely and strongly negative: the larger the game, the worse every algorithm
performed. The least correlated algorithm wasrandom with a Spearman’s coefficient of corre-
lation ρ = −0.329. Correlation was entirely positive for D11, but some of the coefficients were
smaller.Fictitious play was the least sensitive to size (ρ = 0.07), but it was anomalous.
The algorithm with the next smallest coefficient wasGIGA-WoLF, with ρ = 0.267.

5.3. PER-OPPONENTAVERAGE REWARD AND THE ALGORITHM GAME

We now consider each algorithm’s average reward on a per-opponent basis.

OBSERVATION 4. Algorithm performance depended substantially on which opponent was played.

Figure 7 shows the mean reward achieved by each algorithm against every possible opponent.
One striking feature of this figure is thatminimax-Q , minimax-Q-IDR andrandom were all
relatively weak against a broad range of opponents. We also observe thatfictitious play
and determined tended to get lower reward in self play and against each otherthan against
other opponents.Meta —an algorithm that manages a profile of algorithms includingfictit-
ious play anddetermined —also appear to have inherited these performances issues, while
AWESOME—the other portfolio algorithm—substantially avoided them.
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Table XII. The different algorithms and their best-response sets

Opponent Best-Response Set

AWESOME GIGA-WoLF, GSA RVσ(t)

Determined AWESOME, GIGA-WoLF, GSA,

Q-learning RV σ(t)

Fictitious
play

GSA, Q-learning RV σ(t)

GIGA-WoLF determined , Q-learning RV σ(t)

GSA determined , Q-learning RV σ(t)

Meta determined , GIGA-WoLF, GSA
RVσ(t)

Minimax-Q Q-learning

Minimax-Q-IDR Q-learning

Q-Learning determined , Q-learning RV σ(t)

Random determined , Q-learning RV σ(t)

RVσ(t) determined

Table XIII. The proportion of subsampled algo-
rithm games in which each algorithm was strictly
dominated (SD) or weakly dominated (WD).

Algorithm SD WD

AWESOME 10.8% 11.7%

Determined 0.0% 0.0%

Fictitious play 35.9% 36.4%

GIGA-WoLF 54.1% 55.1%

GSA 0.4% 0.4%

Meta 28.8% 28.2%

Minimax-Q 100.0% 100.0%

Minimax-Q-IDR 100.0% 100.0%

Q-Learning 0.0% 0.0%

Random 100.0% 100.0%

RVσ(t) 0.0% 0.0%

If we know what algorithm the opponent is using, which algorithm should we use? We con-
structed “best-response sets” for each possible opponent using bootstrapped percentile intervals.
We call the algorithm with the highest mean against a particular opponent a best response, but also
assign any algorithm with a overlapping bootstrapped95% percentile interval to the set—we cannot
claim that these algorithms do significantly worse than the apparent best algorithm. These best
response sets are summarized in Table XII.Q-learning andRVσ(t) were most frequently best
responses, whilefictitious play , meta , minimax-Q , minimax-Q and random were
never best responses.

One interesting way to interpret these best response results is to consider the one-shot “algorithm
game”: a single-shot normal-form game in which the actions correspond to our 11 algorithms and
the payoff for using algorithmA against algorithmB is the mean reward that algorithmA attained
againstB. There were three algorithms that were strictly dominated in this grand distribution algo-
rithm game:minimax-Q , minimax-Q-IDR andrandom . Strict domination of algorithmA′ by
A means that regardless of what algorithm the opponent selects, A is always a better choice than
A′. As with best responses, we required domination to be significant: we wanted to be confident
that if the experiment were repeated, we would get a similar result. We used bootstrapping to check
this, subsampling6 600 PSMs10 000 times and from these forming10 000 ‘subsampled’ games.
We checked for strict domination in each game, and considered an algorithm dominated if it was
dominated in at least95% of the subsampled games. The proportion of subsampled algorithm
games in which each algorithm was dominated is shown in TableXIII; we also distinguish strict
domination from weak domination.

OBSERVATION 5. Determined andQ-learningwere the only algorithms to participate in
pure-strategy Nash equilibria of the algorithm game.
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Only two pure-strategy Nash equilibria ever occurred in thesubsampled games for the grand dis-
tribution: Q-learning in self play, andQ-learning againstdetermined . TheQ-learn-
ing –Q-learning equilibrium is particularly convincing because it is symmetric and so does
not require that the players coordinate to playing different strategies, and furthermore because it
occurred in90.2% of the subsampled games. The other equilibrium occurred in the remaining9.8%
of games. (Because both equilibria involvedQ-learning , we did not observe them together in
the same subsampled games.)

We looked more deeply into the algorithm games by restricting attention to individual gen-
erators. The generators varied substantially in their pure-strategy Nash equilibria. Overall,Det-
ermined in self play constituted the most common symmetric pure-strategy Nash equilibrium.
It was a significant Nash equilibrium for seven of the generators. (That is,determined in self
play was a pure-strategy Nash equilibrium in more than95% of the subsampled games for these
each of these generators.)Q-Learning in self play was the second most common symmetric
pure-strategy Nash equilibrium, arising in the algorithm games for four generators.

Generators also differed substantially in theirnumberof pure-strategy Nash equilibria. For
instance D1 (A Game with Normal Covariant Payoffs) had no significant pure-strategy Nash equi-
librium. D4 (Dispersion Game), at the other extreme, had22 pure-strategy Nash equilibria (see
Figure 9). Part of the reason for the large number of equilibria in D4 was that a majority of runs for
many of the algorithms yielded a reward of1 (e.g.,84.6% of AWESOME’s runs yielded a reward of
1). This meant that in many of the subsampled games, the majority of payoffs were exactly1 and
so there were many weak Nash equilibria. For example, bothRVσ(t) andQ-learning attained
a reward of1 againstfictitious play , and fictitious play itself attained a reward
of 1 againstRVσ(t) and fictitious play . Therefore bothRVσ(t)–fictitious play and
Q-learning –fictitious play were pure Nash equilibria.
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5.4. PROBABILISTIC DOMINATION OF ONE ALGORITHM BY ANOTHER

Now we consider the following question: given a fixed opponent, is a given algorithm probabilisti-
cally dominated by any alternative algorithm in terms of average reward?

OBSERVATION 6. Q-Learningwas the only algorithm that was never probabilistically domi-
nated by any other algorithm when playing any opponent.

Q-Learning had the best performance in terms of probabilistic domination. Determined
and RVσ(t) were the next-least-dominated algorithms:determined was only probabilistically
dominated byAWESOMEagainst afictitious play opponent, which was in turn dominated
by Q-learning ; RVσ(t) was dominated byQ-learning when playing against themini-
max-Q variants, and also bydetermined when playing againstRVσ(t). On the whole, dom-
ination by another algorithm in self play was a common trend;only AWESOME, determined
andQ-learning avoided being dominated by another algorithm when playing themselves. It is
interesting thatdetermined was not dominated: we see this as a property of the specific game
distributions that we studied.

Overall, while we observed some strong domination relationships, these were the exceptions
while ambiguity was the rule. For most algorithm pairs against most opponents, no probabilistic
domination relationship existed (see Figure 10). Furthermore, there was no opponent for which one
algorithm probabilistically dominated all others.

5.5. SELF PLAY

We have already seen evidence that self-play was challenging for many algorithms (e.g., see the
tendency towards ‘cool’ cells on the main diagonal of Figure7). A closer analysis shows that for
most algorithms there was indeed a significant relationshipbetween self play and low reward.

OBSERVATION 7. Most algorithms attained lower average reward in self play.

The distribution of reward in self-play runs forAWESOME,determined , fictitious play
and meta were probabilistically dominated by the distribution of reward in non-self-play runs.
While the same was not true for the gradient algorithms (theyachieved fewer low-reward runs
in self play), their self-play means were nevertheless significantly lower than their non-self-play
means. We verified this by looking at the95% bootstrapped percentile intervals. There was no
significant relationship forminimax-Q and minimax-Q-IDR , and this self-play trend was
reversed forQ-learning : its self-play runs probabilistically dominated its non-self-play runs.
Furthermore,Q-learning achieved a higher mean reward in self play than any other algorithm
(see Figure 11).

Interestingly,AWESOMEwas one of the algorithms with poorer self-play runs, despite its ma-
chinery for converging to a special equilibrium in self play. We wonder whether this occurred
becauseAWESOMEdid not converge due to an overly-conservative threshold for detecting whether
its opponent was playing part of an equilibrium, or becauseAWESOMEdid converge to the spe-
cial equilibrium but that equilibrium did not offer high reward. (Note that our implementation
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of AWESOMEcoordinates to the first Nash equilibrium found by GAMBIT’s implementation of
Lemke-Howson.) At the risk of keeping the reader in suspense, we defer the answer to§6.3, in
which we examine equilibrium convergence results.

5.6. ALGORITHM SIMILARITY

Finally, we investigate similarities between algorithms’abilities to achieve high reward. We can
assign some of our algorithms to one of three major blocks. First, AWESOMEandmeta are simi-
lar because they both manage portfolios incorporatingfictitious play anddetermined ;
likewise, we expect them to be similar to thefictitious play anddetermined algorithms
themselves. Second,GIGA-WoLF, GSAandRVσ(t) are similar because they all follow a reward
gradient. Finally,minimax-Q andminimax-Q-IDR are similar because the latter is the same
as the former except for the addition of an IDR preprocessingstep. We call these the portfolio,
gradient, and minimax blocks. We also might suspect thatQ-learning , an algorithm that does
not explicitly model the opponent, might be similar to the gradient algorithms. Nevertheless, we
do not assignQ-learning to a block; likewise, we leaverandom unassigned.

We tested all pairs of algorithms for similarity by comparing their average reward distributions
for all generator–opponent pairs. Thus, we tested each algorithm pair 13 × 10 = 130 times—
every algorithm is of course similar to itself and so we did not check these cases. Failing to reject
the null hypothesis of the KS test (that both samples were drawn from the same population) is
some evidence for the samples being similar. This rough-and-ready approach does not establish
significant similarity and is merely suggestive of similarity; failing to reject a null hypothesis is not
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the same as having shown that the null hypothesis is true. However, with this caveat in mind, we
observed some interesting trends.

OBSERVATION 8. Similar algorithms tended to exhibit similar performance.

All three predicted blocks emerge, as can be seen in Figure 12. First,meta , AWESOME, fict-
itious play anddetermined were all similar to each other on a large number of opponent–
generator pairs. Bothmeta and AWESOMEwere similar in more cases todetermined than
to fictitious play . For instance,AWESOMEwas similar todetermined in 101 out of
130 cases while similar tofictitious play in only 81 cases.Meta and AWESOMEwere
also quite similar to each other (88 cases).Q-learning was similar to the algorithms in this
block, especiallydetermined andAWESOME, which we had not expected.AWESOMEwas more
similar toQ-learning than to any other algorithm: they were similar in103 cases, while even
determined andAWESOMEwere only similar in101 cases.

The block of algorithms consisting ofRVσ(t), GIGA-WoLFandGSAwere all similar in a large
number of cases, with a particularly tight relationship evident betweenGIGA-WoLF and GSA
(similar in111 cases).Q-Learning also bore similarities to the gradient-algorithm block. These
algorithms also showed somewhat weaker similarity todetermined andAWESOME.

The connection betweenminimax-Q andminimax-Q-IDR was particularly strong (similar
in 118 cases). These were also the algorithms most similar torandom —indeed, similar almost
twice as often as the next-most-similar algorithm (AWESOME: it was similar torandom in 11
cases, as compared tominimax-Q ’s 21 cases).

6. Empirical Evaluation of MAL Algorithms: Other Metrics

So far, all of our experimental discussion has concerned theaverage reward metric. However, a wide
variety of other metrics have also been proposed and studiedin the literature. Here we consider
many of the most prominent. This allows us to understand our experimental results in different
ways, and furthermore sheds light on the extent to which eachmetric correlates with high reward
in practice. In§6.1 we investigate regret, specifically considering mean regret, probabilistic dom-
ination of one algorithm by another, and the relationship toreward. In§6.2 we assess algorithms’
tendencies to converge to stationary strategies.§6.3 considers convergence to Nash equilibrium
of the stage game, and relates this metric to reward. In§6.4 we consider algorithms’ abilities to
achieve at least their maxmin payoffs, and consider both per-opponent maxmin performance and
the relationship to reward. Finally, in§6.5, we measure algorithms’ tendency to converge to payoff
profiles consistent with Nash equilibria of the infinitely-repeated stage game.

6.1. REGRET

Regret is the difference between the reward that an algorithm could have received by playing the
best static pure strategy and the reward that it did receive:

Regret(~σi,~a−i) = max
a∈Ai

T
∑

t=1

[

r(a, a
(t)
−i) − E

[

r(σ
(t)
i , a

(t)
−i)

]]

. (5)
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The best static pure strategy is determined after the run, based on the assumption that the oppo-
nent’s actions choices in each round would not change. We usethe expected reward formulation
of regret—as opposed to one that uses the actual actions thatthe algorithm played—following
Bowling (2004a). Rather than looking at the total sum of regret over all10 000 recorded iterations,
we will discuss the mean regret over these iterations. Sinceplayer payoffs are restricted to the[0, 1]
interval, mean regret can give a better sense of the magnitude of regret with respect to possible
reward.

Regret has been suggested as a measure of how exploitable an algorithm is. If an agent accrues
significant regret one possible explanation is that it did the wrong thing. However, in some games
(e.g., the Traveler’s dilemma) ignoring regret can lead to greater long-term reward.

Some algorithms, includingGIGA-WoLF andRVσ(t), areno-regret learners: they come with
the guarantee that they will always approach zero regret as the number of iterations approaches
infinity. However, to our knowledge it has not been shown experimentally how the regret achieved
by these algorithms compares to the regret achieved by otheralgorithms that lack such a guarantee;
nor has it been demonstrated whether these algorithms achieve better than zero regret in practice.

OBSERVATION 9. Q-Learning best minimized regret.GIGA-WoLFmost frequently achieved
negative-regret runs.

In our experiment, all algorithms achieved positive mean regret (Figure 13), though they differed
substantially in the fraction of their matches in which theyachieved positive regret (Figure 14). All
the means were significantly different, based on overlaps inthe 95% percentile intervals (there
was none). Of these,Q-learning had the lowest regret, at0.008. The gradient algorithms—
GIGA-WoLF, GSAand RVσ(t)—had the next lowest mean regret afterQ-learning . Among
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the gradient algorithms,GSAachieved the lowest mean regret, followed byRVσ(t) and then by
GIGA-WoLF. These empirical results are concordant withGIGA-WoLF andRVσ(t)’s theoretical
no-regret guarantees—not only are these algorithms guaranteed zero regret in the limit, but they
also achieved low regret in practice. At the same time, it is interesting that the algorithm with the
best results,Q-learning , comes with no such guarantee.

Considering only mean regret masks an interesting difference betweenQ-learning and the
gradient algorithms: they achieve low mean regret in different ways (see Figures 14 and 15).
Q-Learning achieved low mean regret by attaining zero regret in most (89.5%) of its runs. It
had the fewest positive-regret runs (10.4%; the next lowest wasAWESOMEat18.2%), and also had
the second-fewest negative-regret runs (0.1%; only fictitious play had (slightly) fewer).
On the other hand, the gradient algorithms rarely achieved zero regret (the algorithms with the
fewest zero runs wereRVσ(t), GSA, random andGIGA-WoLF) but often achieved negative regret
(the three algorithms with the most negative regret runs were GIGA-WoLF (5.8%), RVσ(t) (3.2%)
andGSA(3.0%)).

Overall, no algorithm achieved less than very slightly negative regret: the very smallest was
an average regret of−2 × 10−6. The converse was not true for positive regret: in440 different
runs some algorithm attained average regret of1, meaning that it took precisely the wrong action
in every round.48.6% of these runs involvedfictitious play or one of the algorithms that
wrap aroundfictitious play ( awesome ormeta ) in self play, and were on generator D4
(Dispersion Games), which reward miscoordination. We can conclude that in these casesfict-
itious play became stuck in pathological cycling between the symmetricoutcomes (where
both agents play the same action), which yield zero reward. Such cycling is a well-known problem
with fictitious play ; based on claims in the literature, a judicious applicationof noise to
the algorithm would have broken the cycle and improvedfictitious play ’s performance.

Considering regret on a per-generator basis,Q-learning achieved the lowest mean regret
on every generator except for D13 (strategically distinct2 × 2 games), on whichRVσ(t) was the
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best.Q-learning was also the best algorithm to use against almost every opponent. There
were only two exceptions:RVσ(t) was better againstQ-learning and AWESOMEwas better
against itself. Another interesting pairing was whenQ-learning played againstfictitious
play : Q-learning attained zero regret in every single game. This indicates thatQ-learning
(uniquely among our algorithms) converged to a pure-strategy best response in every game against
fictitious play .

6.1.1. Probabilistic Domination of One Algorithm by Another
When we consider regret distributions on a per-opponent basis, some strong probabilistic domi-
nance trends emerge.

OBSERVATION 10. On a per-opponent basis,Q-learning, GIGA-WoLF, GSA and RVσ(t)

were rarely probabilistically dominated in terms of regret.

First, say that algorithmA dominatesB k times if there arek opponentsC such thatA’s
regret distribution for matches againstC probabilistically dominatesB’s regret distribution for
matches againstC. Under this notion of domination, we found that the gradientalgorithms were
never dominated by any other algorithm (Figure 17).Q-learning was only dominated once,
by AWESOMEin the case of anAWESOMEopponent. We were not surprised by this, sinceAWE-
SOMEhas special machinery for converging to a stage-game Nash equilibrium in self play. (In a
Nash equilibrium, of course, both agents play best responses to each other and hence both accrue
zero regret.) On the other hand,fictitious play was frequently dominated, especially by
AWESOME, determined , Q-learning and to a lesser degreemeta . Bothdetermined and
Q-learning dominatedfictitious play against10 opponents (Q-learning was the
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exception fordetermined and vice versa), andAWESOMEdominatedfictitious play
on 9 opponents (GIGA-WoLF andmeta were the only opponents for whichAWESOMEdid not
dominatefictitious play ).

We can also define probabilistic domination in another way, saying that algorithmA domi-
natesB k times if there arek generatorsG such thatA’s regret distribution on games fromG
probabilistically dominatesB’s regret distribution on games fromG. Considering domination in
this sense, we can draw similar conclusions (Figure 18).Q-Learning dominated other algo-
rithms frequently—particularlyfictitious play (on9 generators),meta (8 generators), and
AWESOME(on 8 generators)—while avoiding domination by any other algorithm. Fictitious
play was dominated frequently: byQ-learning (9 generators),determined (6), AWESOME
(6) andmeta (4).

6.1.2. Links Between Regret and Reward
What is the connection between regret and reward? We expected that high reward should be corre-
lated with low regret, and vice versa. This intuition was largely supported by our experimental data.
Regret and reward were negatively correlated for all algorithms (Spearman’s rank correlation test;
α = 0.05): high reward was linked with low regret. On a per-generatorbasis, we observed that D10
(Traveler’s Dilemma) inducedpositivecorrelation between regret and reward for all algorithms
exceptdetermined (Figure 19). This makes sense: in this game, algorithms do better when they
do not play best responses, and indeed the unique Nash equilibrium is one of the worst outcomes
of the game.

We compared the average reward each algorithm obtained in positive-regret runs and non-
positive-regret runs. For most of the algorithms, the distribution of average reward obtained in
non-positive-regret runs probabilistically dominated the distribution of average reward obtained
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in positive regret runs. There were some exceptions. For example, Q-learning exhibited a
relatively minor crossover. The same phenomenon occurred with GIGA-WoLF, but in a more
pronounced fashion: runs that attained positive regret less often attained zero reward (Figure 20).
Even more dramatically, the positive-regret run distributions probabilistically dominated the non-
positive run distributions forGSAandRVσ(t). These two (gradient) algorithms exhibited behavior
different from the other nine: runs with positive regret hadbetter reward characteristics than runs
with zero or negative regret. This phenomenon did not seem toarise in the context of a single
generator or opponent. However, we did note that the probabilistic domination seemed the weakest
when PSMs involvingTraveler’s Dilemmawere omitted.

6.2. STRATEGIC STATIONARITY

All of the metrics we have discussed so far have been based on reward. We now consider several that
are based on empirical frequency of action, and that ask whether these frequencies converge. The
first—and weakest—notion of convergence that we consider measures whether or not an algorithm
converges to a stationary strategy profile. This is interesting in its own right, and is also a necessary
condition for stronger forms of convergence.

We consider a run to have been stable if the joint distribution of actions was the same in the first
and second halves of the recorded iterations, tested according to the threshold criterion described
in §4.4 and usingℓ∞-distance. Stability is a property of a run rather than a single algorithm’s play
in a run, so even algorithms that always play stationary strategies can still participate in unstable
runs.

To check how successful our threshold criterion was at detecting stationarity, we began by
examining the results for our two algorithms that always play stationary strategies. Our criterion
founddetermined to be stable in99.5% of self-play matches andrandom to be stable in92.0%
of self-play matches. When playing each other, they were found to be stable94.8% of the time. The
differences between these cases are likely becausedetermined tends to adopt mixed strategies
with smaller supports thanrandom does, and such a mixed strategy is more likely to yield an
empirical action distribution that closely resembles it.6

We foundGIGA-WoLF andGSAto be the least likely to be stable—particularly in self play,
against each other, or againstmeta (see Figure 21). Their striking instability withmeta was
potentially because they trippedmeta ’s internal stability test and changed its behavior. However,
AWESOMEalso has a similar internal check, but the stability ofGIGA-WoLF andGSAwere not
noticeably different between matches withAWESOMEand withQ-learning (which has no such
check).RVσ(t), the other gradient algorithm, was more stable thanGIGA-WoLF andGSA. This
might be becauseRVσ(t) had a more aggressive step length: the parameters used in this experiment
for GIGA-WoLFandGSAwere taken from (Bowling, 2004a), who indicated that these parameters
were intended to produce smooth trajectories rather than fast convergence.

Meta , determined , fictitious play andAWESOMEwere, for the most part, quite good
at achieving stationarity.Meta and fictitious play were particularly strong against each
other, and always reached a stationary strategy profile. Theonly exception to the rule of stability

6 We note that a false positive rate of between0.5% and8% is larger than might be hoped, but nevertheless defer
consideration of improved criteria for measuring empirical convergence to future work.
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on generator and protagonist

in this group wasAWESOMEvs.meta ; this pairing was unstable in10.3% of runs. We are not sure
why this occurred, but conjecture that it arose because of the discrete behavioral changes that both
algorithms undergo when their internal states are updated.

There were a number of problem generators for the different algorithms (see Figure 22). For
example: generators D1, D2, and D10 created instances that were particularly difficult for the
gradient algorithm in terms of strategic stability;Q-Learning was weak on both D5 and D7;
andmeta tended to be unstable on D5, D7 and D10. However these unstable instances were rare
regardless of the algorithm paring. The vast majority of runs found a stationary strategy profile.
EvenGIGA-WoLF, which was the algorithm least likely to stabilize, found stationarity in87.0%
of its runs (see Figure 23).

6.3. CONVERGENCE TOSTAGE-GAME NASH EQUILIBRIUM

Stable runs are those that converged to any strategy; we now consider which of these selected a
(possibly mixed-strategy) stage-game Nash equilibrium. For some algorithms, Nash equilibrium
convergence was reasonably common.AWESOMEconverged in54.3% of its runs, anddeter-
mined converged in53.1% of its runs.Determined was better atAWESOMEat converging
to a Pareto-optimal Nash equilibrium (a Nash equilibrium that was not Pareto-dominated by any
other Nash equilibrium).AWESOMEmost frequently converged to a Pareto-dominated equilibrium.
This was likely influenced by the way that our implementationof AWESOMEpicked its ‘special’
equilibrium:7 the first equilibrium found by the Lemke-Howson algorithm, without attention to
whether it was, e.g., Pareto-dominated.AWESOMEalso tended to attain lower reward when it
converged to a Pareto-dominated Nash equilibrium than whenit did not converge or converged
to a non-dominated Nash equilibrium.

7 The original paper, Conitzer and Sandholm (2007), left the method of picking the ‘special’ equilibrium unspecified.
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Figure 24: The proportion of self-play runs that were
stationary, converged to a non-Pareto-optimal Nash
equilibrium, or converged to a Pareto-optimal NE.

Figure 24 shows the extent to which each algorithm convergedto a stage-game Nash equilibrium
in self play. Notice how often determined converged: this indicates that the games we studied
often possessed one Nash equilibrium that was the best for both agents. Indeed, we can see that a
surprisingly high number of games had auniquestage-game Nash equilibrium (58.5%). We expect
that convergence results would look qualitatively different with generators that were much less
likely to produce games with unique equilibria.

Observe thatAWESOMEnearly always converged. Recall that we previously found that AWE-
SOMEreceived lower average reward in self-play than non-self-play runs (§ 5.5). Now we can
conclude that this failure to achieve high rewards was not due to a failure to reach equilibrium.
An interesting modification of theAWESOMEalgorithm would be to use its self-play machinery to
converge to stable strategies that are not stage-game Nash equilibria, such as the socially-optimal
outcome or the Stackelberg game equilibrium. The aim of thisadjustment would be to improve self-
play reward results while maintainingAWESOME’s resistance to exploitation by other algorithms.

6.3.1. Links Between Nash Equilibrium Convergence and Reward
Much work in the literature has aimed at MAL algorithms that converge to a stage-game Nash
equilibrium. However, if the goal is high average reward, issuch convergence desireable? More
generally, is proximity to stage-game Nash equilibrium correlated with obtaining high reward?

OBSERVATION 11. Strategic proximity to stage-game Nash equilibrium was correlated with
average reward for all algorithms and most algorithm–generator pairs.

For all algorithms, reward was negatively correlated withℓ∞-distance to the closest Nash equi-
librium (Spearman’s rank correlation test;α = 0.05). Furthermore, most algorithms were nega-
tively correlated even on a per-generator basis (Figure 25). The most notable exceptions were D6,
D12, and (especially) D10, where we sawpositivecorrelations between distance and reward.
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6.4. MAXMIN DISTANCE

An agent’s maxmin value is the largest amount that it can guarantee itself regardless of its oppo-
nent’s behavior. Thus, achieving average reward of at leastthis amount is widely seen as a necessary
condition for sensible MAL behavior. Furthermore, the famous Folk Theorem of game theory
demonstrates that enforceable payoffs (those with non-negative maxmin distances) are precisely
those payoffs that can be achieved in equilibrium of an infinitely repeated game. We build on
our results here to investigate this notion of convergence in §6.5. In this section we consider the
difference between average reward and the maxmin value of the underlying game instance:

MaxminDistance(~ri) =

∑T
t=1 r

(t)
i

T
− max

ai∈Ai

min
a−i∈A−i

u(ai, a−i). (6)

We call this differencemaxmin distance, noting that it can be negative.

OBSERVATION 12. Q-Learning attained an enforceable payoff more frequently than any
other algorithm.

Q-Learning most frequently attained an enforceable payoff, with a negative maxmin dis-
tance in only1.8% of its runs (Figure 26). The runs on whichQ-learning failed to attain an
enforceable payoff mostly came from either D4 (Dispersion Game; 37.6% of Q-learning ’s
unenforceable runs) or D13 (Two by Two Game; 33.3%). They also occurred predominantly against
random (29% of the unenforceable runs),minimax-Q (17.3%) andminimax-Q-IDR (16.0%).
The next-best algorithm,AWESOME, attained enforceable payoffs considerably less often, with a
negative maxmin distance in7.4% of its runs.
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After random , Minimax-Q andminimax-Q-IDR were theleast likely to attain enforce-
able payoffs, failing to do so in28.9% and27.7% of their runs respectively. This is interesting
because these algorithms explicitly attempt to do well against adversarial opponents. One possible
explanation is that they may have trouble learning accuratepayoffs , leading them to have difficulty
obtaining their maxmin values.

Minimax-Q andminimax-Q-IDR were especially poor in self play, where conservative play
can impair payoff learning. There is also a greater proportion of enforceable runs on2 × 2 games
(75.2%) than on10 × 10 games (68.5%)—larger games have more payoffs to learn. Working on
a more sophisticated exploration scheme looks like an especially promising place to improve our
implementation ofminimax-Q and its variant.

While Q-learning was successful against a broad range of opponents, some other algorithms
were less consistent. For example,meta was quite good against all opponents except forfict-
itious play , determined , AWESOMEand itself.Meta was especially bad againstfict-
itious play ; in this pairing only68.0% of meta ’s runs were enforceable. Compare this to
meta ’s excellent performance againstQ-learning , where it attained enforceable payoffs in
97.7% of it runs. Fictitious play also had trouble playing againstmeta , determined
and itself. On the other hand, neitherAWESOMEnor determined shared this problem.

RVσ(t) had problems attaining enforceable runs too, and although it received payoffs well above
the maxmin value frequently (it had the second highest proportion of runs with strictly positive
distances at68.8%) there were also a large number of instances whereRVσ(t)’s maxmin distance
was close to but below zero. This contrasts withGIGA-WoLF, which had fewer non-enforceable
runs with greater negative minimax distance (see Figure 29). We conjecture that this phenomenon
occurred becauseRVσ(t) maintains a small amount of probability mass on all of its actions, causing
it to ‘tremble’. More specifically,RVσ(t), like all gradient algorithms, updates its mixed strategy
by moving along the reward gradient. When the updated vectordoes not sum to one, it must be
mapped back to the probability simplex.RVσ(t) does this by normalizing the updated vector, while
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offs and payoffs profiles achieved, by algorithm.

GSAandGIGA-WoLFuse a retraction operator that tends to drop actions from themixed strategy’s
support (see§ 2.5). We conjecture that modifyingRVσ(t) to useGIGA-WoLF’s retraction operator
would improveRVσ(t)’s ability to achieve enforceable payoffs.

6.4.1. Links Between Maxmin Distance and Reward
Is there a connection between enforceable runs and high average rewards? It would being strange
if some such relationship did not exist, since enforceability implies reward higher than the maxmin
value. Indeed, we did observe that for all algorithms, maxmin distance was positively correlated
with average reward. (Spearman’s rank correlation test (§4.3); α = 0.05 significance level). On
a per-generator basis, we again largely observed significant positive correlations. There were two
deviations from this pattern. First, we found no significantcorrelation for half of the algorithms on
D11, and forminimax-Q on D3. Second, there was a significantnegativecorrelation formini-
max-Q on D11, thoughminimax-Q-IDR still exhibited significant positive correlation.

6.5. CONVERGENCE TOREPEATED-GAME NASH EQUILIBRIUM

In §6.3 we considered algorithms’ tendencies to converge to equilibria of the stage game. The
algorithms actually played a repeated game, however. We nowturn to analyzing this repeated
game’s properties. The payoff profiles achievable in Nash equilibrium of a repeated game are
precisely the enforceable profiles (see, e.g., Osborne and Rubinstein (1994)). In order to determine
whether a given strategy profile is an equilibrium of a repeated game, it is also necessary to consider
how these strategies behave off the equilibrium path (e.g.,how they punish deviations by the other
agent). While the algorithms that we studied lack punishment mechanisms, it is still meaningful
to assess how frequently they converged to payoff profiles consistent with repeated game Nash
equilibria. We therefore build on the results from§ 6.4, asking how oftenbothalgorithms achieved
enforceable payoffs.
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OBSERVATION 13. Q-Learning was involved in matches whose payoff profiles were consis-
tent with a repeated game Nash equilibrium more often than any other algorithm.

Of the algorithms that we examined,Q-learning most frequently had runs that were consis-
tent with a repeated game Nash equilibrium (Figure 30). It was consistent with a repeated game
equilibrium in 76.8% of its runs.Determined and AWESOMEwere the next most frequently
consistent (75.0% and73.8% of their runs respectively). Overall, consistency with a repeated game
Nash equilibrium was common, but not universal. It is worth emphasizing that an enforceable
payoff profile depends on both agents’ actions, and so the behavior of weak agents likerandom
lowered the scores for stronger opponents.

7. Discussion and Conclusion

In this article we described MALT, a standardized testbed for multiagent experimentation. This
testbed allows researchers to focus on experimental designand analysis instead of implementation.
We also presented an in-depth analysis of a large experimentwe conducted ourselves using MALT.

The most striking conclusion from our experiment was thatQ-learning achieved consis-
tently excellent results, in many senses outperforming algorithms based on deeper insights about
the multiagent setting (e.g.,GIGA-WoLF, AWESOME, andmeta ). We were surprised by this find-
ing, since we had taken for granted the idea that modern, multiagent algorithms would do better
in a repeated-game environment than a classical, single-agent algorithm. The evidence we have
shown to the contrary suggests that it should be possible to considerably improve the empirical
performance of MAL algorithms. We suggest four areas in which efforts could be worthwhile.

First, a more experimentally-driven focus seems crucial. Our experiment was large, but there
are many empirical questions that it does not answer. Some promising future directions include:

− More examination of the relationship between performance and game properties like size;
− More detailed investigation of algorithm behavior on instances from single generators;
− Investigation of additional algorithms like Hyper-Q (Tesauro, 2004) and Nash-Q (Hu and

Wellman, 1998);
− Study ofN -player repeated games and stochastic games (along the lines of Vu et al. (2005)).

Second, the more sophisticated algorithms have many tunable parameters. Finding optimal set-
tings for them was beyond the scope of our paper, and we instead relied on published parameter
settings. Nevertheless, it is possible that some algorithms would have performed considerably better
if they had been configured differently. Indeed,Q-learning had only three parameters and all
were easy to set, which might partly explain its strong performance. Tuning the other algorithms
would require considerable experimental effort; hopefully MALT will be of assistance. There are
some interesting questions to ask:

− Is one parameter setting good for many problems, or is it the case that some parameter settings
are effective on some matches and poor on others?

− Which of an algorithm’s (e.g.,meta ’s) parameters are the most important?
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− DoesAWESOME’s performance change radically when it selects the socially optimal Nash
equilibrium as its special equilibrium? How about the ‘Stackelberg’ equilibrium?

− For gradient algorithms, is it better to perform retractionor normalization?
− Do parameter settings that yield high reward also yield low regret?

Third, we presented two different tweaks to existing algorithms:minimax-Q-IDR andGSA.
These algorithms offered several improvements over their “parent” algorithms, and in many cases
probabilistically dominated them. It would be interestingto explore similar modifications of other
existing algorithms.

Finally, managing a portfolio of existing algorithms seemslike a promising approach for design-
ing algorithms with good empirical properties.AWESOMEandmeta can both be seen as portfolio
algorithms: they switch between different components based on the opponent’s behavior. Much
remains to be learned about the best framework for building portfolio algorithms, especially if we
insist on frameworks that do not require hand-constructionof a portfolio. Again, this direction of
research invites a host of empirical questions. What features of a game and of game play should a
portfolio track? In what situations does adding an algorithm to a portfolio improve performance?
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Appendix A. Independent vs. Stratified Sampling

For all of the experiments described in this article, we wereconcerned with the expected per-
formance of a match, denoted byf(µ, ζ). Here,f is some metric function,µ ∼ M is a match,
andζ ∼ Z is a random seed that completely determined any non-deterministic behavior in both
algorithms. The game instance/seed pairing uniquely definea run. When designing our experiment,
we needed to choose whether to stratify runs based on the match. For instance, if we had enough
time to run100 simulations, we could either have sampled a single run on100 matches, or10
runs on10 matches. Stratification clearly yields more detailed data about the role that random-
ization plays in each match. However, for estimating commonsummary statistics—means and
quantiles—stratification should be avoided.

Formally, consider two schemes of sampling fromM andZ. Underindependent sampling, M
and Z are sampled separately each time, yielding a set of samples{(M1, Z1), . . . , (Mn, Zn)}.
Understratified sampling, k samples are taken fromM and for each sample ofM , Z is sampledsi

times, yielding a set of samples{(M1, Z1,1), . . . , (M1, Z1,s1), . . . , (Mk, Zk,sk
)}. In both schemes,

the sample mean is used as an estimate for the population mean. SinceG and Z are sampled
independently, both schemes yield unbiased estimators. However, the following result shows that
the schemes differ in terms of variance.
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LEMMA 7.1. Independent sampling yields a lower-variance estimate ofE

[

f(M,Z)

]

than stratified
sampling.

Proof First, independent random variables have no covariance.

Cov [f(Mi, Zi), f(Mj , Zj)] = Cov [f(Mk, Zk,l), f(Mm, Zm,n)] (7)

On the other hand, if two samples share the same stratum (the same sampleµ ∼ M ) then they have
weakly higher covariance.

Cov [f(Mk, Zk,l), f(Mk, Zk,m)] ≥ Cov [f(Mi, Zi), f(Mj , Zj)] (8)

Using Equations (7) and (8) we can write

V ar

[

∑

i

f(Mi, Zi)

]

=
∑

i,j

Cov [f(Mi, Zi), f(Mj , Zj)]

≤
∑

i,j,k,l

Cov [f(Mi, Zi,j), f(Mk, Zk,l)]

= V ar





∑

i,j

f(Mi, Zi,j)



 . 2

We also claimed that stratifying increases the variance of quantile point estimation. This result
can be found (albeit without proof) in Heidelberger and Lewis (1984).
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