
Empirical Hardness Models:

Methodology and a Case Study on Combinatorial Auctions

KEVIN LEYTON-BROWN

Computer Science, University of British Columbia, kevinlb@cs.ubc.ca

and

EUGENE NUDELMAN and YOAV SHOHAM

Computer Science, Stanford University, {eugnud; shoham}@cs.stanford.edu

Is it possible to predict how long an algorithm will take to solve a previously-unseen instance of
an NP-complete problem? If so, what uses can be found for models that make such predictions?
This paper provides answers to these questions and evaluates the answers experimentally.

We propose the use of supervised machine learning to build models that predict an algorithm’s
runtime given a problem instance. We discuss the construction of these models and describe
techniques for interpreting them to gain understanding of the characteristics that cause instances
to be hard or easy. We also present two applications of our models: building algorithm portfolios
that outperform their constituent algorithms, and generating test distributions that emphasize
hard problems.

We demonstrate the effectiveness of our techniques in a case study of the combinatorial auction
winner determination problem. Our experimental results show that we can build very accurate
models of an algorithm’s running time, interpret our models, build an algorithm portfolio that
strongly outperforms the best single algorithm, and tune a standard benchmark suite to generate
much harder problem instances.

Categories and Subject Descriptors: I.2.2 [Artificial Intelligence]: Automatic Programming—
Automatic analysis of algorithms; Program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Graph and tree search strategies; Heuristic methods; I.2.6
[Artificial Intelligence]: Learning

General Terms: Design, Economics, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Empirical Analysis of Algorithms, Algorithm Portfolios,
Combinatorial Auctions, Runtime Prediction

1. INTRODUCTION

Many of the most interesting and important computational problems are NP-complete.
This would seem to suggest that these problems are hopelessly intractable for all
but the smallest instances. In practice, luckily, the situation is often much better,
because NP-completeness is only a worst-case notion. In many domains of interest,
instances that arise in practice are overwhelmingly easier than worst-case instances
of the same size.

Recently, there has been substantial interest in understanding the “empirical

This work was supported by DARPA grant F30602-00-2-0598, NSF grant IIS-0205633, the Intelli-
gent Information Systems Institute, Cornell, an NSERC Discovery Grant and a Stanford Graduate
Fellowship.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–52.

2 · Kevin Leyton-Brown et al.

hardness” (also called “typical-case complexity”) of NP-complete problems. This
line of work has focused on identifying factors that determine how hard distributions
or individual instances of NP-complete problems will be for particular algorithms
to solve in practice. Such work promises to advance both the practical development
of state-of-the-art algorithms and also theoretical understanding.

1.1 Past Work: Empirical Hardness of Decision Problems

In recent years1 many researchers in the constraint programming and artificial in-
telligence communities have sought simple mathematical relationships between fea-
tures of problem instances and the hardness of a problem. The majority of this work
has focused on decision problems (that is, problems that ask a yes/no question of the
form, “Does there exist a solution meeting the given constraints?”). The most pop-
ular approach for understanding the empirical hardness of such problems—taken
for example by Cheeseman et al. [1991] and Selman et al. [1996]—is to vary some pa-
rameter of the input looking for a easy–hard–less hard transition corresponding to a
phase transition in the solvability of the problem. Some of the earliest work in this
category concerned the satisfiability problem (SAT), which represents a generic con-
straint satisfaction problem with binary variables and arbitrary constraints. For ex-
ample, Selman et al. [1996] considered the empirical performance of solvers running
on uniformly randomly-generated SAT instances, and found a strong correlation be-
tween the instance’s hardness and the ratio of the number of clauses to the number
of variables in the instance. Further, they demonstrated that the hardest region
(e.g., for random 3-SAT, a clauses-to-variables ratio of roughly 4.26) corresponds
exactly to a phase transition in an algorithm-independent property of the instance:
the probability that a randomly-generated formula having a given ratio will be satis-
fiable. There has also been considerable work from the theory community bounding
the point at which this phase transition occurs, particularly for uniform random
3-SAT and k-SAT, and describing how the easy–hard–less hard transition arises,
particularly for simple backtracking-based (so-called DPLL) algorithms [Frieze and
Suen 1996; Dubois and Boufkhad 1997; Beame et al. 1998; Dubois et al. 2000;
Franco 2001; Achlioptas 2001; Cocco and Monasson 2004; Achlioptas et al. 2004].

The last decade or so has seen increased enthusiasm for the idea of studying
algorithm performance experimentally, using the same sorts of methods that are
used to study natural phenomena. This work has complemented the theoretical
worst-case analysis of algorithms, leading to interesting findings and concepts. For
example, this approach was applied to the quasigroup completion problem [Gomes
and Selman 1997]. Follow-up work took a closer look at runtime distributions
[Gomes et al. 2000], demonstrating that runtimes of many SAT algorithms tend
to follow power-law distributions and that random restarts provably improve such
algorithms. Later, Gomes et al. [2004] refined these notions and models, demon-
strating that statistical regimes of runtimes change drastically as one moves across
the phase transition. A related approach to understanding empirical hardness rests

1The work described in this paper was concluded in 2005, and would have been published sooner
were it not for internal JACM process delays. Thus, our discussion of related literature concen-
trates on work done to that date, and does not attempt to exhaustively survey all newer work.
Nevertheless, we have attempted to provide pointers to some of the most related recent work.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 3

on the notion of a backbone [Monasson et al. 1998; Achlioptas et al. 2000], which is
the set of solution invariants. Williams et al. [2003] defined the concept of a back-
door of a CSP instance: the set of variables, which, if assigned correctly, lead to a
residual problem that is solvable in polynomial time. They showed that many real
world SAT instances indeed have small backdoors, which may explain the observed
empirical behavior of SAT solvers. A lot of effort has also gone into the study
of search space topologies for stochastic local search algorithms [Hoos and Stützle
1999; 2004]. Finally, some work has been more theoretical in nature. For example,
Kolaitis [2003] defined and studied “islands of tractability” of hard problems.

1.2 Past Work: Empirical Hardness of Optimization Problems

Some researchers have also examined the empirical hardness of optimization prob-
lems, which ask a real-numbered question of the form, “What is the best solution
meeting the given constraints?”. Often, feasibility (the existence of a solution) is
not a major hurdle in optimization problems; in such cases, a phase transition in
solvability clearly cannot exist. One way of finding hardness transitions related
to optimization problems is to transform them into decision problems of the form,
“Does there exist a solution with objective function value ≥ x?” This approach has
yielded promising results, e.g., when applied to MAX-SAT [Zhang 2001]; however,
it is hard to apply when the expected value of the solution depends on input factors
irrelevant to hardness (e.g., in MAX-SAT scaling of the weights has an effect on
the objective function value, but not on the combinatorial structure of the prob-
lem). Other experimentally-oriented work includes the extension of the concept of
backbone to optimization problems [Slaney and Walsh 2001], although it is often
difficult to define for arbitrary problems and can be costly to compute.

A second approach is to attack the problem analytically rather than experimen-
tally. For example, Zhang [1999] performed average-case analysis of particular
classes of search algorithms. Though these results rely on independence assump-
tions about the branching factor and heuristic performance at each node of the
search tree that do not generally hold, the approach made theoretical contributions—
describing a polynomial/exponential-time transition in average-case complexity—
and shed light on real-world problems. Korf and Reid [1998] predicted the average
number of nodes expanded by a simple heuristic search algorithm such as A* on
a particular problem class by making use of the distribution of heuristic values
in the problem space. As above, strong assumptions were required: e.g., that the
branching factor is constant and node-independent, and that edge costs are uniform
throughout the tree.

Both experimental and theoretical approaches have sets of problems to which they
are not well suited. Existing experimental techniques have trouble when problems
have high-dimensional parameter spaces, as it is impractical to manually explore
the space of all relations between parameters in search of a phase transition or some
other predictor of an instance’s hardness. This trouble is compounded when many
different data distributions exist for a problem, each with its own set of parame-
ters. Similarly, theoretical approaches are difficult when the input distribution is
complex or is otherwise hard to characterize. In addition, they tend to become
intractable when applied to complex algorithms, or to problems with variable and
interdependent edge costs and branching factors. Furthermore, they are generally

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · Kevin Leyton-Brown et al.

unsuited to making predictions about the empirical hardness of individual problem
instances, instead concentrating on average (or worst-case) performance on a class
of instances.

1.3 Our Case Study Problem: Combinatorial Auction

Winner Determination

To evaluate our ideas on a real problem, in this paper we describe a case study of the
combinatorial auction winner determination problem. Combinatorial auctions have
received considerable attention from computer science and artificial intelligence
researchers over the past several years because they provide a general framework for
allocation and decision-making problems among self-interested agents. Specifically,
agents may bid for bundles of goods, and are guaranteed that these bundles will be
allocated “all-or-nothing”. (For an introduction to the topic—as well as coverage of
more advanced topics—see Cramton et al. [2006].) These auctions are particularly
useful in cases where agents consider some goods to be complementary, which means
that an agent’s valuation for some bundle exceeds the sum of its valuations for the
separate goods contained in the bundle. They also usually allow agents to specify
that they consider some goods to be substitutable. This case is often addressed by
allowing agents to state XOR constraints between bids, indicating that at most one
of these bids may be satisfied.

The winner determination problem (WDP) is a combinatorial optimization prob-
lem that arises naturally in many combinatorial auctions. The issue is that it is not
straightforward to determine which bids ought to win and which should lose. The
goal of the WDP is to determine the feasible subset of the bids that maximizes the
sum of the bid amounts. Formally, let G = {γ1, γ2, . . . , γm} be a set of goods, and
let B = {b1, . . . , bn} be a set of bids. Bid bi is a pair (p(bi), g(bi)) where p(bi) ∈ R

+

is the price offer of bid bi and g(bi) ⊆ G is the set of goods requested by bi. For
each bid bi define an indicator variable xi that encodes the inclusion or exclusion
of bid bi from the allocation. We can now state the WDP formally.

Definition 1. The Winner Determination Problem (WDP) is:

maximize:
∑

i

xip(bi)

subject to:
∑

i|γ∈g(bi)

xi ≤ 1 ∀γ ∈ G

xi ∈ {0, 1} ∀i.

The WDP is equivalent to the weighted set packing problem, and so is NP-
complete. However, as we will discuss below, it has been observed that the WDP is
often relatively easy to solve. Our goal in this paper’s case study is to investigate
this phenomenon in more detail. The WDP is a good example of a problem that
is ill-suited to study by either existing experimental or theoretical approaches to
understanding empirical hardness. For example, WDP instances can be character-
ized by a large number of apparently relevant features. There exist many, highly
parameterized instance distributions of interest to researchers. There is significant
variation in edge costs throughout the search tree for most algorithms. Thus, if we

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 5

are to study the empirical hardness of the WDP, none of the approaches surveyed
above will suffice.

1.4 Empirical Hardness Models: Overview

Our main idea in this paper is that machine learning techniques can be used to
extract interesting information about an algorithm’s empirical hardness automati-
cally from huge bodies of experimental data. (Our work can be seen as part of a
broader trend that leverages machine learning in more applied areas of computer
science [e.g., Diao et al. 2003; Zheng et al. 2003; Goldszmidt 2007, and especially
Goldsmith et al. 2007]. A particularly related early paper is work by Brewer [1994;
1995] on using statistical models to automatically optimize high-level libraries for
parallel processors; we describe it in detail in Section 6.2.1.1.) Our focus is on
building what we call empirical hardness models—that is, models that can predict
the amount of time a given algorithm will take to solve a given problem instance.
In Section 2 we describe our methodology for constructing these models, and in
Section 3 we apply this methodology to our WDP case study.

Before diving in, it is worthwhile to consider why we would want to be able to
construct such models. First, sometimes it is simply useful to be able to predict how
long an algorithm will take to solve a particular instance. This can allow the user
to decide how to allocate computational resources to other tasks, whether the run
should be aborted, and whether an approximate or incomplete (e.g., local search)
algorithm should be used instead.

Second, it has often been observed that algorithms for NP-complete problems
can vary by many orders of magnitude in their running times on different instances
of the same size—even when these instances are drawn from the same distribution.
(Indeed, we show that the WDP exhibits this sort of runtime variability in Figure 4.)
However, little is known about what causes these instances to vary so substantially
in their empirical hardness. In Section 4 we show how our runtime models can be
analyzed to shed light on the sources of this variability, and in Section 5 we apply
these ideas to our case study. This sort of analysis could lead to changes in problem
formulations to reduce the chance of long solver runtimes. Also, better understand-
ing of high runtime variance could serve as a starting point for improvements in
algorithms that target specific problem domains.

Empirical hardness models also have other applications, which we discuss in Sec-
tion 6. First, we show that accurate runtime models can be used to construct
efficient algorithm portfolios by selecting the best among a set of algorithms based
on the current problem instance. Second, we explain how our models can be applied
to tune input distributions for hardness, thus facilitating the testing and develop-
ment of new algorithms that complement the existing state of the art. Section 7
evaluates these ideas in our WDP case study.

We briefly survey our own previous work on empirical hardness models. We in-
troduced the idea in Leyton-Brown, Nudelman & Shoham [2002] and studied its
application to combinatorial winner determination. Later, we proposed the appli-
cation of empirical hardness models to the construction of algorithm portfolios and
hard instance distributions in a pair of companion papers [Leyton-Brown, Nudel-
man, Andrew, McFadden & Shoham, 2003b; 2003a]. We gave an overview of this
work in a book chapter [Leyton-Brown et al. 2006]. The current paper draws on

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · Kevin Leyton-Brown et al.

and extends all this past work.
More recently, we have continued to study empirical hardness models in the

context of the satisfiability problem. Nudelman, Leyton-Brown, Devkar, Shoham,
and Hoos [2004b] first showed that empirical hardness models can be applied to
SAT, and also proposed a portfolio-based SAT solver. We built such a solver,
called SATzilla, and entered it into the international SAT competition in 2003,
where it placed second in two categories and third in another (out of nine total)
[Nudelman, Leyton-Brown, Devkar, Shoham & Hoos, 2004a]. Xu, Hutter, Hoos &
Leyton-Brown [2007; 2008] subsequently improved SATzilla and entered it into the
2007 SAT competition, where it won in three categories, came second in another,
and came third in still another. This shows (to our knowledge, for the first time)
that algorithm portfolios are not just theoretical curiosities, but instead can achieve
state-of-the-art performance in challenging, practical settings. Also in the context
of SAT, Hutter, Hamadi, Hoos & Leyton-Brown [2006] investigated the extension
of empirical hardness models to randomized and incomplete algorithms and their
application to automatic parameter tuning. Finally, Xu, Hoos & Leyton-Brown
[2007] showed that machine learning can be used to accurately predict instances’
satisfiability status and that these predictions in turn can be used in a mixture-of-
experts framework to yield more accurate empirical hardness models. There are
various other ways in which these more recent papers relate to the topics discussed
in this paper; we offer more details as we go along.

We have written software in Matlab for constructing empirical hardness models
using the techniques we describe in this paper, and for analyzing them and using
them to build algorithm portfolios. The code and well as the data that we collected
in our case study are available at http://cs.ubc.ca/~kevinlb/downloads.html.

2. BUILDING EMPIRICAL HARDNESS MODELS

We propose the following methodology for predicting the running time of a given
algorithm on individual instances of a problem such as WDP, where instances are
drawn from some arbitrary distribution. As just mentioned this methodology was
first introduced in earlier work [Leyton-Brown et al. 2002], though we present it
somewhat differently here. We also note that it is related to approaches for sta-
tistical experiment design [see, e.g., Mason et al. 2003; Chaloner and Verdinelli
1995].

(1) Select an algorithm of interest. A black-box implementation is enough; no
knowledge of the algorithm’s internal workings is needed.

(2) Select an instance distribution. In practice, this may be achieved as a
distribution over different instance generators, along with a distribution over
each generator’s parameters, including parameters that control problem size.

(3) Identify a set of features. These features, used to characterize problem
instances, must be quickly computable and distribution independent. Eliminate
redundant or uninformative features.

(4) Collect data. Generate a desired number of instances by sampling from the
distribution chosen in Step 2. For each problem instance, determine the running
time of the algorithm selected in Step 1, and compute all the features selected

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 7

in Step 3. Split this data into a training set, a test set, and, if sufficient data
is available, a validation set.

(5) Learn a model. Based on the training set constructed in Step 4, use a machine
learning algorithm to learn a function mapping from the features to a prediction
of the algorithm’s running time. Evaluate the quality of this function on the
test set.

In the rest of this section, we describe each of these points in detail.

2.1 Step 1: Selecting an Algorithm

This step is simple: any algorithm can be chosen. Indeed, one advantage of our
methodology is that it treats the algorithm as a black box, meaning that it is
not necessary to have access to an algorithm’s source code, etc. Note, however,
that the empirical hardness model that is produced through the application of this
methodology will be algorithm-specific, and thus can not reliably provide informa-
tion about a problem domain transcending the particular algorithm or algorithms
under study. (Sometimes, however, empirical hardness models may provide such
information indirectly, when the observation that certain features are sufficient to
explain hardness can serve as the starting point for theoretical work. Techniques
for using our models to initiate such a process are discussed in Section 4. It is also
possible that an empirical hardness model would transcend a particular algorithm
if several algorithms give rise to similar hardness models: this would mean that
the algorithms all have much in common, that the model is algorithm-agnostic, or
a combination of both.) We do not consider the algorithm-specificity of our tech-
niques to be a drawback—it is not clear whether algorithm-independent empirical
hardness is even well-defined—but the point nevertheless deserves emphasis.

Although this paper discusses only deterministic algorithms, more recent work
has also demonstrated that our methodology may be used to build empirical hard-
ness models for both randomized tree search algorithms and stochastic local search
algorithms [Nudelman et al. 2004b; Hutter et al. 2006; Xu et al. 2007; Xu et al.
2008]. Based on the findings in that work, we observe that our techniques extend
directly to cases where the algorithm’s running time varies from one invocation to
another. Indeed, even when we do restrict ourselves to deterministic algorithms,
multiple instances (corresponding to different runtimes) will map to the same point
in feature space. Incomplete algorithms are trickier, because the notion of running
time is not always well defined when the algorithm can lack a termination condition.
For example, on an optimization problem such as WDP an incomplete algorithm
may never prove that it has found the optimal allocation. The situation is more
straightforward when working with decision problems (e.g., SAT). In such domains
incomplete algorithms will terminate when they find a solution. It is true that a
local search algorithm will never terminate when given an unsatisfiable instance.
However, in practice it is not uncommon for even deterministic algorithms to fail
to solve a substantial fraction of the instances within the available time; we can
handle the case of a local search algorithm that does not terminate using the same
techniques. As discussed in the introduction, optimization problems can be con-
verted to decision problems by asking whether a solution exists with an objective
function value of at least some amount k. Leveraging this idea, models for incom-

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · Kevin Leyton-Brown et al.

plete optimization algorithms can predict the amount of time the algorithm will
take to exceed an objective function value of k.

Another way of working with incomplete algorithms is to predict solution quality
directly rather than predicting the amount of time the algorithm will run. While
we have also had some (as yet unpublished) success with the latter in the Traveling
Salesman Problem domain, in this paper we focus exclusively on running time as
it is the most natural and universal measure.

2.2 Step 2: Selecting an Instance Distribution

Any instance distribution can be used to build an empirical hardness model. In the
experimental results presented in this paper we consider instances that were created
by artificial instance generators; however, real-world instances may also be used
[see, e.g., Nudelman et al. 2004a; Xu et al. 2008]. The key point that we emphasize
in this step is that instances should always be understood as coming from some
distribution or as being generated from some underlying real-world problem. The
learned empirical hardness model will only describe the algorithm’s performance
on this distribution of instances—while a model may happen to generalize to other
problem distributions, there is no guarantee that it will do so. Thus, the choice
of instance distribution is critical. Of course, this is the same issue that arises in
any empirical work: whenever an algorithm’s performance is reported on some data
distribution, the result is only interesting insofar as the distribution is important
or realistic, and cannot be relied upon to generalize.

It is often the case that in the literature on a particular computational problem,
a wide variety of qualitatively different instance distributions have been proposed.
Sometimes one’s motivation for deciding to build empirical hardness models will
be tied to a very particular domain, and the choice of instance distribution will
be clear. In the absence of a reason to prefer one distribution over another, we
favor an approach in which a new, hybrid distribution is constructed, in which one
of the original distributions is chosen at random and then an instance is drawn
from the chosen distribution. In a similar way, individual instance generators often
have many parameters; rather than fixing parameter values, we prefer to establish
a range of reasonable values for each parameter and then to generate each new
instance based on parameters drawn at random from these ranges.

One class of distribution parameters deserves special mention: parameters that
control problem size. These are special because they describe a source of empir-
ical hardness in NP-complete problem instances that is already at least partially
understood. In particular, as problems get larger they usually also get harder to
solve. However, as we illustrate in our case study (Section 3.2.3), there can be
multiple ways of defining problem size for a given problem. One situation in which
defining problem size is important is when the reason for building an empirical
hardness model is understanding what other features of instances are predictive
of hardness. In this case we define a distribution in which problem size is held
constant, allowing our models to use other features to explain remaining variation
in runtime. In other cases, we may want to study a distribution in which problem
size varies; even so, it is important to ensure that problem size is clearly defined
so that this variation may be understood correctly. Another advantage of having
problem size defined explicitly is that its relationship to hardness may be known, at

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 9

least approximately. Thus, it might be possible to tailor the hypothesis space used
by the machine learning algorithm (Step 5) to make direct use of this information.

2.3 Step 3: Selecting Features

An empirical hardness model is a mapping from a set of features that describe a
problem instance to a real value representing the modeled algorithm’s predicted
runtime. Clearly, choosing good features is crucial to the construction of good
models. Unfortunately there is no known, automatic way of constructing good
feature sets. Instead, researchers must use domain knowledge to identify properties
of the instance that appear likely to provide useful information. However, we did
discover that many intuitions can be generalized. For example, features that proved
useful for one constraint satisfaction or optimization problem can be useful to other
problems as well. Also, constraint relaxations or simplified algorithms can often give
rise to good features.

The good news is that techniques do exist for building good models even if the set
of features provided includes many redundant or useless features. These techniques
are of two kinds: one approach throws away useless or harmful features, while the
second keeps all of the features but builds models in a way that uses features only
to the extent that they are helpful. Because of the availability of these techniques,
we recommend that researchers brainstorm a large list of features that have the
possibility to prove useful and then allow models to select among them.

After a set of features has been identified, features that are extremely highly
correlated with other features or are extremely uninformative (e.g., always take the
same value) should be eliminated immediately, on the basis of some small initial
experiments. Features that are not (almost) perfectly correlated with other features
should be preserved at this stage, but should be re-examined if problems occur in
Step 5 (e.g., numerical problems arise in the training of models; models do not
generalize well).

We restrict the sorts of features available to empirical hardness models in two
ways. First, we only consider features that can be generated from any problem
instance, without knowledge of how that instance was constructed. For example,
we consider it appropriate to use graph-theoretic properties of the constraint graph
(e.g., node degree statistics) but not parameters of a specific distribution used to
generate an instance. Second, we restrict ourselves to those features that are com-
putable in low-order polynomial time, since the computation of the features should
scale well as compared to solving the optimization problem.

2.4 Step 4: Collecting Data

This step is simple to explain, but nontrivial to actually perform. In the case
studies that we have performed, we have found the collection of data to be very
time-consuming both for our computer cluster and for ourselves.

First, we caution that it is important not to attempt to build empirical hardness
models with an insufficient body of data. Since each feature that is introduced in
Step 3 increases the dimensionality of the learning problem, a very large amount of
data may be required for the construction of good models.2 Fortunately, problem

2In fact, the effective dimensionality of the learning problem depends on the degree of correlation

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · Kevin Leyton-Brown et al.

instances are often available in large quantities, and so the size of a data set is
often limited only by the amount of time for which one is willing to wait. This
tends to encourage the use of large parallel computer clusters, which—luckily—
are increasingly available. In this case, it is essential to ensure that hardware is
identical throughout the cluster, that job migration is disallowed, and that no node
runs more jobs than it has processors, in order to ensure that time measurements
are reliable and comparable.

Second, when one’s research goal is to characterize an algorithm’s empirical per-
formance on hard problems, it is important to run problems at a size for which
preprocessors do not have an overwhelming effect, and at which the runtime varia-
tion between hard and easy instances is substantial. Thus, while easy instances may
take a small fraction of a second to solve, hard instances should take many hours.
(We see this sort of behavior in our WDP case study, for example in Section 3.4.)
Since the runtime distribution may be heavy tailed, it can be infeasible to wait for
every run to complete. In this case, it is necessary to cap runs at some maximum
amount of time.3 In our experience such capping is reasonably safe as long as the
captime is chosen in a way that ensures that only a small fraction of the instances
will be capped. All the same, capping should always be performed cautiously.

Finally, we have found data collection to be logistically challenging. When exper-
iments involve tens or hundreds of processors and many CPU-years of computation,
jobs will crash, data will get lost, research assistants will graduate, and bugs will be
discovered in feature-computation code. In the work that led to this paper, we have
learned a few general lessons. (None of these observations is especially surprising—
in essence, they all boil down to a recommendation to invest time in setting up
clean data collection methods rather than adopting quick and dirty approaches.)
First, enterprise-strength queuing software should be used rather than attempting
to dispatch jobs using homemade scripts. Second, data should not be aggregated
by hand, as portions of experiments will sometimes need to be rerun and such ap-
proaches easily become unwieldy. Third, for the same reason the instances used
to generate data should always be kept. When instances are prohibitively large, it
can sometimes suffice to store generator parameters along with the random seed
used to generate the instance. In the same vein, it pays to use some source control
system to keep track of all scripts and programs used to generate data. Finally,
it is worth the extra effort to store experimental results in a database rather than
writing output to files—this reduces headaches arising from concurrency, and also
makes queries much easier.

between the features. Since in practice features tend to be very highly correlated, substantially
less data may be required than would be needed if features were entirely uncorrelated. Indeed,
in unpublished experiments we found that results qualitatively similar to those we report in this
paper can be obtained with dramatically smaller data sets.
3In the first data sets of our WDP case study we capped runs at a maximum number of nodes;
however, we now believe that it is better to cap runs at a maximum running time, which we did
in our most recent WDP data set. The reason that we prefer time-based capping is that per-node
computation can vary substantially within and across instances. We revisit the issue of capping
runtimes in Section 6.2.2, and discuss some more recent ideas on the subject in Footnote 21.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 11

2.5 Step 5: Building Models

Our methodology is agnostic about what particular machine learning algorithm
should be used to construct empirical hardness models. Since the goal is to predict
runtime, which is a real-valued variable, we have come to favor the use of statistical
regression techniques as our machine learning tool. In our initial (unpublished)
work we considered the use of classification approaches such as decision trees, but
ultimately we became convinced that these approaches were less appropriate. (For
a discussion of some of the reasons that we drew this conclusion, see Section 6.2.1.3.)
Hutter et al. [2006] investigated nonparametric methods such as Gaussian processes;
they yield better models in some cases and have the advantage of offering uncer-
tainty estimates. In the end we have tended away from these techniques because
the gains in predictive accuracy that they offer tend to be small, because of their
computational complexity, and because they tend to produce models whose size
grows with the amount of data used in training.4 Relatedly, although we focus on
frequentist regression techniques here, there are cases where it is appropriate to con-
sider the use of Bayesian alternatives. Hutter et al. [2006] made use of sequential
Bayesian linear regression; this yields the same runtime predictions as (frequen-
tist) linear regression, but offers the advantage of uncertainty estimates within a
parametric framework. Finally, it is possible to make use of mixtures-of-experts
approaches, selecting the experts based on a prediction of the objective function
value [Xu et al. 2007] and/or based on a prediction of the underlying distribution
that generated the instance [Xu et al. 2008].

There are a wide variety of different parametric, frequentist regression techniques.
The most appropriate for our purposes perform supervised learning. A large litera-
ture addresses these statistical techniques; for an introduction see, e.g., Hastie et al.
[2001]. Such techniques choose a function from a given hypothesis space (i.e., a
set of candidate mappings from the features to the running time) in order to min-
imize a given error metric (a function that scores the quality of a given mapping,
based on the difference between predicted and actual running times on training
data, and possibly also based on other properties of the mapping). Our task in
applying regression to the construction of hardness models thus reduces to choos-
ing a hypothesis space that is able to express the relationship between our features
and our response variable (running time), and choosing an error metric that both
leads us to select good mappings from this hypothesis space and can be tractably
minimized.

The simplest supervised regression technique is linear regression, which learns
functions of the form

∑

i wifi, where fi is the ith feature and the w’s are free
variables, and which has as its error metric root mean squared error (RMSE).
Linear regression is a computationally appealing procedure because it reduces
to the (roughly) cubic-time problem of matrix inversion.5 In comparison, most
other regression techniques depend on more complex optimization problems such
as quadratic programming. Besides being relatively tractable and well understood,

4For this last reason we do not discuss other nonparametric methods such as nearest neighbor or
random forests of regression trees in this paper, though in some recent unpublished work we have
had some success with the latter method.
5In fact, the worst-case complexity of matrix inversion is O(N log27) = O(N2.808).

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · Kevin Leyton-Brown et al.

linear regression has another advantage that is very important for this work: it
produces models that can be analyzed and interpreted in a relatively intuitive way,
as we show in Section 4. While we discuss other regression techniques later in
the paper (e.g., support vector machine regression, ridge regression, lasso regres-
sion, multivariate adaptive regression splines), we present linear regression as our
baseline machine learning technique.

Linear regression is implemented as follows. Let D be a matrix where each row
corresponds to an individual runs of the algorithm on a different problem instance
and each column corresponds to a different feature. Thus, cells in the matrix
denote the value of a given feature on a given instance. Furthermore let the matrix
contain one final feature that is always one; this permits the model to have a non-
zero intercept (i.e., to predict a non-zero runtime even when all feature values are
zero). Let r denote a column vector whose elements denote the algorithm’s observed
runtime on each problem instance. We can then train a linear model w that maps
from observed feature values to a predicted runtime as

w =
(

DT D
)−1

DT r.

Observe that w is the vector of weights described above, plus the weight for the
constant feature. Note that the expression above requires that the matrix DT D be
nonsingular.

2.5.1 Choosing an Error Metric. Linear regression uses a squared-error metric,
which corresponds to the ℓ2 distance between a point and the learned hyperplane.
This is the right error metric to use when data labels (runtimes) are generated by
a linear function and then subjected to Gaussian noise having unvarying standard
deviation. Because this measure penalizes outlying points superlinearly, it can be
inappropriate in cases where the data contains many outliers. Some regression
techniques use ℓ1 error, which penalizes outliers linearly; however, optimizing these
error metrics often relies on quadratic programming.

Some error metrics express an additional preference for models with small (or
even zero) coefficients to models with large coefficients. This can lead to more reli-
able models on test data, particularly when features are correlated. Some examples
of such “shrinkage” techniques are ridge, lasso and stepwise regression. Shrinkage
techniques generally have a parameter that expresses the desired tradeoff between
training error and shrinkage, which is tuned using either cross-validation or a vali-
dation set.

In our own work we have tended to use ridge regression, in part because it can
provide increased numerical stability for the matrix inversion. Ridge regression can
be implemented as a simple extension of linear regression,

w =
(

DT D + δI
)−1

DT r.

I denotes an identity matrix with number of rows and columns equal to the number
of features plus one, and δ is the shrinkage parameter. Observe that with δ = 0
we recover linear regression. In practice we used very small values of δ simply to
provide numerical stability. Experiments using the validation set or cross-validation
with the training set can be used to determine whether larger values of δ also lead
to improved prediction accuracy.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 13

2.5.2 Choosing a Hypothesis Space. Although linear regression may seem quite
limited, it can be extended to a wide range of nonlinear hypothesis spaces. There
are two key tricks, both of which are quite standard in the machine learning lit-
erature. The first is to introduce new features that are functions (so-called “basis
function expansions”) of the original features. For example, in order to learn a
model that is a second-order function of the features, the feature set can be aug-
mented to include all pairwise products of features. A hyperplane in the resulting
much-higher-dimensional space corresponds to a quadratic manifold in the original
feature space. Of course, we can use the same idea to reduce many other nonlinear
hypothesis spaces to linear regression: all hypothesis spaces that can be expressed
by

∑

i wigi(f), where the gi’s are arbitrary basis functions and f = {fi}. The key
problem with such an approach is that the size of the new set of features is poten-
tially much larger than the size of the original feature set, which may cause the
regression problem to become intractable (e.g., preventing the feature matrix from
fitting into memory). This problem can be mitigated through the use of kernel func-
tions; however, that can make it difficult to use the subset selection approaches we
discuss in Section 4. There is also a more general problem: using a more expressive
hypothesis space can lead to overfitting, because the model can become expressive
enough to fit noise in the training data. One way of dealing with this problem is to
employ one of the shrinkage techniques discussed in Section 2.5.1. Alternately, it
can make sense to add only a subset of the pairwise products of features; e.g., only
pairwise products of the k most important features in the linear regression model.
Finally, a last problem is that if many of the new features are highly correlated
with each other, numerical stability can be undermined.

In practice we have found the problem of numerical instability to be significant
when performing a basis function expansion, especially when the original features
already exhibit strong correlation. In order to improve numerical stability and
hence model accuracy, the following preprocessing technique may be used to weed
out useless features:

(1) For each feature construct a regression model where that feature is used as the
response variable, and all other features are used to predict it.

(2) Measure the adjusted R2 of each such model to assess its prediction quality.6

(3) Identify the set of features whose models have adjusted R2 above some threshold
τ . (Observe that the closer any model’s adjusted R2 value gets to 1, the more
redundant is the feature being predicted by that model.)

(4) If the set identified in Step 3 is nonempty, drop the feature whose model had
the highest adjusted R2, then repeat Steps 1–3. Otherwise, stop.

Sometimes we may want to consider hypothesis spaces of the form h (
∑

i wigi(f)).
For example, we may want to fit a sigmoid or an exponential curve. When h is a
one-to-one function, we can transform this problem to a linear regression problem
by replacing our response variable y in our training data by h−1(y), where h−1 is
the inverse of h, and then training a model of the form

∑

i wigi(f). On test data,

6Adjusted R2 measures the percentage of variation in the response variable that can be explained
using a linear combination of the features; we discuss it in Section 3.5.1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · Kevin Leyton-Brown et al.

we must evaluate the model h (
∑

i wigi(f)). One caveat about this trick is that it
distorts the error metric: the error-minimizing model in the transformed space will
not generally be the error-minimizing model in the true space. In many cases this
distortion is acceptable, however, making this trick a tractable way of performing
many different varieties of nonlinear regression.

In this paper, unless otherwise noted, we use exponential models (h(y) = 10y;
h−1(y) = log10(y)). In our experiments we have generally found exponential models
to be more suitable than linear models. This suggests that the runtime distributions
that we are attempting to estimate are exponential, or at least are better modeled
as exponential than as linear.

3. BUILDING EMPIRICAL HARDNESS MODELS: WDP CASE STUDY

In this section we consider again the steps of the methodology described in Section
2, and explain how we performed each step in our case study of the WDP.

3.1 Step 1: Selecting an Algorithm

There are many WDP algorithms from which to choose, as much recent work has ad-
dressed the design of such algorithms. A very influential early paper was Rothkopf
et al. [1998], but it focused on tractable subcases of the problem and addressed
computational approaches to the general WDP only briefly. The first algorithms
designed specifically for the general WDP were proposed by Sandholm [1999] and
Fujishima et al. [1999]; these algorithms were subsequently improved and extended
upon in Sandholm et al. [2001] and Leyton-Brown et al. [2000]. BoB [Sandholm
1999] and CASS [Fujishima et al. 1999] made use of classical AI heuristic search
techniques, structuring their search by branching on bids and goods respectively.

More recently, there has been an increasing interest in solving the WDP with
branch-and-bound search algorithms, using a linear-programming (LP) relaxation
of the problem as a heuristic. ILOG’s CPLEX software has come into wide use, par-
ticularly after influential arguments by Nisan [2000] and Anderson et al. [2000] and
since the mixed integer programming module in that package improved substan-
tially in version 6 (released 2000), and again in version 7 (released 2001). Starting
with version 7.1, this off-the-shelf software reached the point where it was compet-
itive with the best special purpose software, Sandholm et al.’s CABOB [Sandholm
et al. 2001; 2005]. (In fact, CABOB makes use of CPLEX’s linear programming
package as a subroutine and also uses branch-and-bound search.) Likewise, GL
[Gonen and Lehmann 2001] is a branch-and-bound algorithm that uses CPLEX’s
LP solver as its heuristic. Thus, the combinatorial auctions research community
has seen convergence towards branch-and-bound search with an LP heuristic as
a preferred approach for optimally solving the WDP. We chose to select CPLEX
as our algorithm for this part of the case study, since it is at least comparable in
performance to CABOB.7

7We should mention that the CABOB algorithm continues to be developed commercially through
CombineNet, Inc. (http://www.combinenet.com). Our discussion of CABOB is based on
publicly released information about the algorithm [Sandholm et al. 2001; 2005] and may not
apply to more recent versions. We wanted to include CABOB in our tests, but were not able to
acquire a copy.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 15

3.2 Step 2: Selecting an Instance Distribution

The wealth of research into algorithms for solving the WDP created a need for
instances on which to test these algorithms. To date relatively few unrestricted
combinatorial auctions have been held, or at least little data has been publicly
released from whatever auctions have been held. Thus, researchers have tended to
evaluate their WDP algorithms using artificial distributions.

3.2.1 Legacy Data Distributions. Along with the first wave of algorithms for the
WDP, seven distributions were proposed [Sandholm 1999; Fujishima et al. 1999;
Hoos and Boutilier 2000]. These distributions have been widely used by other
researchers including many of those cited above. Each of these distributions may
be seen as an answer to two questions: what number of goods to request in a
bundle, and what price to offer for a bundle. Given a required number of goods, all
distributions select which goods to include in a bid uniformly at random without
replacement. We give here the names that we used to identify them as “legacy”
distributions in Leyton-Brown et al. [2000].

—L1, the Random distribution from Sandholm [1999], chooses a number of goods
uniformly at random from [1, m], and assigns the bid a price drawn uniformly
from [0, 1].

—L2, the Weighted Random distribution from Sandholm [1999], chooses a number
of goods g uniformly at random from [1, m] and assigns a price drawn uniformly
from [0, g].

—L3, the Uniform distribution from Sandholm [1999], sets the number of goods
to some constant c and draws the price offer from [0, 1].

—L4, the Decay distribution from Sandholm [1999] starts with a bundle size of 1,
and increments the bundle size until a uniform random draw from [0, 1] exceeds
a parameter α.

—L5, the Normal distribution from Hoos and Boutilier [2000], draws both the
number of goods and the price offer from normal distributions.

—L6, the Exponential distribution from Fujishima et al. [1999], requests g goods
with probability Ce−g/q, and assigns a price offer drawn uniformly at random
from [0.5g, 1.5g].

—L7, the Binomial distribution from Fujishima et al. [1999], gives each good an
independent probability of p of being included in a bundle, and assigns a price
offer drawn uniformly at random from [0.5g, 1.5g] where g was the number of
goods selected.

3.2.2 CATS Distributions. The above distributions have been criticized in sev-
eral ways, perhaps most significantly for lacking economic justification [see, e.g., An-
derson et al. 2000; Leyton-Brown et al. 2000; de Vries and Vohra 2003]. This
criticism was significant because the WDP is ultimately a weighted set packing
problem; if the data on which algorithms are evaluated lacks any connection to
the combinatorial auction domain, it is reasonable to ask what connection the al-
gorithms have to the WDP in particular. To focus algorithm development more
concretely on combinatorial auctions, in our past work [Leyton-Brown et al. 2000]
we introduced a set of benchmark distributions called the Combinatorial Auction

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · Kevin Leyton-Brown et al.

Test Suite (CATS). By modeling bidders explicitly and determining bid amounts,
sets of goods and sets of substitutable bids based on models of bidder valuations
and models of problem domains, the CATS distributions aimed to serve as a step
towards a realistic set of test distributions. For example, as mentioned earlier, none
of the “legacy” distributions introduce any structure in the choice of which goods
are included in a bundle. All of the CATS distributions do exhibit such structure.

The Combinatorial Auction Test Suite consists of five distributions: paths, re-

gions, arbitrary, matching, and scheduling. We provide a high-level description of
each distribution below. A detailed description of each distribution is given in
Leyton-Brown et al. [2000].

—Paths models an auction of transportation links between cities, or more generally
of edges in a nearly-planar graph. Bids request sets of goods that correspond to
paths between randomly selected pairs of nodes; substitutable bids are those that
connect the same pairs of nodes; prices depend on path length.

—Regions models an auction of real estate, or more generally of any goods over
which two-dimensional adjacency is the basis of complementarity; bids request
goods that are adjacent in a planar graph.

—Arbitrary is similar to regions, but relaxes the planarity assumption and models
arbitrary complementarities between discrete goods such as electronics parts or
collectibles.

—Matching models airline take-off and landing rights auctions such as those that
have been discussed by the FAA; each bid requests one take-off and landing slot
bundle, and each bidder submits an XOR’ed set of bids for acceptable bundles.

—Scheduling models a distributed job-shop scheduling domain, with bidders re-
questing an XOR’ed set of resource time-slots that will satisfy their specific dead-
lines.

In Leyton-Brown et al. [2000] we did not tune these distributions towards gen-
erating hard instances. Based on experimental evidence, some researchers have re-
marked that some CATS problems are comparatively easy in practice [see, e.g., Go-
nen and Lehmann 2000; Sandholm et al. 2001]. In Section 3.4 we show experimen-
tally that some CATS distributions are always very easy for CPLEX, while others
can be extremely hard. We propose techniques for making these distributions com-
putationally harder in Section 7.2.

3.2.3 Defining Problem Size. For the WDP, it is well known that problems be-
come harder as the number of goods and bids increases.8 For this reason, researchers
have traditionally reported the performance of their WDP algorithms in terms of
the number of bids and goods of the input instances. While it is easy to fix the
number of goods, holding the number of bids constant is not as straightforward as
it might appear.

8An exception is that problems generally become easier when the number of bids grows very large
in distributions favoring small bundles, because each small bundle is sampled much more often
than each large bundle, giving rise to a new distribution for which the optimal allocation tends
to involve only small bundles. To our knowledge, this was first pointed out by Anderson et al.
[2000].

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 17

Most special-purpose algorithms make use of a polynomial-time preprocessing
step that removes bids that are dominated by one other bid.

Definition 2. Bid bi is weakly dominated by bid bj if g(bj) ⊆ g(bi) and p(bi) ≤
p(bj).

If a distribution gives rise to a large number of dominated bids, it is possible
that the apparent size of the problems given as input to WDP algorithms could be
much greater than the size of the problem that leaves the preprocessor. This means
that we might be somewhat misled about the core algorithms’ scaling behaviors—
whatever we observe will reflect on the preprocessors’ scaling behavior as well.9

Of course, it is not clear how much stock we should place in abstract arguments
like those above—it is not clear whether the removal of dominated bids should
be expected to have a substantial impact on algorithm behavior, or whether the
relationship between the average number of non-dominated bids and total bids
should be expected to vary substantially from one distribution to another. To gain
a better understanding, we set out to measure the relationship between numbers of
dominated and undominated bids generated for all of our distributions.

Overall, we found that the CATS distributions generated virtually no dominated
bids.10 On the other hand, the legacy distributions were much more variable. Fig-
ure 1 shows the number of non-dominated bids generated as a function of the
total number of bids generated for each of the seven legacy distributions. In these
experiments each data series represents an average over 20 runs. Bids were gener-
ated for an auction having 64 goods, and we terminated bid generation once 2000
non-dominated bids had been created.

3.2.4 Distributions used in our Case Study. Based on these results, we elected
not to follow the traditional practice of defining problem size as the pair (number

of goods, number of bids), and defined it instead as (number of goods, number of

non-dominated bids). We used all of the generators that were able to generate
problems of any requested size. This led us to rule out the distributions L1 and
L5: they often failed to generate a target number of non-dominated bids even after
millions of bids had been created.11 We therefore elected to randomize uniformly
over the 10 generators L2, L3, L4, L6, L7, paths, regions, arbitrary, matching and
scheduling.

Since the purpose of our case study was both to demonstrate that it is possible to
construct accurate and useful runtime models and to home in on unknown sources of

9Of course, many other polynomial-time preprocessing steps are possible, e.g., a check for bids
that are dominated by a pair of other bids. Indeed, CPLEX employs many, much more complex
preprocessing steps before initiating its own branch-and-bound search. Our own experience with
algorithms for the WDP has suggested that as compared to the removal of dominated bids, other
polynomial-time preprocessing steps offer much poorer performance in terms of the number of
bids discarded in a given amount of time. In any case, the results we give in this section suggest
that domination checking should not be disregarded, since distributions differ substantially in the
ratio between the number of non-dominated bids and the raw number of bids.
10This occurred largely because most bids generated included a bidder-specific “dummy good,”
preventing them from being dominated by bids from other bidders.
11This helps to explain why researchers have found that their algorithms perform well on L1 [see,
e.g., Sandholm 1999; Fujishima et al. 1999] and L5 [see, e.g., Hoos and Boutilier 2000].

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · Kevin Leyton-Brown et al.

120016002000
n �D omi nat ed Bi
d s

over20 runs)
L7: BinomialL3: Uniform L6: ExponentialL2: Weighted RandomL4: Decay L5: Normal

0400800
0 2000 4000 6000 8000N umb erof N o (medi an Raw Number of BidsL1: Uniform Random

Fig. 1. Non-Dominated Bids vs. Raw Bids

hardness, we ran experiments on both fixed and variable-sized data. Specifically, we
constructed three fixed-size distributions, in which we set the problem size to (256
goods, 1000 non-dominated bids), (144 goods, 1000 non-dominated bids), and (64
goods, 2000 non-dominated bids). Our variable-sized distribution drew the number
of goods uniformly from [40, 400] and the number of non-dominated bids uniformly
from [50, 2000]. The collection of data from these distributions is discussed in more
detail in Section 3.4.

3.3 Step 3: Selecting Features

We determined 37 features that we thought could be relevant to the empirical
hardness of WDP, ranging in their computational complexity from linear to cubic
time. We generated these feature values for all our problem instances, and then
examined our data to identify and eliminate features that were always redundant.
We were left with 30 features, which are summarized in Figure 2. We describe our
features in more detail below, and also mention some of the redundant features that
we eliminated.

There are two natural graphs associated with each instance; schematic examples
of these graphs appear in Figure 3. First is the bid-good graph (BGG): a bipartite
graph having a node for each bid, a node for each good and an edge between a bid
and a good node for each good in the given bid. We measure a variety of BGG’s
properties: average, maximum, minimum, and standard deviation of the degrees of
each node type.

The bid graph (BG) has an edge between each pair of bids that cannot appear
together in the same allocation. This graph can be thought of as a constraint graph
for the associated constraint satisfaction problem (CSP). As is often the case with
the constraint graphs of CSPs, the BG captures a lot of useful information about
the problem instance. Our second group of features are concerned with structural
properties of the BG. We considered using the number of connected components of

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 19

Bid-Good Graph Features:

1–4. Bid node degree statistics: average, maxi-
mum, minimum and standard deviation of the bid
nodes’ degrees.

5–8. Good nodes degree statistics: average,
maximum, minimum and standard deviation of the
good nodes’ degrees.

Bid Graph Features:

(9) Edge Density: number of edges in the BG di-
vided by the number of edges in a complete graph
having the same number of nodes.

10–15. Node degree statistics: the max and min,
standard deviation, first and third quartiles, and me-
dian of nodes’ degrees in the BG.

16–17. Clustering Coefficient and Deviation.
A measure of “local cliquiness.” For each node cal-
culate the number of edges among its neighbors
divided by k(k − 1)/2, where k is the number of
neighbors. We record average (the clustering coef-
ficient) and standard deviation.

(18) Average minimum path length: the aver-
age minimum path length, over all pairs of bids.

(19) Ratio of the clustering coefficient to the

average minimum path length: a measure
of the smallness of the BG.

20–22. Node eccentricity statistics: The eccen-
tricity of a node is the length of a shortest path
to a node furthest from it. We calculate the min-
imum eccentricity of BG (graph radius), average
eccentricity, and standard deviation of eccentricity.

LP-Based Features:

23–25. ℓ1, ℓ2, ℓ∞ norms of the integer slack vector.

Price-Based Features:

(26) Standard deviation of prices among all

bids: stdev(p(bi)).

(27) Deviation of price per number of goods:
stdev(p(bi)/|g(bi)|).

(28) Deviation of price per square root of the

number of goods: stdev(p(bi)/
√

|g(bi)|).

Problem Size Features:

(29) Number of goods.

(30) Number of non-dominated bids.

Fig. 2. Five Groups of Features. Only the first four were used in our fixed-size data sets.

Bid

Bid

Bid

Bid

Good

Good

Good

Bid

Bid

Bid

Bid

Good

Good

Good

Bid

Bid Bid

BidBid

Bid

Bid Bid

BidBid

Fig. 3. Examples of the Graphs Used in Calculating Features 1–22: Bid-Good Graph (left); Bid
Graph (right)

the BG to measure whether the problem was decomposable into simpler instances,
but found that virtually every instance consisted of a single component.12

The third group of features is calculated from the solution vector of the linear
programming (LP) relaxation of the WDP. Recall that WDP can be formulated as
an integer program (Definition 1). To obtain the LP relaxation, we simply drop

12It would also have been desirable to include some measure of the size of the (unpruned) search
space. For some problems branching factor and search depth are used; for WDP neither is easily
estimated. A related measure is the number of maximal independent sets of BG, which corresponds
to the number of feasible solutions. However, this counting problem is hard, and to our knowledge
does not have a polynomial-time approximation. Monte Carlo sampling approaches may be useful
here.

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · Kevin Leyton-Brown et al.

the integrality constraints. We calculate the integer slack vector by replacing each
component xi with |0.5−xi|, measuring each component’s distance from integrality.
We converted these vectors into scalar features by taking ℓ1, ℓ2 or ℓ∞ norms. These
features appeared promising both because the slack gives insight into the quality
of CPLEX’s initial solution and because CPLEX uses LP as its search heuristic.
Originally we also included median integer slack, but excluded the feature when we
found that it was always zero on our data.

Our fourth group of features is the only one that explicitly considers the prices
associated with bids. Observe that the scale of the prices has no effect on hardness;
however, the spread is crucial, since it impacts pruning. We note that feature
28 was shown to be an optimal bid-ordering heuristic for certain greedy WDP
approximation schemes by Gonen and Lehmann [2000].

Finally, we have the two features that define an instance’s problem size. It is
unremarkable that we included these features for our variable-size data set. More
surprisingly, we also kept these features for our fixed-size data. The reason is that
due to the way the CATS generators work, the actual number of goods and bids can
sometimes be slightly different from the number requested. Thus, we did observe
some variation in the numbers of goods and bids even in the fixed-size case. (In
contrast, the legacy generators always produce the requested numbers of bids and
goods.)

3.4 Step 4: Collecting Data

As discussed in Section 3.2.4, our case study examined three fixed-size distributions
and one variable-size distribution. The former were studied in our previously pub-
lished conference papers on empirical hardness models [Leyton-Brown et al. 2002;
Leyton-Brown et al. 2003b; 2003a]. These data sets were collected using CPLEX
7.1. Our variable-size data set is new, and represents roughly three times as much
computer time. Because a new version of CPLEX became available before we began
to construct the variable-size data set, we upgraded our CPLEX software at this
point and collected the variable-sized data set using CPLEX 8.0. We now describe
these data sets in more detail.

For our fixed-size experiments we generated three separate data sets at different
problem sizes, to ensure that our results were not artifacts of one particular choice
of problem size. In our first data set we ran CPLEX on WDP instances from
each of our 10 distributions at a problem size of 1000 non-dominated bids and 256
goods each. We collected a total of 4987 instances, or roughly 500 instances per
distribution. The second data set was at a problem size of 1000 non-dominated bids
and 144 goods with a total of 4257 instances; the third data set was at a problem
size of 2000 bids and 64 goods, and we ran CPLEX on 4428 instances.13 Where
we present results for only one fixed-size data set, the first (1000/256) data set is
always used. All of our fixed-size data was collected by running CPLEX version

13We experienced some initial problems with the CATS Paths distribution (now fixed). As a
result, we do not have Paths data in all of our data sets: we managed to rerun experiments to
include this distribution for the 1000 bid/256 good data set, but we dropped Paths from the other
data sets. We observed that the performance of our models was qualitatively the same whether
Paths was included or excluded.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 21

7.1 with preprocessing turned off. We used a cluster of 4 machines, each of which
had 8 Pentium III Xeon 550 MHz processors and 4G RAM and was running Linux
2.2.12. Since many of the instances turned out to be exceptionally hard, we stopped
CPLEX after it had expanded 130,000 nodes (reaching this point took between 2
hours and 22 hours, averaging 9 hours). Overall, solution times varied from as
little as 0.01 seconds to as much as 22 hours. We spent approximately 3 years of
CPU time collecting this data. We also computed our 30 features for each instance.
(Recall that feature selection took place after all instances had been generated.)

Our variable-size data set was collected several years later. The number of re-
quested bids was randomly selected from the interval [50, 2000], and the number
of requested goods was drawn from [40, 400]. We obtained runtimes for CPLEX
8.0 using default parameters on 8371 of these instances (roughly 800 instances per
distribution). This time we capped CPLEX based on runtime rather than the
number of nodes. The timeout for CPLEX was set to 1 CPU-week (i.e., 604,800
seconds of CPU time). This timeout was reached only on two instances from the
CATS Arbitrary distribution. The variable-size data set was collected on a cluster
of 12 dual-CPU 2.4GHz Xeon machines running Linux 2.4.20. The average run of
CPLEX took around 4 hours on this data set, and the whole data set took almost
9 CPU-years to collect!14

For all of our data sets, we randomly divided our data into a training set, a
validation set, and a test set, according to the ratio 70:15:15. We used the training
set for building models, the validation set for model optimization (e.g., setting the
ridge parameter, determining which subset to use when performing subset selection),
and the test set for evaluating the quality of our models.

Figure 4 shows the results of our CPLEX runs for each distribution on problems
with 256 goods and 1000 non-dominated bids, indicating the percentage of instances
from each distribution that were solved within a given amount of time. Each in-
stance of each distribution had different parameters, each of which was sampled
from a range of values (see our data online for details). Figure 5 presents the cor-
responding cumulative density function (CDF) for the variable-size data set. Note
the log scale on the x axis. We can see that several of the CATS distributions were
quite easy for CPLEX, and that others varied from easy to hard. It is interesting
that most distributions had instances that varied in hardness by several orders of
magnitude, even when all instances had the same problem size.

3.5 Step 5: Building Models

3.5.1 Linear Models. We begin by describing the effectiveness of simple linear
regression. Besides serving as a baseline, insights into factors that influence hard-
ness gained from a linear model are useful even if other, more accurate models can
also be built. As discussed in Section 2.5.2, we chose to use the (base-10) logarithm
of CPLEX running time as our response variable—that is, to use an exponential
model—rather than using absolute running time. Note that if we had tried to pre-
dict absolute running times then the model would have been penalized very little for

14Especially attentive readers will notice that the numbers do not work out—8371 instances at
an average of 4 hours does not add up to 9 years. What’s missing is that we also ran the CASS
algorithm on the same instances. This part of our data collection effort is described in Section 7.1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · Kevin Leyton-Brown et al.

50%60%70%80%90%100%
sS ol ved

Mat ching Scheduling L6 Paths L2 Regions L4 L7 A rbit rary L3

0%10%20%30%40%50%
0.01 0.1 1 10 100 1000 10000 100000

I nst ances
Runtime (s)

Fig. 4. Gross Hardness, 1000 bids/256 goods.

50%60%70%80%90%100%
sS ol ved

Matching Paths L6 L2 Scheduling Regions L4 L7 Arbit rary L3

0%10%20%30%40%50%
0.001 0.01 0.1 1 10 100 1000 10000 1000001000000

I nst ances
Runtime (s) 0 1e6

Fig. 5. Gross Hardness, Variable Size.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 23

dramatically mispredicting the running time of very easy instances, and would have
been penalized heavily for slightly mispredicting the running time of the hardest
instances. Because of this motivation, we do not apply the inverse transformation
h(y) when reporting error metrics.

In Table I we report both RMSE and mean absolute error, since the latter is
often more intuitive. A third measure, adjusted R2, is the fraction of the original
variance in the response variable that is explained by the model, with an adjustment
to correct for inaccuracy arising in the case where the number of training examples
is comparable to the number of free parameters in the model. Adjusted R2 is a
measure of fit to the training set and cannot detect overfitting; nevertheless, it can
be an informative measure when presented along with test set error. Figure 6 shows
the cumulative distribution of squared errors on the test set for the 1000 bids, 256
goods data set. The horizontal axis represents the squared error, and the vertical
axis corresponds to the fraction of instances that were predicted with error not
exceeding the x-value. Figure 7 shows a scatterplot of predicted log10 runtime vs.
actual log10 runtime. Figures 8 and 9 show the same information for the variable-
size data. We can see from these figures that most instances are predicted very
accurately, and few instances are dramatically mispredicted. Overall, runtimes for
96% of the data instances in our fixed-size test set were predicted to the correct
order of magnitude (i.e., with an absolute error of less than 1.0), even without
knowing the distribution from which each instance was drawn. On the variable-
size data, 64% of instances were predicted within the correct order of magnitude.
Finally, observe the vertical banding in the left sides of the scatter plots in Figures
7 and 9, and likewise the discrete steps in the leftmost CDFs in Figure 4 and 5.
This effect is due to the limited precision of the CPU-time process timer used to
measure runtimes.

In addition to the root-mean-squared-error-minimizing linear models just dis-
cussed, we also investigated the use of other error metrics. In particular, we have
considered linear Support Vector Machine (SVM) regression (which minimizes ℓ1

error), and lasso and ridge regression (shrinkage techniques that express a pref-
erence for models with smaller coefficients). None of these approaches achieved
significantly better performance than RMSE-minimizing linear models.

3.5.2 Nonlinear Models. Of course, there is no reason to presume that the re-
lationship between running time and our features should be linear. We thus in-
vestigated various approaches for nonlinear regression. Our overall conclusion was
that quadratic regression achieved good performance while requiring relatively lit-
tle computational effort and while yielding models that were relatively amenable to
analysis. Before discussing quadratic regression further, we will begin by describing
the other approaches that we considered.

First, we again tried ridge and lasso regression, and again found that at their
optimal parameter settings (determined using our validation set) they offered no
improvement. However, as mentioned above we did use a very small ridge pa-
rameter (10−6) in our quadratic regression, in order to improve numerical stabil-
ity. Second, we tried Multivariate Adaptive Regression Splines (MARS) [Friedman
1991]. MARS models are linear combinations of the products of one or more ba-
sis functions, where basis functions are the positive parts of linear functions of

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · Kevin Leyton-Brown et al.

Data point Mean Abs. Err. RMSE Adj-R2

1000 bids/256 goods 0.3349 0.5102 0.9114
1000 bids/144 goods 0.3145 0.4617 0.8891
2000 bids/64 goods 0.2379 0.3670 0.9113
Variable Size 0.8673 1.1373 0.7076

Table I. Linear Regression: errors and adjusted R2 (test data).

60%

80%

100%

n
 B

el
o
w

0%

20%

40%

0 1 2 3 4

F
ra

ct
io

n

Squared Error

Fig. 6. Linear Regression: squared error
(test data, 1000 bids/256 goods).

1

2

3

4

5

L
o
g
 R

u
n
ti

m
e

-3

-2

-1

0

-3 -2 -1 0 1 2 3 4 5

P
re

d
ic

te
d
 L

Actual Log Runtime

Fig. 7. Linear Regression: prediction scat-
terplot (test data, 1000 bids/256 goods).

60%

80%

100%

B
el

o
w

0%

20%

40%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F
ra

ct
io

n

Squared Error

Fig. 8. Linear Regression: squared error
(test data, variable size.)

1

2

3

4

5

6

L
o
g
 R

u
n
ti

m
e

-3

-2

-1

0

1

-3 -2 -1 0 1 2 3 4 5 6

P
re

d
ic

te
d

Actual Log Runtime

Fig. 9. Linear Regression: prediction scat-
terplot (test data, variable size).

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 25

single features. Unfortunately, MARS models can be unstable and difficult to in-
terpret. For us, they also offered no benefit over quadratic models: the RMSE on
our MARS models differed from the RMSE on our second-order model only in the
second decimal place. Finally, we tried SVM regression with a second-order poly-
nomial kernel. Even after optimizing the SVM parameters through experiments
on our validation set, we again achieved no significant difference in performance
as compared to quadratic models. SVM regression has several disadvantages when
compared to linear regression: models are more computationally expensive to train,
the method’s behavior is relatively sensitive to parameters, and our subset selection
techniques (see Section 4) are complicated by the use of kernels. Finally, we briefly
experimented with SVM regression using higher-order polynomial kernels, but did
not find them to be useful.15

In order to construct quadratic models, we first computed all pairwise products
of features, including squares, and also retained the original features, for a total of
495 features in all data sets. However, this introduced a lot of redundant features,
as even most of the original (linear) features were highly correlated. We thus used
the preprocessing step discussed in Section 2.5.2, with an adjusted R2 threshold of
τ = 0.99999. Even with such a conservative threshold, this process eliminated a lot
of features. On the 1000 bids, 256 goods data set we were left with 353 features
out of 495, and on the variable-size data set with 423 out of 495. Overall, this
preprocessing step yielded more accurate and numerically stabler models.

For all of our data sets quadratic models yielded considerably better error mea-
surements on the test set and also explained nearly all the variance in the training
set, as shown in Table II. As above, Figures 10, and 12 show cumulative distribu-
tions of the squared error, and Figures 11 and 13 show scatterplots of predicted
log10 runtime vs. actual log10 runtime for fixed-size and variable-size data. Com-
paring these figures to Figures 6, 7, 8, and 9 confirms our judgment that quadratic
models are substantially better overall. The cumulative distribution curves lie well
above the corresponding curves for linear models. For example, quadratic models
would classify 98% of test instances in the fixed-size data set and 93% of instances
in the variable-sized data set to within the correct order of magnitude—a dramatic
improvement over linear models.

4. ANALYZING HARDNESS MODELS

The results summarized above demonstrate that it is possible to learn a model of
our features that accurately predicts CPLEX’s running time on novel instances.
For some applications (e.g., predicting the time it will take for an auction to clear;
building an algorithm portfolio) accurate prediction is all that is required. For other
applications it is necessary to understand what makes an instance empirically hard.
In this section we set out to describe how our models may be interpreted; the
following section applies these ideas to our WDP case study.

15As mentioned earlier, more recent work on SAT has further experimented with nonlinear, non-
parametric methods such as Gaussian processes [Hutter et al. 2006] and random forests of re-
gression trees. Again, while these methods have various advantages and disadvantages, so far we
have not observed any of them to yield significant improvements in prediction accuracy when the
training data set is large.

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 · Kevin Leyton-Brown et al.

Data point Mean Abs. Err. RMSE Adj-R2

1000 bids/256 goods 0.2099 0.3122 0.9653
1000 bids/144 goods 0.2270 0.3548 0.9482
2000 bids/64 goods 0.1693 0.3032 0.9563
Variable Size 0.3753 0.5354 0.9473

Table II. Quadratic Regression: errors and adjusted R2 (test data).

60%

80%

100%

 B
el

o
w

0%

20%

40%

0 1 2 3 4

F
ra

ct
io

n

Squared Error

Quadratic

Linear

Fig. 10. Quadratic Regression: squared er-
ror (test data, 1000 bids/256 goods).

1

2

3

4

5

L
o
g
 R

u
n
ti

m
e

-3

-2

-1

0

-3 -2 -1 0 1 2 3 4 5

P
re

d
ic

te
d
 L

Actual Log Runtime

Fig. 11. Quadratic Regression: predic-
tion scatterplot (test data, 1000 bids/256
goods).

60%

80%

100%

n
 B

el
o
w

0%

20%

40%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F
ra

ct
io

n

Squared Error

Quadratic

Linear

Fig. 12. Quadratic Regression: squared er-
ror (test data, variable size).

1

2

3

4

5

6

L
o
g
 R

u
n
ti

m
e

-3

-2

-1

0

1

-3 -2 -1 0 1 2 3 4 5 6

P
re

d
ic

te
d
 L

Actual Log Runtime

Fig. 13. Quadratic Regression: prediction
scatterplot (test data, variable size).

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 27

A key question in explaining what makes a hardness model work is which features
were most important to the success of the model. It is tempting to interpret a linear
regression model by comparing the coefficients assigned to the different features, on
the principle that if |wi| ≫ |wj | then fi must be more important than fj . This can
be misleading for two reasons. First, features may have different ranges, though
this problem can be mitigated by normalization. More fundamentally, when two
or more features are highly correlated, models can include larger-than-necessary
coefficients with different signs. For example, suppose that we have two identical
and completely unimportant features fi ≡ fj . Then all models with wi = −wj

are equally good, even though in some of them wi = 0, while in others |wi| is
arbitrarily large. This problem can be mediated through the use of regularization
techniques; however, it cannot be entirely eliminated, especially when many features
are strongly but imperfectly correlated.

A better approach is to force models to contain fewer variables. The idea here
is that the best low-dimensional model will involve only relatively uncorrelated fea-
tures, because adding a feature that is very correlated with one that is already
present will yield a smaller marginal decrease in the error metric. There are many
different “subset selection” techniques for finding good, small models. Ideally, ex-
haustive enumeration would be used to find the best subset of features of desired
size. Unfortunately, this process requires consideration of a binomial number of
subsets, making it infeasible unless both the desired subset size and the number
of base features are very small. When exhaustive search is impossible, heuristic
search can still find good subsets. We considered three heuristic methods: forward

selection, backward elimination, and sequential replacements. More sophisticated
heuristic search techniques could also be used to improve on these relatively simple
algorithms.16 Since none of these techniques is guaranteed to find the optimal sub-
set, they can be combined together by running all and keeping the model with the
smallest validation-set error.

Forward selection starts with an empty set, and greedily adds the feature that,
combined with the current model, makes the largest reduction to validation-set
error.17 Backward elimination starts with a large model and greedily removes
the features that yields the smallest increase in validation set error. Sequential
replacement is like forward selection, but also has the option to replace a feature
in the current model with an unused feature.18

Each step of each subset selection technique must build a number of models linear
(forward, backward) or quadratic (sequential) in the total number of features. Thus,
it is worthwhile to explore faster ways of building these models. The Shermann-

16When we applied our methodology to SAT [Nudelman et al. 2004b] we also used the LAR
algorithm [Efron et al. 2004]. LAR is a shrinkage technique for linear regression that can set the
coefficients of sufficiently unimportant variables to zero as well as simply reducing them; thus, it
can be also be used for subset selection. Even more recently, Xu, Hutter, Hoos & Leyton-Brown
[2008] implemented a local-search-based subset selection algorithm.
17Of course, everywhere we propose the use of a validation set, cross-validation is also an option.
18For a detailed discussion of techniques for selecting relevant feature subsets and for comparisons
of different definitions of “relevant,” focusing on classification problems, see Kohavi and John
[1997].

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 · Kevin Leyton-Brown et al.

Morrison formula, also known as the matrix inversion lemma, states that

(A + uvT)−1 = A−1 −
1

1 − vT A−1u
(A−1u)(vT A−1)T .

This means that if we can express the new matrix to be inverted in terms of one or
more rank-one updates of a matrix whose inverse we already know, the new inverse
can be computed in quadratic rather than cubic time. In fact, we can do so for
all of our subset selection approaches: they involve repeatedly inverting symmetric
matrices that differ in exactly one row and column because of the insertion and/or
removal of one feature. The new matrix can be constructed from the original in
two (forward, backward) or four (sequential) rank-one updates.

Once a model with a small number of variables has been obtained, we can evaluate
the importance of each feature to that model by looking at each feature’s cost of

omission, following Friedman [1991]. That is, to evaluate score(fi) we can train a
model that omits fi, and report the resulting increase in (validation set) prediction
error compared to the model that includes fi. Notice that this would not work
in the presence of highly-correlated features: if fi ≡ fj and is very useful, then
dropping either one will not result in any increase in the error metric, leading us
to believe that both features are useless.

It is very important to recognize what it means for our techniques to identify
a variable as “important.” If a set of variables X is identified as the best subset
of a given size, and this subset has a RMSE that is close to the RMSE of the
complete model, this indicates that the variables in X are sufficient to approximate
the performance of the full model—useful information, since it means that we can
explain an algorithm’s empirical hardness in terms of this small set of features. It
must be stressed, however, that this does not amount to an argument that choosing
the subset X is necessary for good performance in a subset of size k. Indeed, as
it is often the case that many variables are correlated in complex ways, there will
often be other very different sets of features that would achieve similar performance.
Furthermore, since our subset selection techniques are heuristic, we are not even
guaranteed that X is the globally-best subset of its size. Thus, we can conclude
that features are important when they are present in small, well-performing subsets,
but we must be careful not to conclude that features that are absent from small
models are unimportant.

5. ANALYZING HARDNESS MODELS: WDP CASE STUDY

In this section we discuss the application of our methodology for analyzing empir-
ical hardness models to our WDP case study. Despite the fact that we observed
that quadratic models strongly outperformed linear models in Section 3.5, we an-
alyze both sets of models here. This is because we can learn different things from
the different models. In particular, linear models can sometimes lead to simpler
intuitions since they do not depend on products of features.

5.1 Linear Models

Figure 14 shows the RMSEs of the best subsets containing between 1 and 20 features
for linear models on the 1000 bids, 256 goods data set. To find the best subset of size
k we evaluated the validation-set RMSE of the three k-variable models produced

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 29

0.8

1

1.2

1.4

e
t
 R

M
S
E

Subset size 5

0

0.2

0.4

0.6

0 5 10 15 20

V
a
li
d
a
t
io

n
 S

e

Subset Size

Full model

Fig. 14. Linear Regression: subset size
vs. RMSE (validation data; 1000 bids/256
goods).

Feature ± Cost

BG maximum degree + .550
integer slack ℓ1 norm + .339
BGG minimum good degree + .118
BGG maximum good degree – .091
BGG stdev of bid degree – .077

Fig. 15. Linear Regression: feature, sign
of feature coefficient, and cost of omission
for subset size 5 (validation data; 1000
bids/256 goods).

1.2

1.6

2

e
t
 R

M
S
E Subset size 5

Full model

0

0.4

0.8

0 5 10 15 20

V
a
li
d
a
t
io

n
 S

e

Subset Size

Fig. 16. Linear Regression: subset size vs.
RMSE (validation data, variable size).

Feature ± Cost

BG third quartile of degree + .489
BG average clustering – .337
number of goods + .174
BGG maximum good degree – .078
integer slack ℓ∞ norm + .041

Fig. 17. Linear Regression: feature, sign of
feature coefficient, and cost of omission for
subset size 5 (test data, variable size).

by forward selection, backward elimination and sequential replacements, and kept
the model with the smallest RMSE. The dashed line represents the test-set RMSE
of the full linear model. As discussed in Section 4, our use of heuristic subset
selection techniques means that the subsets shown in Figure 14 are likely not the
RMSE-minimizing subsets of the given sizes. Nevertheless, we can still conclude
that subsets of these sizes are sufficient to achieve the accuracies shown here. We
chose to examine the model with five features because it was the first for which
adding another feature did not cause a large decrease in RMSE. This suggests
that the rest of the features were relatively highly correlated with these five, or
were relatively unpredictive of running time. Figure 15 shows the features in this
model, the signs of the corresponding coefficients in the regression model (showing
whether an increase in the feature led to an increase or decrease in the predicted
runtime), and their respective costs of omission, expressed in RMSE. Figures 16 and
17 demonstrate the results of subset selection for linear models on our variable-size
data set. For this data set, we also picked a five-variable model, to make it easier
to compare our findings across data sets.

The most overarching conclusion we can draw is that features based on node
degrees and on the LP relaxation are important. Node degree features describe

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 · Kevin Leyton-Brown et al.

the constrainedness of the problem. Generally, one might expect that very highly
constrained problems would be easy, since more constraints imply a smaller search
space. However, our experimental results show that CPLEX takes a long time on
such problems. We conjecture that either CPLEX’s calculation of the LP bound at
each node becomes much more expensive when the number of constraints in the LP
increases substantially, or that the accuracy of the LP relaxation decreases (along
with the number of nodes that can be pruned). In either case this cost overwhelms
the savings that come from searching in a smaller space. The node degree statistics
describe the number of constraints in which each variable is involved; they indicate
how quickly the search space can be expected to narrow as bids are assigned to
the allocation. The most important features in both models relate to the degree of
the Bid Graph. These features each describe the numbers of other bids that will
be ruled out every time a bid is added to an allocation. Features describing the
good degree of the Bid-Good Graph also appear in both models. These features
are similar to the Bid Graph features; they describe the number of bids that will
be ruled out when a single good (rather than bid) is allocated.

Norms of the linear programming slack vector also appear in both models. This
is very intuitive; CPLEX employs an LP relaxation as its guiding heuristic for the
branch-and-bound search. First, the easiest problems can be completely solved by
LP, yielding a norm of 0; the norms are close to 0 for problems that are almost
completely solved by LP (and hence usually do not require much search to resolve),
and larger for more difficult problems. Second, the integrality gap represents the
quality of the heuristic and, consequently, the extent to which the branch-and-
bound search space will be pruned.

A few other features were also selected. The clustering coefficient features mea-
sure the extent to which variables that conflict with a given variable also conflict
with each other, another indication of the speed with which the search space will
narrow as variables are assigned.19 This feature gives an indication of how local
the problem’s constraints are. The final remaining feature in our fixed-size model
measures variation in BGG bid node degrees. Observe in the same model that the
presence of features measuring maximum and minimum BGG node degrees, with
opposite signs in the features’ coefficients, amounts to another measure of variation,
now of the degrees of good nodes.

The final feature in our variable-size model is the number of goods. This is
not surprising, since the worst-case complexity of the WDP scales exponentially
in the number of goods but only polynomially in the number of bids [Sandholm
2002]. Experimental evidence confirms that the number of goods is often a more
important parameter for empirical hardness, though it shows that the number of
bids is also important in practice.

We take this opportunity to offer a comment about incorporating problem size
features into empirical hardness models. Though problem size parameters are im-
portant, we have found overall that they are less strongly correlated with empirical
hardness than one might suppose. When we began studying the effect of input size

19We also observed that this feature was important when building empirical hardness models for
SAT [Nudelman et al. 2004b]. We thank Rámon Béjar for providing code for calculating the
clustering coefficient.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 31

0.5

0.6

0.7

0.8

0.9

1

e
t
 R

M
S
E

Subset size 8

0

0.1

0.2

0.3

0.4

0 5

0 10 20 30 40

V
a
li
d
a
t
io

n
 S

e

Subset Size

Full model

Fig. 18. Quadratic Regression: sub-
set size vs. RMSE (validation data,
1000 bids/256 goods).

Feature ± Cost

BGG avg bid deg * int slack ℓ1 norm + .258
BG max deg * num goods + .148
BGG max good deg * num goods – .085
BGG max bid deg * int slack ℓ2 norm – .063

BG avg clustering * stdev(price
√

bid size
) – .041

(BGG max good deg)2 + .015

BGG min good deg * stdev(price
√

bid size
) + .012

BGG min bid deg * BG avg clustering
BG avg min path length

– .003

Fig. 19. Quadratic Regression: feature, sign of fea-
ture coefficient, and cost of omission for subset size 8
(validation data, 1000 bids/256 goods).

on runtime, we conducted scaling experiments, in which we observed that for all
input sizes that we could reasonably attempt to solve, runtimes varied for many or-
ders of magnitude—from less than a second to days or even weeks. It thus appears
that for modern WDP algorithms, problem structure is paramount and asymptotic
complexity does not strongly manifest itself until size is increased well beyond what
is feasible. In particular, this led us to reject an earlier approach in which we con-
sidered the use of alternative hypothesis spaces that give special treatment to input
size variables. Instead, we now treat these features as being fundamentally the
same as structural features. We do note that the same pattern may not hold in all
problem domains.

5.2 Nonlinear Models

We now consider second-order models. We ran forward selection and sequential
replacement up to models with 40 features, and ran backward elimination starting
with the 40-feature model identified by forward selection. Figure 18 describes the
best subsets containing between 1 and 40 features for second-order models on the
fixed-size data set, with the dashed line indicating the test-set RMSE of the full
quadratic model. We observe that allowing interactions between features dramati-
cally improved the accuracy of our very small subset models; indeed, our six-feature
quadratic models outperformed the full linear models (see error measurements for
the linear models in Table I). Figures 20 and 21 show a similar picture for our
variable-size data set. Note that on this data set a five-feature quadratic model
outperformed the full linear model (again, see Table I). As above, we selected the
smallest subset size at which the marginal benefit of adding another feature was
small for both models; in this case, we elected to examine eight-variable models.
Figures 19 and Figure 21 show the costs of omission for these models, considering
the fixed-size and variable-size data sets respectively.

We note that nearly all the selected features were second-order: only one of the
sixteen was not. (Recall that all first-order features remained available for the
models to select.) However, we observed many of the same trends as in our linear
models. In particular, the features that were important to the linear models tended
to be chosen again in our quadratic models: in both cases, four of the five features
were chosen, and the features that were not were the least important and second-

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 · Kevin Leyton-Brown et al.

1

1.2

1.4

1.6

1.8

2

S
e
t
 R

M
S
E

Subset size 8

0

0.2

0.4

0.6

0.8

0 10 20 30 40

V
a
li
d
a
t
io

n
 S

Subset Size

Full model

Fig. 20. Quadratic Regression: sub-
set size vs. RMSE (validation data,
variable size).

Feature ± Cost

num bids * int slack ℓ1 norm + .393
BG max degree * int slack ℓ∞ norm + .196
BG avg clustering – .168
BG avg eccentricity * BG stdev of clustering – .135
BG min degree * num bids + .085
BG degree 3rd quartile * num goods + .071
BG avg clustering * int slack ℓ2 norm – .052
BGG stdev of good deg * int slack ℓ∞ norm – .036

Fig. 21. Quadratic Regression: feature, sign of fea-
ture coefficient, and cost of omission for subset size 8
(validation data, variable size).

least important features in the linear models. More broadly, node degree statistics
and linear programming norms remained very important. Indeed, the two models
had only one and two features respectively that did not involve either of these
elements. All three of these features involved the clustering coefficient, which we
also observed in our linear models.

We also observed some new features that did not appear in our linear models.
First, problem size features played a different role. Most strikingly, the number of
bids, once allowed to interact with other features, became much more prominent
in our variable-size model. Indeed, it became part of the most important feature.
It appears that the number of bids was useful as a scaling factor for other features
that had previously been important. The number of goods also appeared in the
variable-size model, but was less prominent than in the linear case. Interestingly,
though, the number of goods was also selected in the fixed-size model. Note that
multiplying a feature by a constant has no effect on the predictive power of a linear
regression model; the feature’s coefficient can simply be adjusted. However, recall
that the number of goods varied slightly in the CATS distributions. We conjecture
that with an appropriate coefficient the (e.g.) BG max deg * num goods feature
was just as useful as BG max deg for instances from distributions under which the
number of goods did not vary, but captured some additional useful information
about problem size on CATS instances.

Second, our price-based features appeared in the fixed-size model, but not in
the variable-size model. Overall, we were surprised that these features were not
more important, given that they were the only ones that explicitly considered the
optimization problem’s objective function. In the end, it appears that combinatorial
structure has a stronger effect on empirical hardness for WDP.

Finally, we saw features that considered global measures of constrainedness. In
particular, both our path length and eccentricity features appeared, though neither
played a prominent role.

Based on the discussion so far, we can now understand the two most important
features in each of our eight-feature quadratic models. Each of these features is
the product of two of the following: a node degree feature, a problem size feature,
and an LP integrality slack norm feature. Furthermore, each of these features has
a positive coefficient. We have previously explained why more highly-constrained
problems, larger problem sizes, and larger LP integrality slack norms each lead to

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 33

problems that are harder for CPLEX to solve. A feature that is the product of
two of these terms takes a large value only when both components are large. This
product can therefore yield a powerful prediction of an instance’s hardness.

6. BOOSTING AS A METAPHOR FOR ALGORITHM DESIGN

We now turn to the consideration of practical uses to which we can put empirical
hardness models. The key phenomenon we will consider here is that, although some
algorithms are better than others on average, there is rarely a best algorithm for a
given problem. Instead, it is often the case that different algorithms perform well on
different problem instances. Not surprisingly, this phenomenon is most pronounced
among algorithms for solving NP-complete problems, because runtimes for these
algorithms often vary substantially from instance to instance. When algorithms
exhibit high runtime variance, it can be difficult to decide which algorithm to use.
Rice [1976] dubbed this the “algorithm selection problem.” In the nearly three
decades that have followed, the issue of algorithm selection has failed to receive
widespread study, though of course some excellent work does exist. (We discuss
much of this work in Section 6.2.1.) The most common approach to algorithm
selection is measuring different algorithms’ performance on a given problem dis-
tribution and then using only the algorithm that had the lowest average runtime.
This approach, which we dub “winner-take-all,” has driven recent advances in al-
gorithm design and refinement. However, it has resulted in the neglect of many
algorithmic ideas that, while uncompetitive on average, offer excellent performance
on particular classes of problem instances. Our consideration of the algorithm se-
lection literature, and our dissatisfaction with the winner-take-all approach, has led
us to ask the following two questions. First, what general techniques can we use
to perform per-instance (rather than per-distribution) algorithm selection? Second,
if we reject the notion of winner-take-all algorithm evaluation, how ought novel
algorithms to be evaluated? Taking the idea of boosting from machine learning as
our guiding metaphor, we strive to answer both questions.

6.1 The Boosting Metaphor

Boosting is a machine learning paradigm due to Schapire [1990] and widely studied
since. Although our paper does not make use of any technical results from the
boosting literature, we take our inspiration from the boosting philosophy. Stated
simply, boosting is based on two insights:

(1) Poor classifiers can be combined to form an accurate ensemble when the classi-
fiers’ areas of effectiveness are sufficiently uncorrelated.

(2) New classifiers should be trained on problems on which the current aggregate
classifier performs poorly.

We argue that algorithm design should be informed by two analogous ideas:

(1) Algorithms with high average running times can be combined to form an algo-
rithm portfolio with low average running time when the algorithms’ easy inputs
are sufficiently uncorrelated.

(2) New algorithm design should focus on problems on which the current algorithm
portfolio performs poorly.

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 · Kevin Leyton-Brown et al.

Although it is helpful, our analogy to boosting is clearly imperfect. One key
difference lies in the way components are aggregated in boosting: classifiers can be
combined through majority voting, whereas the whole point of algorithm selection
is to run only a single algorithm. We instead advocate the use of learned models
of runtime as the basis for algorithm selection, which leads to another important
difference. It is not enough for the easy problems of multiple algorithms to be
uncorrelated; models must also be accurate enough to reliably recommend against
the slower algorithms on these uncorrelated instances. Finally, while it is impossible
to improve on correctly classifying an instance, it is almost always possible to solve
a problem instance more quickly. Thus improvement is possible on easy instances
as well as on hard instances. The analogy to boosting holds in the sense that
focusing on hard regions of the problem space increases the potential gain in terms
of reduced average portfolio runtimes.

6.2 Boosting Step 1: Building Algorithm Portfolios

The first part of this paper was devoted to arguing that it is possible to build ac-
curate algorithm-specific models of the empirical hardness of given distributions of
problem instances. Given these techniques, we advocate the following straightfor-
ward method for building portfolios of multiple algorithms.

(1) Train an empirical hardness model for each algorithm, following the methodol-
ogy given in Section 2.

(2) Given an instance:

(a) Compute feature values.

(b) Predict each algorithm’s running time using the empirical hardness models
learned in Step 1.

(c) Run the algorithm predicted to be fastest.

We should clarify our use of the term portfolio. This term was first used by
Huberman et al. [1997] and Gomes and Selman [2001] to describe a strategy for
running a set of algorithms in parallel.20 The term has since also been used to
describe any strategy that combines multiple, independent algorithms to solve a
single problem instance. The argument behind this broadening of the term—which
we favor—is that all such methods exploit lack of correlation in the performance of
several algorithms to obtain improved overall performance.

To facilitate precise characterization of algorithm portfolios in this broader sense,
we offer some terminology, following Xu, Hutter, Hoos & Leyton-Brown [2008, pp.
567–568]. A (a, b)-of-n portfolio is a set of n algorithms and a procedure for select-
ing among them with the property that if no algorithm terminates early, at least a

and no more than b algorithms will be executed. The term a-of-n portfolio is short-
hand for an (a, a)-of-n portfolio, and the term n-portfolio is shorthand for an n-of-n
portfolio. Portfolios also differ in how solvers are run after being selected. When
all algorithms are run concurrently, a portfolio is said to be parallel. When one
algorithm’s execution always begins after another’s ends, the portfolio is sequential.

20Indeed, this terminology is consistent with the original notion of a portfolio from finance, where
risk is managed through the purchase of multiple different securities.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 35

Otherwise, the portfolio is said to be partly sequential. Thus the algorithm port-
folios of Huberman et al. [1997] and Gomes and Selman [2001] can be described
as parallel n-portfolios. In contrast, the empirical-hardness-model-based portfolios
discussed above are 1-of-n portfolios. (Since only one algorithm is selected, the
sequential/parallel distinction is moot in this case.) Richer combinations are pos-
sible and indeed practical; for example, Xu, Hutter, Hoos & Leyton-Brown [2008]
extended the techniques introduced here to build sequential 3-of-n portfolios that
won in several categories of the 2007 SAT competition.

Overall, while we will show experimentally that our portfolios can dramatically
outperform the algorithms of which they are composed, the simplicity of our tech-
niques is somewhat deceptive. We discuss other approaches from the literature and
compare them with our own in Section 6.2.1. Following this discussion we consider
ways of enhancing our techniques for building empirical hardness models for use in
selecting among algorithms in an algorithm portfolio.

6.2.1 Alternative Approaches to Algorithm Selection. Much past work has ob-
served that since algorithm performance can vary substantially across different
classes of problems, performance gains can be achieved by selecting among these
algorithms on a per-instance basis. As mentioned above, Rice [1976] was the first
to formalize algorithm selection as a computational problem, framing it in terms
of function approximation. Broadly, he identified the goal of selecting a mapping
S(x) from the space of instances to the space of algorithms, to maximize some
performance measure perf(S(x), x). Rice offered few concrete techniques, but all
subsequent work on algorithm selection can be seen as falling into his framework.

In what follows, we explain our choice of methodology by relating it to other
approaches for algorithm selection that have been proposed in the literature.

6.2.1.1 Regression Approaches. Brewer [1994; 1995] proposed an approach very
similar to our own in the context of parallel computing. Specifically, he used linear
regression models to predict the runtime of different implementations of portable,
high-level libraries for multiprocessors, with the goal of automatically selecting the
implementation with the best predicted runtime on a novel architecture. Key simi-
larities are the use of linear regression models to predict runtime based on empirical
measurements of black-box algorithms, and algorithm selection by choosing the al-
gorithm with the best predicted performance. The key difference is that he focused
on sub-quadratic-time rather than NP-complete problems. (Specifically, he stud-
ied sorting and stencil computations, with respective asymptotic complexities of
O(n log n) and O(n1.5).) These problems do not exhibit the extreme runtime vari-
ability we have observed for WDP. Probably for this reason, Brewer was able to
perform very accurate algorithm selection by relying only on a handful of features
describing problem size and machine architecture, and making use of a simpler and
less flexible regression framework than we found necessary.

Lobjois and Lemâıtre [1998] selected among several simple branch-and-bound
algorithms based on a method for estimating search tree size due to Knuth [1975].
Although they use a sampling-based rather than a model-based approach, we can
broadly interpret their work as performing regression-based algorithm selection.
This work is similar in spirit to our own; however, their prediction is based on a

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 · Kevin Leyton-Brown et al.

single feature and works only on a particular class of branch-and-bound algorithms.

6.2.1.2 Parallel Execution. A number of authors have proposed the use of paral-
lel portfolios. We have already mentioned Huberman et al. and Gomes and Selman;
more recent examples include Gagliolo and Schmidhuber [2006] and Streeter et al.
[2007]. There are good reasons to pursue parallel portfolios: in particular, they
can be simpler to build, and it may be difficult or impossible to build models that
describe the effect of variables such as random seed on an algorithm’s performance.
Indeed, particularly because of this latter argument, we discuss the extension of our
own portfolio approach to the construction of parallel portfolios in Section 6.2.3.

However, parallel portfolios are often outperformed by our 1-of-n portfolios. We
focus here on the simple case of parallel portfolios that assign the same CPU share
to each algorithm. Even in this case, to make sense of our claim, we must first decide
how to compare running times between these two approaches. While it is often true
that additional processors are readily available, it is also often the case that these
processors can be put to uses besides running different algorithms in parallel, such
as parallelizing a single search algorithm or solving multiple problem instances at
the same time. We therefore believe that meaningful comparisons of running time
between parallel and non-parallel portfolios require that computational resources
be fixed, with parallel execution modeled as ideal (no-overhead) task swapping on
a single processor. Let t∗(x) be the time it takes to run the algorithm that is
fastest on instance x, and let n be the number of algorithms. A parallel n-portfolio
that assigns an equal share to every algorithm for each instance x (a parallel n-
portfolio) will always take time nt∗(x). The expected value of nt∗(x) can be much
smaller than the expected runtime of the algorithm that would be chosen under
winner-take-all algorithm selection. Nevertheless, we will see in Section 7.1 that
our portfolio approach can do even better than this. (For example, we will show
on our fixed-size WDP data that such parallel execution has roughly the same
average runtime as winner-take-all algorithm selection—we have three algorithms
and CPLEX is three times slower than the optimal portfolio—while our techniques
achieve running times of roughly 1.09t∗(x).)

6.2.1.3 Classification. Since algorithm selection is fundamentally discriminative—
it entails choosing among algorithms to find one that will exhibit minimal runtime—
classification is an obvious approach to consider. Indeed, our approach of fitting
regression models and then choosing the algorithm predicted to be fastest can be
understood as a classification algorithm. However, more standard classification al-
gorithms (e.g., decision trees) can also be used to learn which algorithm to choose
given features of the instance and labelled training examples. For example, such an
approach was taken by Gebruers et al. [2005], who investigated the use of case-based
reasoning and decision trees to select among a discrete set of constraint program-
ming strategies in a scheduling domain; some of the same authors also did earlier
work in a similar vein [Gebruers et al. 2004; Gebruers and Guerri 2004]. Guo
and Hsu [2007] considered the use of decision trees, naive Bayes models and Bayes
net models (all classification methods) for the construction of algorithm portfolios
consisting of both complete and incomplete algorithms for the MPE problem in
Bayesian networks.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 37

It is perfectly reasonable in principle to explicitly use classification algorithms to
perform algorithm selection. However, a problem often does arise in practice. Most
off-the-shelf implementations of classification algorithms use the wrong error metric
for our domain: they penalize misclassifications equally regardless of their cost.
We want to minimize a portfolio’s average runtime, not its accuracy in choosing
the optimal algorithm. Thus we should penalize misclassifications more when the
difference between the runtimes of the chosen and fastest algorithms is large than
when it is small. This is just what our approach does.

A second classification approach entails dividing running times into two or more
bins, predicting the bin that contains the algorithm’s runtime, and then choosing
the best algorithm. For example, Horvitz et al. [2001; 2002] used classification to
predict the runtime of CSP and SAT solvers with inherently high runtime variance
(heavy tails), albeit during runs. Despite its similarity to our portfolio methodology,
this approach suffers from the same problem as described above. First, the learning
algorithm described in this work did not use an error function that penalized large
misclassifications (off by more than one bin) more heavily than small misclassifi-
cations (off by one bin). Second, this approach is unable to discriminate between
algorithms when multiple predictions fall into the same bin. Finally, since runtime
is a continuous variable, class boundaries are artificial. Instances with runtimes
lying very close to a boundary are likely to be misclassified even by a very accurate
model, making accurate models harder to learn.

Finally, we note that while our approach may be understood as performing clas-
sification, it has an advantage over other classification algorithms even if they do
use a cost-sensitive error metric. Our approach makes a separate prediction for
each algorithm and then chooses the best one. This means that once an empirical
hardness model has been built and validated for a given algorithm, that model
never needs to be changed. If new algorithms are to be added, it is not necessary
to learn an entirely new classifier: all that is required is to learn a good empirical
hardness model for the new algorithm.

6.2.1.4 Markov Decision Processes. Lagoudakis and Littman [2000; 2001] worked
within the MDP framework and concentrated on recursive algorithms (e.g., sorting,
SAT), sequentially solving the algorithm selection problem on each subproblem.
This work demonstrated encouraging results; however, its generality was limited
by several factors. First, the use of algorithm selection at each stage of a recursive
algorithm can require extensive recoding, and may simply be impossible with the
‘black-box’ commercial or proprietary algorithms that are often among the most
competitive. Second, solving the algorithm selection problem recursively requires
that value functions be very inexpensive to compute; for the WDP we found that
more computationally expensive features were required for accurate predictions
of runtime. Finally, these techniques can be undermined by non-Markovian algo-
rithms, such as those using clause learning, taboo lists, caching or other forms of
dynamic programming. Of course, our approach could also be characterized as an
MDP; we do not do so as the framework is redundant in the absence of a sequential
decision-making problem.

Recent work by Carchrae and Beck [2005] can also be seen as falling into the
MDP framework, in the sense that it involves the use of machine learning to make

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 · Kevin Leyton-Brown et al.

sequential decisions in order to maximize an objective function. This work considers
both complete and incomplete algorithms for a scheduling problem, and attempts to
learn a classifier that predicts the solution quality that each algorithm will be able to
achieve by a given cutoff time, based on initial probing runs of each algorithm. This
work considers both the offline algorithm selection problem and the online problem
in which fixed resources must be dynamically allocated between the algorithms
based on their performance. The authors emphasize that their techniques depend
only on “low-knowledge” features of the input instance.

6.2.1.5 Experts Algorithms. Another area of research that is somewhat related
to algorithm selection is that of “experts algorithms” [see, e.g., de Farias and
Megiddo 2004]. The setting studied in this line of work is the following. An agent
must repeatedly act in a certain environment. It has access to a number of “ex-
perts” that can provide advice about the best action in the current step based on
past histories and some knowledge. Thus, in some sense, at each step the agent
must solve the algorithm selection problem. This is generally done by estimating
past experts’ performances, and then choosing the best expert based on these esti-
mates. This estimation step is in principle similar to our use of regression models
to predict performance. The main difference between our work and the area of
experts algorithms is that in the experts algorithms domain learning and selection
are done online. Estimation often takes form of historical averages, and research
has concentrated on issues such as the exploration-exploitation tradeoff.

Indeed, the experts approach has been explicitly applied to the problem of learn-
ing which heuristics to use in a constraint programming context. For example,
Epstein et al. [2002] built an “adaptive constraint engine” in which a set of advi-
sors recommend the use of one heuristic or another, and in which the system learns
how to weight these different experts’ advice.

6.2.2 Capping Runs. The methodology of Section 6.2 requires gathering run-
time data for every algorithm on every problem instance in the training set. While
the time cost of this step is fundamentally unavoidable under our approach, gather-
ing perfect data for every instance can take an unreasonably long time. We already
mentioned (in Section 2.4) that the process of gathering data can be made much
easier by capping the runtime of each algorithm at some maximum and recording
these runs as having terminated at the captime. When models are intended for
use in building an algorithm portfolio, more aggressive capping is possible. For
example, if algorithm a1 is usually much slower than a2 but in some cases dramat-
ically outperforms a2, a perfect model of a1’s runtime on hard instances may not
be needed to discriminate between the two algorithms. This approach is safe if
the captime is chosen so that it is (almost) always significantly greater than the
minimum of the algorithms’ runtimes. Even if this condition is not quite satis-
fied, it can still be preferable to sacrifice some predictive accuracy for dramatically
reduced model-building time. Note that if any algorithm is capped, it can be dan-
gerous (particularly without the log transformation that occurs in exponential and
logistic models) to gather data for any other algorithm without capping at the
same time, because the portfolio could inappropriately select the algorithm with
the smaller captime. Of course, when different captimes are used for different al-

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 39

gorithms, the algorithm(s) that were allowed to run for longer can be “artificially
capped” (i.e., have their runtimes rounded down to the smaller captime) after data
has been collected.21

6.2.3 Parallel Execution. As discussed above, when runtime depends heavily
on variables such as random seed, it can be difficult to predict. In such cases par-
allel execution is likely to outperform a portfolio that chooses a single algorithm.
Nevertheless, in such cases it is possible to extend our methodology to incorpo-
rate parallel execution, essentially treating different parallel portfolios as different
algorithms and modeling their performance.

(1) Train an empirical hardness model for each algorithm, following the methodol-
ogy from Section 2.

(2) Additionally, train empirical hardness models for one or more new “algorithms”,
where algorithm i stands as a placeholder for the parallel execution of ki of the
original algorithms. Consider the runtime of algorithm i on a given instance to
be ki times the minimum runtime of i’s constituent algorithms.

(3) Given an instance:

(a) Compute feature values.

(b) Predict each algorithm’s running time using the empirical hardness models
learned in Steps 1 and 2.

(c) Run the algorithm predicted to be fastest.

This approach allows portfolios to choose to task-swap sets of algorithms in parts
of the feature space where the minima of individual algorithms’ runtimes are much
smaller than their means, but to choose single algorithms in other parts of the
feature space.

6.2.4 Smart Feature Computation. Feature values must be computed before the
portfolio can choose an algorithm to run. We expect that portfolios will be most
useful when they combine several (worst-case) exponential-time algorithms that
have highly uncorrelated runtimes, and that fast polynomial-time features should
be sufficient for most models. Nevertheless, on some instances the computation of
individual features may take substantially longer than one or even all algorithms
would take to run. In such cases it would be desirable to perform algorithm selection
without spending as much time computing features, even at the expense of some
accuracy in choosing the fastest algorithm.

We begin by partitioning the features into sets ordered by time complexity,
S1, . . . , Sl, with i > j implying that each feature in Si takes significantly longer

21Work on methods for working with capped runs continued after our submission of this paper
for review. Specifically, Xu, Hutter, Hoos & Leyton-Brown [2007] investigated three methods for
building models in the presence of so-called “censored data” (i.e., when the response variable’s
value is not always observed perfectly, as occurs with capped runs). That paper tested three
methods: (i) discarding all capped runs; (ii) treating capped runs as having terminated at the
captime, and (iii) building models using an iterative method due to Schmee and Hahn [1979],
which arose in the study of survival analysis. Method (iii) produced the best models; thus, we
recommend it above method (ii) which is described in Section 6.2.2.

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 · Kevin Leyton-Brown et al.

to compute than each feature in Sj .
22 The portfolio can start by computing the

easiest features, and iteratively compute the next set only if the expected benefit
exceeds the cost of computation. More precisely:

(1) For each set Sj learn a model c(Sj) that estimates time required to compute it.
This could simply be average time scaled by input size.

(2) Divide the training examples into two sets. Using the first set, train models

M i
1 . . . M i

l , with M i
k predicting algorithm i’s runtime using features in

⋃k
j=1 Sj .

Note that M i
l is the same as the model for algorithm i in our basic portfolio

methodology. Let Mk be a portfolio that selects arg mini M i
k.

(3) Using the second training set, learn models D1 . . .Dl−1, with Dk predicting the
difference in runtime between the algorithms selected by Mk and Mk+1 based
on Sk. The second set should be used to avoid training the difference models
on data to which the runtime models were fit.

Given an instance x, the portfolio now works as follows:

(4) For j = 1 to l

(a) Compute features in Sj

(b) If Dj [x] > c(Sj+1)[x], continue.
(c) Otherwise, return with the algorithm predicted to be fastest according to

Mj.

6.3 Boosting Step 2: Inducing Hard Distributions

It is widely recognized that the choice of test distribution is important for empirically-
driven algorithm development. In the absence of general techniques for generating
instances that are both realistic and hard, the development of new distributions
has usually been performed manually. An excellent example of such work is Sel-
man et al. [1996], which describes a method of generating SAT instances near the
phase transition threshold, which have been observed to be hard for most SAT
solvers. More recently, there has been a conscious effort in the SAT community to
provide generators for hard instances. For example, Achlioptas et al. [2005] and
Jia et al. [2007] hid pre-specified solutions in random formulas that appeared to be
hard. Jia et al. [2004] generated random formulae based on statistical physics spin-
glass models, highlighting the connection between physical phenomena and phase
transitions in SAT.

Once we have decided to solve the algorithm selection problem by selecting among
existing algorithms using a portfolio approach, it makes sense to reexamine the way
we design and evaluate algorithms. Since the purpose of designing a new algorithm
is to reduce the time that it will take to solve problems, designers should aim to
produce new algorithms that complement an existing portfolio rather than seeking
to make it obsolete. Since it is natural to build a new algorithm by attempting
to optimize its average runtime on a given distribution, it is desirable to construct
a new distribution with the property that if algorithm a1 attains higher average

22We assume here that features’ runtimes will have low variance across instances; this assumption
holds in our WDP case study. If feature runtime variance makes it difficult to partition the features
into time complexity sets, smart feature computation becomes somewhat more complicated.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 41

performance on this distribution than algorithm a2, a1 would make a greater con-
tribution to the existing portfolio on the original distribution (measured again in
terms of average runtime) as compared to a2. Note that here we make the simpli-
fying assumption that the portfolio is always able to select the correct algorithm
perfectly; note as well that a1’s contribution to the portfolio will only be weakly
greater in the case where a1 and a2 are both worse than the portfolio on every
instance.

Consider a setting in which the distribution of instances upon which we would like
to optimize our performance is expressed as a distribution over one or more other-
wise unrelated instance generators, and where we vary these generators’ parameters
uniformly within some given ranges. (We have been exploring just such a setting
in our case study.) We call the overall distribution D, and write D = Dg · Dpi

,
where Dg is a distribution over instance generators with different parameter spaces,
and Dpi

is a distribution over the parameters of the chosen instance generator i.
Given a portfolio, the greatest opportunity for improvement is on instances that
are hard for that portfolio, common in D, or both. More precisely, the maximum
amount of performance improvement that can be achieved in a region of problem
space is proportional to the expected amount of time the current portfolio will
spend solving instances in that region. We propose to construct a new distribution
that samples the original distribution in proportion to these maximal opportuni-
ties for improvement. This is analogous to the principle from boosting that new
classifiers should be trained on instances that are hard for the existing ensemble,
in the proportion that they occur in the original training set. Let Hf be a model
of portfolio runtime based on instance features, constructed as the minimum of the
models that constitute the portfolio. By normalizing, we can reinterpret this model
as a density function hf . By the argument above, we should generate instances
from the product of this distribution and our original distribution, D:

D · hf (x) =
D(x)hf (x)

∫

Dhf
.

Unfortunately, it is problematic to sample from D · hf : D is likely to be non-
analytic (since it is implemented through instance generators), while hf depends
on features and so can only be evaluated after an instance has been created. One
way to sample from D · hf is rejection sampling [see, e.g., Doucet et al. 2001]:
generate problems from D and keep them with probability proportional to hf . The
main problem with rejection sampling is that it can generate a very large number
of samples before accepting one.

Rejection is less likely when another distribution is available to guide the sam-
pling process toward hard instances, as occurs in importance sampling. Test dis-
tributions usually have some tunable parameters −→p , and although the hardness of
instances generated with the same parameter values can vary widely, −→p will often
be somewhat predictive of hardness. First we consider the special case where D is
expressed using a single instance generator. In this case, we can generate instances
from D · hf in the following way:

(1) Create a new hardness model Hp, trained using only −→p as features, and nor-
malize it so that it can be used as a pdf, hp.

Journal of the ACM, Vol. V, No. N, Month 20YY.

42 · Kevin Leyton-Brown et al.

(2) Generate a large number of instances from D · hp. Observe that we can sam-
ple from this distribution: first we sample directly from hp, which is possible
because it is a polynomial; this gives us parameter values that we can pass to
the generator.

(3) Construct a distribution over instances by assigning each instance s probability

proportional to
Hf (s)
hp(s) , and select an instance by sampling from this distribution.

23

Observe that if hp turns out to be helpful, hard instances from D · hf will be
encountered quickly. Even when hp directs the search away from hard instances,
observe that we will still sample from the correct distribution because the weights
are divided by hp(s); this is true as long as hp is nonzero wherever hf is nonzero.

When D consists of multiple, unrelated generators, it can be difficult to learn a
single Hp. A good solution is to factor hp as hg · hpi

, where hg is a hardness model
using only the choice of instance generator as a feature, and hpi

is a hardness
model in instance generator i’s parameter space. Likewise, instead of using a single
feature-space hardness model Hf , we can train a separate model for each generator
Hf,i and normalize each to a pdf hf,i.

24 The goal is now to generate instances from
the distribution Dg · Dpi

· hf,i, which can be done as follows:

(1) For every instance generator i, create a hardness model Hpi
with features −→pi ,

and normalize it to create a pdf, hpi
.

(2) Construct a distribution over instance generators hg, where the probability of
each generator i is proportional to the average hardness of instances generated
by i.

(3) Generate a large number of instances from (Dg · hg) · (Dpi
· hpi

)
(a) select a generator i by sampling from Dg · hg;
(b) select parameters for the generator by sampling from Dpi

· hpi
;

(c) run generator i with the chosen parameters to generate an instance.

(4) Construct a distribution over instances by assigning each instance s from gener-

ator i probability proportional to
Hf,i(s)

hg(s)·hpi
(s) , and select an instance by sampling

from this distribution.

Finally, note that these techniques have applications to the generation of distri-
butions with other desired properties. For example, they can be used to induce
“realistic” distributions that better reflect the sorts of problems expected to arise
in practice. This can be achieved when it is possible to construct a function that
scores the realism of a generated instance based on features of the instance. Essen-
tially, we can use this function in place of the hardness model in the procedures
described above.

23In true rejection sampling Step 2 would generate a single instance that would be then accepted
or rejected in Step 3. Our technique approximates this process, but has the advantages that it
does not require us to normalize Hf and that it guarantees we will be able to output an instance
after generating a constant number of samples.
24In our experimental work (e.g., Figures 31–33) we simply use hardness models Hf trained on
the whole data set rather than using models trained on individual distributions. Learning per-
distribution models would likely improve our results even further.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 43

7. PORTFOLIOS AND HARD DISTRIBUTIONS: WDP CASE STUDY

We applied the ideas presented in Section 6 to our WDP case study. Here we
present the results of these experiments, showing that empirical hardness models
can be used in the WDP domain to build effective algorithm portfolios and to
induce harder test distributions.

7.1 Boosting Step 1: Building Algorithm Portfolios

We considered portfolio performance on two data sets: the first of our fixed size
data sets (1000 non-dominated bids, 256 goods), and our variable size data set. In
Section 2.4 we described the collection of CPLEX data for these two data sets. We
also collected runtime data for other algorithms on each of these problem instances.
On the fixed size data set we collected runtime data for GL and CASS (see Sec-
tion 2.1 for their descriptions). For the variable-size data set25 we only considered
CPLEX 8.0 and CASS, since the first data set indicated that GL provided relatively
little benefit to a portfolio. On this data set we established a 12 hour captime for
CASS, motivated by the observation that CASS was unlikely to solve an instance
within any reasonable time if it did not solve it in 12 hours.

We used the methodology from Section 2 to build regression models for GL and
CASS in addition to the CPLEX models that we have already described. Figures
22 and 23 compare the (test set) average runtimes of our three algorithms (CPLEX,
CASS, GL) to that of the portfolio on our fixed-size data set.26. These averages
were computed over instances on which at least one of the algorithms did not time
out, and thus include some capped runtimes. Therefore, the bars in reality represent
lower bounds on average runtimes on these data sets for constituent algorithms.

CPLEX would clearly be chosen under winner-take-all algorithm selection on
both data sets. The “optimal” bar shows the performance of an ideal portfolio where
algorithm selection is performed perfectly and with no overhead. The portfolio bar
shows the time taken to compute features (light portion) and the time taken to
run the selected algorithm (dark portion). Despite the fact that CASS and GL
were much slower than CPLEX on average, the portfolio outperformed CPLEX
by roughly a factor of 3. Moreover, neglecting the cost of computing features,
our portfolio’s selections on average took only 9% longer to run than the optimal
selections.

Figures 24 and 25 show the frequency with which each algorithm would be se-
lected in the ideal portfolio and was selected in our portfolio on the fixed-size data
set. They illustrate the quality of our algorithm selection and the relative value of
the three algorithms for the portfolio. It turns out that CASS was often significantly
uncorrelated with CPLEX, and that most of the speedup in our portfolio came from
choosing CASS on appropriate instances. Observe that the portfolio did not always
make the right choice (in particular, it selected GL and CASS slightly more often
than it should have). However, most of the mistakes made by our models occurred
when both algorithms had very similar running times. These mistakes were not

25Due to the problem discussed in Footnote 13, we did not collect CASS runtimes on the CATS
Paths distribution. Hence, we have dropped Paths instances from the variable-size data set in
this section.
26Note the change of scale on the graph, and the repeated CPLEX bar

Journal of the ACM, Vol. V, No. N, Month 20YY.

44 · Kevin Leyton-Brown et al.

3000

4000

5000

6000

(s
)

0

1000

2000

3000

GL CASS CPLEX

T
im

e

Fig. 22. Algorithm Runtimes (test data,
1000 bids/256 goods).

400

500

600

700

800

(s
)

0

100

200

300

400

CPLEX Optimal Portfolio

T
im

e

Fig. 23. Portfolio Runtimes (test data, 1000
bids/256 goods).

GL 2.1%
CASS
15.7%

CPLEX
82.3%

Fig. 24. Optimal Selection (test data, 1000
bids/256 goods).

GL 2.5%

CASS
16.6%

CPLEX
80.9%

Fig. 25. Portfolio Selection (test data, 1000
bids/256 goods).

very costly, explaining why our portfolio’s choices had a running time so close to
the optimal. This highlights an important point about our portfolio methodology:
algorithm selection can be effective even with fairly weak empirical hardness models.
It is easiest to discriminate among algorithms when their runtimes differ greatly,
and when it becomes harder to discriminate between algorithms it also becomes
less important to do so. (This comes back to the idea that classifiers for algorithm
selection should be trained using a cost-sensitive error metric, discussed earlier in
Section 6.2.1.3.)

Figures 26, 27, 28, and 29 describe portfolio performance on the variable-size
data set. The average gain of using a portfolio was less dramatic here. This is
because CPLEX was able to solve significantly harder instances than CASS, and
thus the average runtime for the portfolio tracked CPLEX’s runtime much more
closely than CASS’s. As Figure 28 demonstrates, it is still the case that CASS
was faster on roughly a quarter of the instances, and the portfolio often correctly
selected CASS instead of CPLEX. However, the amount to be gained on this data
set by choosing CASS over CPLEX was less dramatic. (We cannot be sure whether
this was due to the different distribution of problem sizes or to changes in CPLEX in
version 8.0; we suspect that it was a combination of both.) This data set illustrates
that our portfolio methodology can still offer gains even when one algorithm is
overwhelmingly stronger, though of course these gains are less impressive. It is

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 45

10000

12000

14000

16000

18000

20000

(s
)

0

2000

4000

6000

8000

10000

CASS CPLEX

T
im

e

Fig. 26. Algorithm Runtimes (variable
size).

400

500

600

700

(s
)

0

100

200

300

CPLEX Optimal Portfolio

T
im

e

Fig. 27. Portfolio Runtimes (variable size).

CASS
27.0%

CPLEX
73.0%

Fig. 28. Optimal Selection (variable size).

CASS
27.9%

CPLEX
72.1%

Fig. 29. Portfolio Selection (variable size).

noteworthy that the portfolio still did outperform CPLEX on this data set. Observe
that the portfolio selected CASS more than a quarter of the time, and it could easily
have achieved dramatically worse performance than CPLEX if even a small fraction
of these picks had been instances on which CASS is very slow.

Some points previously discussed in Section 5 provide insight into reasons that
an algorithm like CASS was able to provide such large gains over algorithms like
CPLEX and GL on a significant fraction of instances. Unlike CASS, both GL and
CPLEX use an LP relaxation heuristic. It is possible that when the number of
constraints (and thus the node degree measures) increases, such heuristics become
less accurate, or larger LP input size incurs substantially higher per-node costs.
On the other hand, additional constraints reduce the size of the feasible search
space. CASS often benefits when the search space becomes smaller; thus, CASS
can achieve better overall performance on problems with a very large number of
constraints.

These results show that our portfolio methodology can work very well even with
a small number of algorithms, and when one algorithm’s average performance is
considerably better than the others’. Of course, it is likely that our techniques
would have allowed us to construct a much stronger portfolio if we had used a
larger set of algorithms and/or stronger competitors to CPLEX. As we mentioned
earlier, we did just this for the SAT problem in our work on SATzilla [Nudelman
et al. 2004a; Xu et al. 2007; 2008].

Journal of the ACM, Vol. V, No. N, Month 20YY.

46 · Kevin Leyton-Brown et al.

250

300

e
(s

)

150

200

Regular Smart

T
im

e

Fig. 30. Smart Features (test data, 1000 bids/256 goods)

7.1.1 Portfolio Extensions. Figure 30 shows the performance of the smart fea-
ture computation discussed in Section 6.2.4, with the upper part of the bar indicat-
ing the time spent computing features. (Observe that the y axis does not begin at
0.) Compared to computing all features, we reduce overhead by almost half with
very slight degradation of portfolio performance.27

7.2 Boosting Step 2: Inducing Hard Distributions

Figure 31 shows a runtime CDF for our original fixed-size distribution (i.e., our
gross hardness graph from Figure 4 aggregated across generators) and the new,
harder distribution induced using our sampling technique.28 Both series in this fig-
ure represent data capped at the same limit. Because the original data was capped,
there is no way to know if the hardest instances in the new distribution are harder
than the hardest instances in the original distribution without rerunning experi-
ments; note, however, that very few easy instances were generated. Instances in
the induced distribution came predominantly from the CATS arbitrary distribution,
with most of the rest from L3.

Based on the wide spread of runtimes in our composite distribution D (seven
orders of magnitude) and the high accuracy of our model hf , one might argue that
it was quite easy for our technique to generate harder instances. To demonstrate
that our technique also works in more challenging settings, we sought an initial
distribution with small runtime variance. As mentioned in Section 3.2.2, there has
been ongoing discussion in the WDP literature about whether those CATS distri-
butions that are relatively easy could be configured to be harder [see, e.g., Gonen
and Lehmann 2000; Sandholm et al. 2001]. We consider two distributions from
CATS that, at their default settings, were easy with low variance: matching and
scheduling. We show that these distributions can indeed be made much harder
than originally proposed. Figures 32 and 33 show the CDFs of the runtimes of

27This figure was obtained in our previous work [Leyton-Brown et al. 2002], using models that
are slightly different from the models used for the rest of the results in this paper. Unfortunately
we cannot regenerate the figure for the same reason that we cannot add Paths data where it is
missing: we no longer have access to the computers upon which we ran these experiments, and so
we cannot collect data with which we could make accurate running time comparisons. However,
we have verified that the performance of the models from our previous work [Leyton-Brown et al.
2002] is virtually identical to that of the new ones.
28Again, these results are based on models used in past work [Leyton-Brown et al. 2002].

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 47

40%50%60%70%80%90%100%
ncesS ol ved 0%10%20%30%40%

0.01 0.1 1 10 100 1000 10000 100000I nst an Runt ime (s) Old New
Fig. 31. Inducing Harder Distributions (test data, 1000 bids/256
goods)

60%80%100%cesS ol ved 0%20%40%0.01 0.1 1 10I nst an c Runtime (s) Old New
Fig. 32. Matching (test data, 1000 bids/256
goods)

60%80%100%cesS ol ved 0%20%40%0.0 1 0. 1 1 10I nstanc Runtime (s) Old New
Fig. 33. Scheduling (test data, 1000
bids/256 goods)

the ideal portfolio before and after our technique was applied. In fact, for these
two distributions we generated instances that were (respectively) 100 and 50 times
harder than anything we had previously seen! Moreover, the average runtime for
the new distributions was greater than the observed maximum running time on the
original distribution.

8. CONCLUSIONS

In this paper we proposed a general methodology for understanding the empiri-
cal hardness of NP-complete problems on potentially complex, high-dimensional
instance distributions. Although we have presented linear and quadratic regres-
sion as our main learning algorithms, our methods are more general and may be
used with any learning technique. (We do, however, believe that regression tech-

Journal of the ACM, Vol. V, No. N, Month 20YY.

48 · Kevin Leyton-Brown et al.

niques are more appropriate to this problem than classification techniques.) We
believe that our methodology is applicable to a wide variety of hard computational
problems.

Of course, a proposed empirical methodology is just an opinion without experi-
mental evidence to support its use. To validate our methodology, we performed an
extensive experimental investigation into the empirical hardness of the combinato-
rial auction winner determination problem. We identified structural, distribution-
independent features of WDP instances and showed that—to our great initial
surprise—they contain enough information to predict CPLEX’s running time with
high accuracy (see, e.g., Table II). Software for performing all of the feature selec-
tion, model building, subset selection and portfolio construction described in this
paper is publicly available at http://cs.ubc.ca/~kevinlb/downloads.html, as is all
the data needed to replicate our experiments.

We have also argued that, given accurate empirical hardness models, algorithm
design should be guided by the boosting metaphor. Empirical hardness models can
be used to combine algorithms together into a portfolio that outperforms each of its
constituents. We argued that algorithm design should focus on problem instances
upon which a portfolio of existing algorithms spends most of its time, and pro-
vided techniques for using empirical hardness models to induce such distributions
automatically.

We performed experiments on WDP algorithms, and showed that a portfolio
composed of CPLEX, CASS and GL can outperform CPLEX alone by a factor of
3—despite the fact that CASS and GL are much slower than CPLEX on average
(see Figures 22 and 23). We were also able to induce a benchmark distribution
that was much harder for our portfolio, and were even able to make specific CATS
distributions much harder (see Figures 31, 32, and 33).

ACKNOWLEDGMENTS

The work presented in this paper is based in part on previously published work
[Leyton-Brown et al. 2002; Leyton-Brown et al. 2003b; 2003a; Leyton-Brown et al.
2006]. We would like to thank the following for their contributions to our work.
First, our coauthors: Galen Andrew and Jim McFadden co-wrote the second and
third of these papers with us; this paper draws substantially on that work and in
a few sections (e.g., 6.2.4 and 6.3) adapts text written by Galen and Jim. Holger
Hoos and Alex Devkar were coauthors on our work on random SAT [Nudelman
et al. 2004b], some ideas from which are reflected in the methodological sections
of this paper. The work described here has been further followed up on in papers
co-written with Youssef Hamadi, Holger H. Hoos, Frank Hutter, and Lin Xu; please
see the citations in Section 1.4. Second, we would like to acknowledge individuals
who gave us assistance and helpful discussions: Rámon Béjar, Nando de Freitas,
Carla Gomes, Henry Kautz, Ryan Porter, Bart Selman, Lyle Ungar and Ioannis
Vetsikas. Thanks to Frank Hutter for identifying some last-minute bugs in our
feature generation code, and especially to Lin Xu for fixing these bugs, rebuilding
models using the corrected data, and helping with the generation of corrected tables
and figures.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 49

REFERENCES

Achlioptas, D. 2001. Lower bounds for random 3-SAT via differential equations. Theoretical
Computer Science 265, 1–2, 159–185.

Achlioptas, D., Beame, P., and Molloy, M. 2004. A sharp threshold in proof complexity
yields lower bounds for satisfiability search. Journal of Computer and System Sciences 68, 2,
238–268.

Achlioptas, D., Gomes, C. P., Kautz, H. A., and Selman, B. 2000. Generating satisfiable
problem instances. In AAAI: Proceedings of the AAAI Conference on Artificial Intelligence.
256–261.

Achlioptas, D., Jia, H., and Moore, C. 2005. Hiding Satisfying Assignments: Two are Better
than One. JAIR: Journal of Artificial Intelligence Research 24, 623–639.

Anderson, A., Tenhunen, M., and Ygge, F. 2000. Integer programming for combinatorial
auction winner determination. In ICMAS: Proceedings of the International Conference on
Multiagent Systems. 39–46.

Beame, P., Karp, R., Pitassi, T., and Saks, M. 1998. On the complexity of unsatisfiability
proofs for random k-CNF formulas. In STOC: Proceedings of the Annual ACM Symposium on
Theory of Computing. 561–571.

Brewer, E. 1994. Portable high-performance supercomputing: high-level platform-dependent
optimization. Ph.D. thesis, Massachusetts Institute of Technology.

Brewer, E. 1995. High-level optimization via automated statistical modeling. In SIGPLAN:
Proceedings of the ACM Symposium on Principles and Practice of Parallel Programming. 80–
91.

Carchrae, T. and Beck, J. C. 2005. Applying machine learning to low knowledge control of
optimization algorithms. Computational Intelligence 21, 4, 372–387.

Chaloner, K. and Verdinelli, I. 1995. Bayesian experimental design: A review. Statistical
Science 10, 273–304.

Cheeseman, P., Kanefsky, B., and Taylor, W. M. 1991. Where the really hard problems are.
In IJCAI: Proceedings of the International Joint Conference on Artificial Intelligence. 331–337.

Cocco, S. and Monasson, R. 2004. Heuristic average-case analysis of the backtrack resolution
of random 3-satisfiability instances. Theoretical Computer Science 320, 2-3, 345–372.

Cramton, P., Shoham, Y., and Steinberg, R., Eds. 2006. Combinatorial Auctions. MIT Press.

de Farias, D. P. and Megiddo, N. 2004. How to combine expert (or novice) advice when actions
impact the environment. In NIPS: Proceedings of the Neural Information Processing Systems
Conference.

de Vries, S. and Vohra, R. 2003. Combinatorial auctions: A survey. INFORMS Journal of
Computing 15, 3, 284–309.

Diao, Y., Eskesen, F., Proehlich, S., Hellerstein, J., Spainhower, L., and Surendra, M.

2003. Generic Online Optimization of Multiple Configuration Parameters with Application
to a Database Server. Proceedings of the IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management .

Doucet, A., de Freitas, N., and Gordon, N., Eds. 2001. Sequential Monte Carlo Methods in
Practice. Springer-Verlag.

Dubois, O. and Boufkhad, Y. 1997. A general upper bound for the satisfiability threshold of
random r-SAT formulae. Journal of Algorithms 24, 2, 395–420.

Dubois, O., Boufkhad, Y., and Mandler, J. 2000. Typical random 3-SAT formulae and the
satisfiability threshold. In SODA: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms. 126–127.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. 2004. Least angle regression. Annals
of statistics, 407–451.

Epstein, S., Freuder, E., Wallace, R., Morozov, A., and Samuels, B. 2002. The adap-
tive constraint engine. In CP: Proceedings of the International Conference on Principles and
Practice of Constraint Programming. 525–540.

Journal of the ACM, Vol. V, No. N, Month 20YY.

50 · Kevin Leyton-Brown et al.

Franco, J. 2001. Results related to threshold phenomena research in satisfiability: lower bounds.

Theoretical Computer Science 265, 1–2, 147–157.

Friedman, J. 1991. Multivariate adaptive regression splines. Annals of Statistics 19, 1, 1–141.

Frieze, A. and Suen, S. 1996. Analysis of two simple heuristics on a random instance of k-SAT.
Journal of Algorithms 20, 2, 312–355.

Fujishima, Y., Leyton-Brown, K., and Shoham, Y. 1999. Taming the computational complexity
of combinatorial auctions: Optimal and approximate approaches. In IJCAI: Proceedings of the
International Joint Conference on Artificial Intelligence. 548–553.

Gagliolo, M. and Schmidhuber, J. 2006. Learning dynamic algorithm portfolios. Annals of
Mathematics and Artificial Intelligence 47, 3-4, 295–328.

Gebruers, C. and Guerri, A. 2004. Machine learning for portfolio selection using structure at the
instance level. In Principles and Practice of Constraint Programming, Doctoral Consortium.

Gebruers, C., Guerri, A., Hnich, B., and Milano, M. 2004. Making choices using structure at
the instance level within a case based reasoning framework. In CPAIOR: International Confer-
ence on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems. 380–386.

Gebruers, C., Hnich, B., Bridge, D., and Freuder, E. 2005. Using CBR to select solution
strategies in constraint programming. In ICCBR: Proceedings of the International Conference
on Case-Based Reasoning. 222–236.

Goldsmith, S., Aiken, A., and Wilkerson, D. 2007. Measuring empirical computational com-
plexity. In Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering.
ACM New York, NY, USA, 395–404.

Goldszmidt, M. 2007. Making life better one large system at a time: Challenges for UAI research.
In UAI: Proceedings of the Conference on Uncertainty in Artificial Intelligence.

Gomes, C., Fernández, C., Selman, B., and Bessière, C. 2004. Statistical regimes across
constrainedness regions. In CP: Proceedings of the International Conference on Principles and
Practice of Constraint Programming.

Gomes, C. and Selman, B. 2001. Algorithm portfolios. Artificial Intelligence 126, 1-2, 43–62.

Gomes, C., Selman, B., Crato, N., and Kautz, H. 2000. Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems. Journal of Automated Reasoning 24, 1–2, 67–100.

Gomes, C. P. and Selman, B. 1997. Problem structure in the presence of perturbations. In
AAAI: Proceedings of the AAAI Conference on Artificial Intelligence. 221–226.

Gonen, R. and Lehmann, D. 2000. Optimal solutions for multi-unit combinatorial auctions:
Branch and bound heuristics. In EC: Proceedings of the ACM Conference on Electronic Com-
merce. 13–20.

Gonen, R. and Lehmann, D. 2001. Linear programming helps solving large multi-unit combi-
natorial auctions. Tech. Rep. TR-2001-8, Leibniz Center for Research in Computer Science.
April.

Guo, H. and Hsu, W. 2007. A machine learning approach to algorithm selection for NP-hard
optimization problems. Annals of Operations Research 156, 1 (December), 61–82.

Hastie, T., Tibshirani, R., and Friedman, J. 2001. Elements of Statistical Learning. Springer.

Hoos, H. and Boutilier, C. 2000. Solving combinatorial auctions using stochastic local search.
In AAAI: Proceedings of the AAAI Conference on Artificial Intelligence. 22–29.

Hoos, H. H. and Stützle, T. 1999. Towards a characterisation of the behaviour of stochastic
local search algorithms for SAT. Artificial Intelligence 112, 1-2, 213–232.

Hoos, H. H. and Stützle, T. 2004. Stochastic Local Search: Foundations and Applications.

Morgan Kaufmann.

Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., and Chickering, M. 2001. A
Bayesian approach to tackling hard computational problems. In UAI: Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence. 235–244.

Huberman, B., Lukose, R., and Hogg, T. 1997. An economics approach to hard computational
problems. Science 265, 51–54.

Journal of the ACM, Vol. V, No. N, Month 20YY.

Empirical Hardness Models: Methodology and a Case Study on Combinatorial Auctions · 51

Hutter, F., Hamadi, Y., Hoos, H. H., and Leyton-Brown, K. 2006. Performance prediction

and automated tuning of randomized and parametric algorithms. In CP: Proceedings of the In-
ternational Conference on Principles and Practice of Constraint Programming. Lecture Notes
in Computer Science 4204. Springer Berlin, 213–228.

Jia, H., Moore, C., and Selman, B. 2004. From spin glasses to hard satisfiable formulas. In
SAT: Proceedings of the International Conference on Theory and Applications of Satisfiability
Testing. 199–210.

Jia, H., Moore, C., and Strain, D. 2007. Generating Hard Satisfiable Formulas by Hiding
Solutions Deceptively. Journal of Artificial Intelligence Research 28, 107–118.

Knuth, D. 1975. Estimating the efficiency of backtrack programs. Mathematics of Computa-
tion 29, 129, 121–136.

Kohavi, R. and John, G. 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 1–
2, 273–324.

Kolaitis, P. 2003. Constraint satisfaction, databases and logic. In IJCAI: Proceedings of the
International Joint Conference on Artificial Intelligence. 1587–1595.

Korf, R. and Reid, M. 1998. Complexity analysis of admissible heuristic search. AAAI: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 305–310.

Lagoudakis, M. and Littman, M. 2000. Algorithm selection using reinforcement learning. In
ICML: Proceedings of the International Conference on Machine Learning. 511–518.

Lagoudakis, M. and Littman, M. 2001. Learning to select branching rules in the DPLL pro-
cedure for satisfiability. In SAT: Proceedings of the International Conference on Theory and
Applications of Satisfiability Testing. 344–359.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., and Shoham, Y. 2003a. Boost-
ing as a metaphor for algorithm design. In CP: Proceedings of the International Conference
on Principles and Practice of Constraint Programming. 899–903.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., and Shoham, Y. 2003b. A
portfolio approach to algorithm selection. In IJCAI: Proceedings of the International Joint
Conference on Artificial Intelligence. 1542–1543.

Leyton-Brown, K., Nudelman, E., and Shoham, Y. 2002. Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. In CP: Proceedings of the Interna-
tional Conference on Principles and Practice of Constraint Programming. 556–572.

Leyton-Brown, K., Nudelman, E., and Shoham, Y. 2006. Empirical hardness models for
combinatorial auctions. See Cramton et al. [2006], Chapter 19, 479–504.

Leyton-Brown, K., Pearson, M., and Shoham, Y. 2000. Towards a universal test suite for
combinatorial auction algorithms. In EC: Proceedings of the ACM Conference on Electronic
Commerce. 66–76.

Leyton-Brown, K., Shoham, Y., and Tennenholtz, M. 2000. An algorithm for multi-unit com-
binatorial auctions. In AAAI: Proceedings of the AAAI Conference on Artificial Intelligence.
56–61.

Lobjois, L. and Lemâıtre, M. 1998. Branch and bound algorithm selection by performance
prediction. In AAAI: Proceedings of the AAAI Conference on Artificial Intelligence. 353–358.

Mason, R. L., Gunst, R. F., and Hess, J. L. 2003. Statistical Design and Analysis of Experi-
ments. Wiley-Interscience.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., and Troyansky, L. 1998. Deter-
mining computational complexity for characteristic ‘phase transitions’. Nature 400, 133–137.

Nisan, N. 2000. Bidding and allocation in combinatorial auctions. In EC: Proceedings of the
ACM Conference on Electronic Commerce. 1–12.

Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., and Hoos, H. H. 2004a. SATzilla:
An algorithm portfolio for SAT. In International Conference on Theory and Applications of
Satisfiability Testing, SAT 2004 Competition: Solver Descriptions. 13–14.

Nudelman, E., Leyton-Brown, K., Devkar, A., Shoham, Y., and Hoos, H. H. 2004b. Un-
derstanding random SAT: Beyond the clauses-to-variables ratio. In CP: Proceedings of the
International Conference on Principles and Practice of Constraint Programming. 438–452.

Rice, J. R. 1976. The algorithm selection problem. Advances in Computers 15, 65–118.

Journal of the ACM, Vol. V, No. N, Month 20YY.

52 · Kevin Leyton-Brown et al.

Rothkopf, M., Pekeč, A., and Harstad, R. 1998. Computationally manageable combinatorial

auctions. Management Science 44, 8, 1131–1147.

Ruan, Y., Horvitz, E., and Kautz, H. 2002. Restart policies with dependence among runs:
A dynamic programming approach. In CP: Proceedings of the International Conference on
Principles and Practice of Constraint Programming. 573–586.

Sandholm, T. 1999. An algorithm for optimal winner determination in combinatorial auctions. In
IJCAI: Proceedings of the International Joint Conference on Artificial Intelligence. 542–547.

Sandholm, T. 2002. Algorithm for optimal winner determination in combinatorial auctions.
Artificial Intelligence 135, 1, 1–54.

Sandholm, T., Suri, S., Gilpin, A., and Levine, D. 2001. CABOB: A fast optimal algorithm
for combinatorial auctions. In IJCAI: Proceedings of the International Joint Conference on
Artificial Intelligence. 1102–1108.

Sandholm, T., Suri, S., Gilpin, A., and Levine, D. 2005. CABOB: A fast optimal algorithm
for winner determination in combinatorial auctions. Management Science 51, 3, 374–390.

Schapire, R. 1990. The strength of weak learnability. Machine Learning 5, 197–227.

Schmee, J. and Hahn, G. J. 1979. A simple method for regression analysis with censored data.
Technometrics 21, 4, 417–432.

Selman, B., Mitchell, D. G., and Levesque, H. J. 1996. Generating hard satisfiability problems.
Artificial Intelligence 81, 1-2, 17–29.

Slaney, J. and Walsh, T. 2001. Backbones in optimization and approximation. In IJCAI:
Proceedings of the International Joint Conference on Artificial Intelligence. 254–259.

Streeter, M., Golovin, D., and Smith, S. F. 2007. Combining multiple heuristics online. In
AAAI: Proceedings of the AAAI Conference on Artificial Intelligence. 1197–1203.

Williams, R., Gomes, C., and Selman, B. 2003. Backdoors to typical case complexity. In IJCAI:
Proceedings of the International Joint Conference on Artificial Intelligence. 1173–1178.

Xu, L., Hoos, H. H., and Leyton-Brown, K. 2007. Hierarchical hardness models for SAT.
In CP: Proceedings of the International Conference on Principles and Practice of Constraint
Programming. Lecture Notes in Computer Science 4741. 696–711.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2007. SATzilla-07: the design and
analysis of an algorithm portfolio for SAT. In CP: Proceedings of the International Conference
on Principles and Practice of Constraint Programming. Lecture Notes in Computer Science
4741. 712–727.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2008. SATzilla: portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565–606.

Zhang, W. 1999. State-Space Search: Algorithms, Complexity, Extensions, and Applications.
Springer.

Zhang, W. 2001. Phase transitions and backbones of 3-SAT and maximum 3-SAT. In CP:
Proceedings of the International Conference on Principles and Practice of Constraint Pro-
gramming.

Zheng, A., Jordan, M., Liblit, B., and Aiken, A. 2003. Statistical debugging of sampled

programs. In NIPS: Proceedings of the Neural Information Processing Systems Conference.

Received October, 2005; revised May–October, 2008; accepted March, 2009

Journal of the ACM, Vol. V, No. N, Month 20YY.

