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ABSTRACT
Due to the economic importance of the position auctions
used by search engines to sell advertising, these auctions
have received considerable recent study. However, most of
this study has been analytic, and these analyses have relied
on strong assumptions about the structure of the setting.
In this paper, we show that it is feasible to perform com-
putational equilibrium analyses of complex, realistic auction
problems like advertising auctions. In particular, we show
for the first time that the Nash equilibria of position auc-
tions can be computed exactly, and we do so without relying
on any of the assumptions that are necessary for closed-form
analysis. We achieve these results by deriving a polynomial-
sized action graph game representation of the position auc-
tion (discretizing bid amounts) and then finding a Nash equi-
librium of that game. Our formulation makes it possible to
show how equilibrium behavior, revenue and efficiency vary
across auction types (Generalized First Price or Generalized
Second Price), payment structures (pay-per-click or pay-per-
impression), and click-through bias (position does/does not
also depend on advertiser’s click-through rate).

1. INTRODUCTION
Modern search engines derive their revenue from contextual
advertising: given a user’s keyword search, the engine pro-
vides relevant ads alongside the results. The search engine
chooses which ads to show based on the results of “posi-
tion auctions” that are conducted automatically every time
a search is performed. In a position auction, higher bids are
awarded higher positions in the list of ads, but also made
to pay larger amounts. In what follows we explain posi-
tion auctions, describing different versions of auction type
(GFP/GSP), payment structure (pay-per-click/pay-per-im-
pression) and click-through bias (position does/does not also
depend on advertiser’s click-through rate)

First, we describe auction type. The two most common
types of position auctions are generalized first-price and gen-
eralized second-price; these are the types upon which we
focus in this paper. Both auction types ask bidders to sub-

mit single-value bids and then rank the bids from highest
to lowest, awarding the highest bidder the highest position,
the second-highest bidder the second-highest position, and
so on. The auction types differ in the way that bidders are
charged. In a generalized first-price auction (GFP) each bid-
der who wins a position pays the amount that he bid. In a
generalized second-price auction (GSP), on the other hand,
each bidder pays the minimum amount that he would have
had to bid to maintain his awarded position. (For example,
the highest bidder pays the amount of the second-highest
bid, because if he had bid less than this amount, he would
have received the second position instead of the first.) The
earliest position auctions deployed commercially were GFP,
but all of the major search engines have since adopted GSP.

Second, position auctions differ according to whether they
require bidders to pay per impression or pay per click. In a
pay-per-impression auction, the bidder must pay every time
his ad is shown, while in a pay-per-click auction, the bidder
only pays when a user clicks on his ad. Search engines use
pay-per-click auctions, though pay-per-impression advertis-
ing is used in other online contexts such as banner ads.

Finally, some ads are more frequently clicked on than others.
Some search engines bias their auction rules to take this fact
into account. Specifically, they assign each ad a “quality
score” that reflects its likelihood of receiving a click, and
rank bids by the product of the bid and the quality score
(i.e., by the expected revenue that the ad will yield) rather
than by the bid amount alone. We refer to auctions that
rank by quality score as weighted auctions, to auctions that
rank only by bid amount as unweighted auctions, and to the
product of a bid and a quality score as an effective bid.

1.1 AGGs
Since analyses of position auctions have relied on perfect-
information games, in principle we could discretize bid amounts
and then represent the auction as a normal-form game. This
would have the advantage that Nash equilibria of the auction
could be identified by standard computational tools such as
Gambit [22]. The catch, of course, is that the normal form
representation of a realistic ad auction problem is unman-
ageably large. For example, the normal form representation
of a relatively small game with 10 agents and 10 bid amounts
per agent consists of 100 billion values, too many to store
even on the hard drive of many modern computers—let alone
in RAM. Thus, to have any hope of tackling position auc-
tions computationally, it is necessary to work with a rep-
resentation language that allows the game to be compactly
described.



We chose to use the action-graph game (AGG) represen-
tation [5, 15]. Action-graph games are similar to the more
widely-known graphical game representation [16] in that they
exploit utility independencies. AGGs are strictly more pow-
erful than graphical games, however. This is because AGGs
are compact not only for games with “strict utility indepen-
dencies” (the property that one agent’s payoff never depends
on some second agent’s action) but also “context-specific in-
dependencies” (one agent’s payoff is independent of a second
agent’s action, at least for some action of the first agent and
some set of actions of the second). This distinction is im-
portant for modeling position auctions. Note that any bid-
der can affect any other bidder’s payoff (e.g., by outbidding
him); hence the graphical game representation of a perfect-
information position auction is a clique, meaning that it is no
more compact than the normal form. However, position auc-
tions have considerable context-specific independence struc-
ture. To give one simple example, in a GFP auction, bidder
i’s utility is independent of bidder j’s bid, conditional on j
bidding less than i. This is the sort of structure that can be
captured by AGGs.

The core idea behind action-graph games is the action graph,
so-called because nodes in this directed graph represent ac-
tions. Each agent is allowed to choose his action from an
arbitrary subset of the nodes; crucially, agents’ subsets are
allowed to overlap or coincide. Play of the game can be vi-
sualized as each agent simultaneously placing a single token
on one of the nodes in the graph. Given the locations of
all the tokens, an agent’s utility can be computed by refer-
ring only to the number of tokens in the neighborhood of his
chosen node. (The neighborhood of a node v is the set of
all nodes having outgoing edges that point to v; self-edges
are allowed, and so a node can belong to its own neighbor-
hood.) Figure 1 gives an example of an action-graph game
taken from [5]. Observe that there are two action sets con-
sisting of four actions each; unlike in a graphical game, the
number of agents cannot be inferred from the graph.

Their compact size is not the only interesting thing about
AGGs. More importantly, AGG structure can be lever-
aged computationally, and hence game-theoretic computa-
tions can be performed dramatically more quickly for AGGs
than for games represented in normal form. For example,
given action graphs with bounded in-degree, a polynomial-
time dynamic programming algorithm can be used to com-
pute an agent’s expected utility under an arbitrary mixed
strategy profile [15]. (Observe that this is interesting be-
cause the standard method of computing expected utility
has running time polynomial in the size of the normal form,
but potentially exponential in the size of more compact rep-
resentations like AGGs.) This computational problem is
important because it constitutes the inner loop of many
game-theoretic algorithms, including state-of-the-art algo-
rithms for computing Nash equilibria like Simplicial Sub-
division [26] and Govindan-Wilson [14]. This implies that
an exponential speedup to the solution of the expected util-
ity problem translates directly to an exponential speedup of
such algorithms, without any effect on the solution obtained.

Although it is beyond the scope of this paper to describe
AGGs in detail, there is one further element of the rep-
resentation that we must describe here. Specifically, it is
possible to add so-called function nodes to the action graph,
which are nodes that belong to no agents’ action sets. In-
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Figure 1: AGG representation of an
arbitrary 3-player, 3-action game
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Figure 2: AGG representation of a
3-player, 3-action graphical game
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Figure 3: AGG representation of the
ice cream vendor game

locations along a beach. Vendors are of two kinds, choco-
late and vanilla. Chocolate (vanilla) vendors are nega-
tively affected by the presence of other chocolate (vanilla)
vendors in the same or neighboring locations, and are si-
multaneously positively affected by the presence of nearby
vanilla (chocolate) vendors. Note that this game exhibits
context-specific independence without any strict indepen-
dence, and that the graph structure is independent ofn.

Other examples of compact AGGs that cannot be com-
pactly represented as graphical games include: location
games, role formation games, traffic routing games, prod-
uct placement games and party affiliation games.

2.3 Notation

Letϕ(X) denote the set of all probability distributions over
a setX. Define the set of mixed strategies fori as

Σi ≡ ϕ(Si), (5)

and the set of all mixed strategy profiles as

Σ ≡
∏

i∈N

Σi. (6)

We denote an element ofΣi by σi, an element ofΣ by σ,
and the probability that playeri plays actions by σi(s).

Next, we give notation for applying some of the concepts
defined in Section 2.1 to situations where one or more
agents are omitted. By∆−{i,i′} we denote the set of pos-
sible distributions of agents other thani and i′, and by
D−{i,i′} we denote an element of∆−{i,i′}. Analogously,
we defineN−{i,i′}, S−{i,i′}, Σ−{i,i′} and σ−{i,i′}. As a
shorthand for the subscript−{i, i′}, which we will need
frequently in the remainder of the paper, we use an overbar,
yielding ∆, D, N, S, S, Σ andσ . When only one agent is
omitted, we writee.g. ∆−i. Finally, we overload our no-
tation, denoting byD(si, s

′
i, D) the distribution that results

when the actions ofi andi′ are added toD.

Define the expected utility to agenti for playing pure strat-
egy s, given that all other agents play the mixed strategy
profileσ−i, as

V i
s (σ−i) ≡

∑

s−i∈S−i

u(s, s−i) Pr(s−i|σ−i). (7)

The set ofi’s pure strategy best responses to a mixed strat-
egy profileσ−i is arg maxs V i

s (σ−i), and hence the full set
of i’s pure and mixed strategy best responses toσ−i is

BRi(σ−i) ≡ ϕ(arg max
s

V i
s (σ−i)). (8)

A strategy profileσ is a Nash equilibrium iff

∀i ∈ N, σi ∈ BRi(σ−i). (9)

Finally, we describe the projection of a distribution of
agents onto a smaller action space. Intuitively we construct
a graph from the point of view of an agent who took a par-
ticular action, expressing his indifference between actions
that do not affect his chosen action. For every actions ∈ S
define a reduced graphG(s) by including only the nodes
ν(s) and a new node denoted∅. The only edges included
in G(s) are the directed edges from each of the nodesν(s)
to the nodes. The projected distributionD(s) is defined
over the nodes ofG(s) as

D(s)(s′) ≡
{

D(s′) s′ ∈ ν(s)∑
s′′ 6∈ν(s) D(s′′) s′ = ∅ . (10)

In the analogous way, we defineS(s), s(s), Σ(s) andσ(s).

Figure 1: Taken from [5]. The ice-cream vendor
game as an AGG. Chocolate and vanilla ice-cream
vendors must choose which block to open their
stores on, given that their payoffs will depend on
how many other vendors are within one block of
their location. (Circular nodes represent actions,
dotted boxes represent action sets for a group of
players and arcs represent payoff dependencies.)

stead, the “action count” at a function node is calculated
as an (arbitrary) deterministic function of the counts at the
function node’s parents. For example, when an agent’s pay-
off for playing a depends on how many agents play any of b, c
or d, we can add a summation node to reduce the in-degree
of a. Function nodes can dramatically reduce representa-
tion size when (for example) many actions affect a given
action in the same way. As long as the functions are well-
behaved (“contribution-independent”; roughly, commutative
and associative) function nodes can be used with the dy-
namic programming algorithm from [15]. Since the variable
most important to the asymptotic running time of this al-
gorithm is the maximal in-degree of action nodes, and since
this quantity can be drastically reduced by the introduction
of high-in-degree function nodes, function nodes can also
lead to substantial computational savings.

2. MODEL AND REPRESENTATION
2.1 Ad auction setting
In our evaluation of auction types, we use the following
model. As in previous work [28, 11, 18], we look for the
equilibria of the one-shot, full-information game.

Definition 1 (Ad auction setting). An ad auction
setting is given by a 6-tuple (N, K, M, P, V, β):

1. N is the set of bidders;

2. K is the set of possible positions;

3. M is the set of possible bids;

4. P is a matrix of click-through rates, where Pj,i is the
probability that bidder i will receive a click when his ad
is in position j;

5. V is a matrix of expected values for a click, where Vj,i

is the value that bidder i has for a click when his ad is
in position j; and



6. β is a vector of “quality scores” or weights, where βi/βj

denotes the quality of bidder i relative to bidder j.

2.2 Representing GFPs as Action-Graph Games
Having described the auction types and model that we in-
tend to solve, our next step is to show that they can be
compactly represented. This section will present algorithms
for representing an ad auction type (for example, weighted
per-click GSP) and auction setting as an action-graph game
and bounds on the size of those representations.

To get a suitably compact representation, one of our biggest
concerns is the maximum in-degree of our action graph. Ev-
ery action node must have a table representing that action’s
payoff function, and this table will grow exponentially in the
in-degree of that action node. An arc (u, v) in an AGG de-
notes that the payoff for playing action v depends on the
number of agents playing u. However, note that an agent’s
payoff depends only on the position he is awarded and the
price he is made to pay. In the case of a GFP, an agent’s price
is determined by his bid while his position is determined by
the number of bids above his and the number of bids equal
to his. (We assume that ties are broken randomly.) His
position can be affected by many different actions by other
bidders, leading to a very large in-degree. However, if we
introduce function nodes corresponding to summation (we
will call these summation nodes) to keep track of how many
bids are equal to or greater than each possible bid value, we
need only two in-arcs to capture the two values.

Algorithm 1 converts a weighted (or, as a special case, un-
weighted1) GFP to an AGG. An example AGG is shown in
Figure 2.

foreach agent i ∈ N do
foreach bid m ∈M do

create an action node representing i bidding m;

E ← {mβi|∀i ∈ N, ∀m ∈M};
foreach effective bid e ∈ E do

create a summation function node, (=, e) representing
the bidders bidding exactly e;
create a summation function node, (≥, e) representing
the bidders bidding above e;
add an arc from (=, e) to (≥, e);
if e>0 then

add an arc from (≥, e) to (≥, e′) (where e′ is the
next largest effective bid);

foreach action node a do
e← effective bid of a;
add an arc from a to (=, e);
add an arc from (=, e) to a;
add an arc from (≥, e) to a;

Algorithm 1: An algorithm for converting an auction set-
ting into an action graph representing a GFP.

For each action node, we must have a payoff function map-
ping from the inputs to that node to the payoff an agent
playing that action will get. For a bid of b by agent i, we
denote this as γ1,I

i,b for a pay-per-impression GFP. Because

1Trivially, this algorithm can also be used to represent an
unweighted GFP by replacing β with a vector of ones, caus-
ing the auction to treat bids by different agents equivalently.

of the configuration of the summation nodes, the two in-
puts to this function are the number of effective bids that
are equal to i’s bid of b and the number that are greater
than or equal. The payoff function for any action node in a
pay-per-impression GFP is given by

γ1,I
i,b (e, g) =

1

e

min(g,k)X
j=g−e+1

(Pj,iVj,i − b).

Similarly, the payoff function for any action node in a pay-
per-click GFP is given by

γ1,C
i,b (e, g) =

1

e

min(g,k)X
j=g−e+1

Pj,i(Vj,i − b).

This representation results in a graph containing nm action
nodes, each of which has an in-degree of two. Each node has
a payoff table with at most O(n2) relevant entries. Thus,
this representation requires O(n3m) space.

2.3 Representing GSPs as Action-Graph Games
GSPs are similar to GFPs in that each agent’s payoff de-
pends on a small number of values. To determine the po-
sition (or range of positions), we use the exact same graph
structure as for GFPs. However, we need to augment the
graph to capture the pricing rule of GSPs. This is done
by adding “price nodes”, function nodes that identify the
next-highest bid. We use the term argmax node to refer to
a function node whose value is equal to the largest (given
some arbitrary ordering) in-arc carrying a non-zero value.
By ordering action nodes according to the value of their ef-
fective bids, an argmax node identifies the highest effective
bid among the subset of action nodes connected to it. After
running the Algorithm 1, we add argmax nodes as shown
in Algorithm 2. An example of the resulting action graph
is illustrated in Figure 3. Note that although the in-degree
of the argmax nodes can get large (O(nm)), the computa-
tional complexity of solving an AGG only depends on the
in-degree of the action nodes.

foreach effective bid e ∈ E do
create an argmax function node, (p, e) representing the
next highest effective bid below e;
foreach action node a with effective bid e′ do

if e’ < e then
add an arc from a to (p, e);

if e’ = e then
add an arc from (p, e) to a;

Algorithm 2: An algorithm for converting an auction set-
ting into an action graph representing a GSP.

As in the case of GSP, we must define a payoff function for
each action node. Now, we have a third input (p), which
identifies the next-highest effective bid. Let Ep denote this
value. The payoff function for any action node in a pay-per-
impression GSP is given below.2

2δ(x) = 1 iff x is true.



Figure 2: A weighted GFP represented as an AGG. (Square nodes represent summation function nodes.)

Figure 3: To represent a GSP as an AGG, we add price nodes (argmax nodes denoted by hexagons) to a
GFP representation. For clarity only one price node is pictured, while a full GSP representation requires
one price node for each effective bid.



γ2,I
i,b (e, g, p) =

1

e

min(g−1,k)X
j=g−e+1

(Pj,iVj,i − b)

+δ(g ≤ k)(Pj,gVj,g − Ep)/e

Similarly, the payoff function for any action node in a pay-
per-click GFP is given by

γ2,C
i,b (e, g, p) =

1

e

min(g−1,k)X
j=g−e+1

Pj,i(Vj,i − b)

+δ(g ≤ k)Pj,g(Vj,g − Ep)/e

This representation results in a graph containing nm ac-
tion nodes, each of which has an in-degree of three. Each
node has a payoff table with at most O(n2|E|) relevant en-
tries (where |E| ≤ nm). Thus, this representation requires
O(n4m2) space. As was the case with GFPs, we can produce
an unweighted auction by simply replacing β with a vector
of ones. We can find also AGG representations of Lahaie
and Pennock’s family of ranking rules [19] by adjusting the
values of β appropriately.

In summary, we model eight auction types by the following
methods:

1. unweighted, pay-per-impression GFP: replace β with
a vector of ones, generate graph according to Algo-
rithm 1, γ1,I payoff function

2. weighted, pay-per-impression GFP: generate graph ac-
cording to Algorithm 1, γ1,I payoff function

3. unweighted, pay-per-click GFP: replace β with a vec-
tor of ones, generate graph according to Algorithm 1,
γ1,C payoff function

4. weighted, pay-per-click GFP: generate graph accord-
ing to Algorithm 1, γ1,C payoff function

5. unweighted, pay-per-impression GSP: replace β with
a vector of ones, generate graph according to Algo-
rithm 1 followed by Algorithm 2, γ2,I payoff function

6. weighted, pay-per-impression GSP: generate graph ac-
cording to Algorithm 1 followed by Algorithm 2, γ2,I

payoff function

7. unweighted, pay-per-click GSP: replace β with a vec-
tor of ones, generate graph according to Algorithm 1
followed by Algorithm 2, γ2,C payoff function

8. weighted, pay-per-click GSP: generate graph according
to Algorithm 1 followed by Algorithm 2, γ2,C payoff
function

3. EXPERIMENTAL SETUP
3.1 Computational Environment
Our experiments were performed using a computer clus-
ter consisting of 55 machines with dual Intel Xeon 3.2GHz
CPUs, 2MB cache and 2GB RAM, running Suse Linux 10.1.
All timing results given below report CPU time (rather than
wall clock time). To compute Nash equilibria, we used
the simplicial subdivision [26] implementation provided by
Gambit [22], extended to use AGGs and the dynamic pro-
gramming algorithm of [15].3

3.2 Problem Distribution
To evaluate the empirical performance of our approach, we
generate instances from a distribution over auction settings.
The size of the problem is specified by n and m where
M = {x|x ∈ Z, 0 ≤ x ≤ m}, i.e. users can bid any integer
up to m. For each bidder i, we generated a bidder-specific
click-through factor bi ∼ uniform[0, 1]. For each position
j (up to k = min(n/2, 8)), we generate a position-specific
click-through factor ej where e1 ∼ uniform[0, 1] and ej ∼
uniform[0, ej−1]. Each entry in click-through-probability ma-
trix P , is a product of these factors (Pj.i = βiej). For each
bidder, we generate a single value per click (which is the
same for all positions) drawn from uniform[0, 1]. These val-
ues are renormalized so that the highest value is equal to m
(these values are normalized per-click or per-impression de-
pending on which type of auction we evaluate). This model
is a encodes common assumptions such as separability [28],

3.3 Experimental Results: Computational
3.4 Representation Size
We compare the our representation size against the cor-
responding normal form games in Figure 4 and Figure 5.
The size of the normal form game was computed using n
32-bit values per table entry. GSPs are much larger than
GFPs because they have higher-dimensional payoff func-
tions. Weighted auctions are smaller than unweighted be-
cause they have far fewer ties (meaning the payoff function
needs to be evaluated in fewer places). Because pay-per-click
and pay-per-impression have identical graph structures and
identical potential for ties, they result in the same represen-
tation size.

3.5 Performance
To evaluate the empirical hardness of solving our AGG rep-
resentations, we drew 200 samples from the problem dis-
tribution described above (for n = 10, k = 5, m = 10).
For each instance, we represented all eight auction types
as AGGs and ran the solver on them for 120 seconds each.
The results of this experiment are shown in Figure 6. Some-
what surprisingly, GFPs are appreciably harder to solve
than GSPs, despite their smaller input size. Emperically,
simplicial subdivision often performs faster when solving
games with small-support equilibria. Given that GFPs tend
to give rise to oscillating equilibria in the repeated case [3,
10], the one-shot game may only have large-support equilib-
ria.

3The extension of Gambit that allows simplicial subdivision
to work with AGGs can be obtained from http://cs.ubc.
ca/~jiang/aggsoft.
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4. EXPERIMENTAL RESULTS: ECONOMIC
4.1 Weak Equilibria
To get meaningful results, we need to consider the problem
of weak equilibria. Auctions frequently have many equilib-
ria that can differ in revenue and economic efficiency. In the
case of GSPs, each agent can vary his bid within a range
that does not affect the ranking of the ads, but does affect
the amount that the bidder above must pay. [6, 28] Thus,
the equilibrium revenue of GSP depends on which strate-
gies each agent chooses from a set of weak best responses.
A similar problem arises when we consider the support size
of an equilibrium. Our solver could converge to an equilib-
rium where agents mix needlessly across the range of best
response bids.

To address this problem, we give the bidders a small bias,
favoring some bids over others. This is done by perturbing
each agent’s utility function by a small (10e-6) amount in
favor of low (or high) bids regardless of the outcome.

4.2 Comparing Auction Types
To explore the differences between different auction types,
we drew 200 samples from the setting distribution. For each
of these settings, we represented all eight auction types, with
high, low and no bidding bias (24 games per setting) and
computed their equilibria. The following results are based
on the 2783 (of 4800) games for which we could compute an
equilibrium in under one CPU hour.

For each Nash equilibrium, we computed the expected rev-
enue (see Figure 7) normalized relative to the revenue of the
truthful equilibrium of VCG. A number of trends are appar-
ent from this plot. GSPs are more sensitive to equilibrium
selection. Unweighted pay-per-impression auctions outper-
form weighted pay-per-impression auctions while weighted
pay-per-click auctions outperform unweighted pay-per-click
auctions. This might explain why (with the exception of Ya-
hoo!’s unweighted pay-per-click GSP) these auctions are not
found in practice. When bids are discrete, VCG revenue is
not a lower bound on the revenue of weighted pay-per-click
GSPs.

We can also compare the expected social welfare generated
by an auction. (Note that this is the social welfare of the
advertisers.) As was the case with revenue, unweighted
pay-per-impression auctions outperform weighted pay-per-
impression auctions while weighted pay-per-click auctions
outperform unweighted pay-per-click auctions. Despite the
coarse bidding language, weighted pay-per-click GSPs find
the optimal allocation with extremely high probability. In
the case of unweighted pay-per-click GSPs, different bidding
biases lead to equilibria with significantly different social
welfare. This indicates that the allocations of such auctions
are sensitive to some bidder’s choice among weak best re-
sponses.

Lastly, we can consider what kinds of equilibria these dif-
ferent auction types give rise to. As described above, GFPs
seem to lead to a lot of mixing in equilibrium. To quantify
this we measure the Shannon Entropy[27] of the joint strat-
egy (see Figure 9). Given random variable X with distribu-
tion p(), the Shannon Entropy is H(X) = −

P
p(x) log2(p(x)).

This gives a measure of the uncertainty associated with X,
in this case the joint action of the bidders. Our biasing



approach seems to be successful: the equilibria we found in
biased games have less entropy than the equilibria of the un-
biased games. However, unweighted GFPs have much higher
entropy, regardless of biasing, which might explain why their
Nash equilibria were harder to find.

5. CONCLUSIONS AND FUTURE WORK
For the first time, our work shoes that position auctions,
although difficult to analyze manually, are within reach of
modern computational methods. We show how the results
of these computational methods can be used to compare the
economic properties of different auction types.

There is opportunity for future work both on the prefer-
ences and on the computational methods. Within our model
of auction settings, we could immediately explore alterna-
tive preference distributions that relax common assumptions
(such as separability of click-through-rates). Also, better
distributions over preferences could be learned from real-
world bidding data. There is also the question of how to
compactly represent games given a richer preference model.
(For example, we could model settings where an ad’s click
and conversion probabilities depends on which ads are shown
above it.) Better computational methods could also improve
this approach: by using an equilibrium-finding algorithm
that allows us to control which part of strategy space is ex-
plored first (such as the support enumeration methods of
[25]), we could find desired types of equilibria without per-
turbing the payoffs of the game.
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Figure 7: Expected revenue in equilibrium under different auction types. The three columns for each auction
type represent the different equilibrium biases: low bidding, no bias and high bidding from left to right.
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Figure 8: Expected social welfare in equilibrium under different auction types. The three columns for each
auction type represent the different equilibrium biases: low bidding, no bias and high bidding from left to
right.
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Figure 9: Entropy of the equilibrium under different auction types. The three columns for each auction type
represent the different equilibrium biases: low bidding, no bias and high bidding from left to right.


