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Abstract. In many games, players’ decisions consist of multiple sub-
decisions, and hence can give rise to an exponential number of pure
strategies. However, this set of pure strategies is often structured, al-
lowing it to be represented compactly, as in network congestion games,
security games, and extensive form games. Reduction to the standard
normal form generally introduces exponential blow-up in the strategy
space and therefore are inefficient for computation purposes. Although
individual classes of such games have been studied, there currently ex-
ists no general purpose algorithms for computing solutions such as Nash
equilibrium (NE) and (coarse) correlated equilibrium.
To address this, we define multilinear games generalizing all. Informally,
a game is multilinear if its utility functions are linear in each player’s
strategy, while fixing other players’ strategies. Thus, if pure strategies,
even if they are exponentially many, are vectors in polynomial dimension,
then we show that mixed-strategies have an equivalent representation in
terms of marginals forming a polytope in polynomial dimension.
The canonical representation for multilinear games can still be exponen-
tial in the number of players, a typical obstacle in multi-player games.
Therefore, it is necessary to assume additional structure that allows com-
putation of certain sub-problems in polynomial time. Towards this, we
identify two key subproblems: computation of utility gradients, and opti-
mizing linear functions over strategy polytope. Given a multilinear game,
with polynomial time subroutines for these two tasks, we show the follow-
ing: (a) We can construct a polynomially-computable and polynomially-
continuous fixed-point formulation, and show that its approximate fixed-
points are approximate NE. This gives containment of approximate NE
computation in PPAD, and settles its complexity to PPAD-complete. (b)
Even though a coarse correlated equilibrium can potentially have expo-
nential representation (being a probability distribution of pure strategy
profiles), through LP duality and a carefully designed separation oracle,
we provide a polynomial-time algorithm to compute one with polynomial
representation. (c) Finally, we show existence of an approximate NE with
support-size logarithmic in the strategy polytope dimensions.

1 Introduction

The computation of game-theoretic solution concepts is a central problem at the
intersection of game theory and computer science. For games with large numbers
of players, the standard normal form game representation requires exponential



space even if the number of strategies per players is two, and is thus not a
practical option as a basis for computation. Fortunately, most such games of
practical interest have highly structured utility functions, and thus it is possible
to represent them compactly. A line of research thus exists to look for compact
game representations that are able to succinctly describe structured games, in-
cluding work on graphical games [17], multi-agent influence diagrams [19] and
action-graph games [16].

On the other hand, in many real-world domains, each player needs to make a
decision that consists of multiple sub-decisions (e.g., assigning a set of resources,
ranking a set of options, or finding a path in a network), and hence the number of
pure strategies per player itself can be exponential. The single-player versions of
these decision problems have been well studied in the field of combinatorial op-
timization, with mature general modeling languages such as AMPL and solvers
like CPLEX. For the multi-player case, several classes of games studied in the
recent literature have structured strategy spaces, including network congestion
games [5, 7], simultaneous auctions and other multi-item auctions [32, 29], du-
eling algorithms [13], integer programming games [20], Blotto games [1], and
security games [21, 31]. These papers proposed compact game representations
suitable for their specific domains, and corresponding algorithms for computing
solution concepts, which take advantage of the specific structure in the repre-
sentations. However, it is not obvious whether algorithmic techniques developed
for one domain can be transferred to another.

One general approach that has been quite successful in the study of efficient
computation for compact representations is the following: identify subtasks that
are required for most existing algorithms of these solution concepts, and then
speed up these subtasks by exploiting the structure of the compact representa-
tion. In particular, [7, 26] identified expected utility computation given a mixed
strategy as the subtask to compute correlated equilibrium efficiently, and to show
NE computation is in PPAD. Furthermore, they showed that games like graph-
ical, polymatrix, and symmetric, this subtask can be done in polynomial time.
However, a crucial assumption behind these results is polynomial type: roughly,
it is feasible to enumerate pure strategies of all the players. This is not the case
for games with structured strategies, in which such explicit strategy enumeration
can take exponential time. [7] showed PPAD membership of NE computation for
two additional subclasses: network congestion and extensive form games, but the
general case remained open. A related obstacle is that even specifying a mixed
strategy as a distribution over pure strategies can require exponential space.

In this paper, we present a unified algorithmic framework for games with
structured strategy spaces, even when the number of pure strategies is exponen-
tial. We focus on games with polytopal strategy spaces, in which each player’s
set of pure strategies is defined to be integer points in a polytope. We summarize
our contributions as follows.

1. We identify multilinearity as an important property of games that enables
us to represent the players’ mixed strategies compactly. Informally, a game
is multilinear if its utility functions are linear in each player’s strategy, while



fixing other players’ strategies. We show that many existing game forms, like
Bayesian, congestion, security, etc., are multilinear (see Appendix A).

2. The canonical representation of multilinear games still grows exponentially
in the number of players. Therefore, it is necessary to assume additional
structure that allows some computation in polynomial time, like done in [7,
26]. Towards this, we identify two key subproblems: computation of utility
gradients, and optimizing linear functions over strategy polytopes. Given a
multilinear game, with polynomial time subroutines for these two tasks, we
show the following:
(a) computing an approximate Nash equilibrium is in PPAD.
(b) a coarse correlated equilibrium can be computed in polynomial time.
These results are generalizations of [7] and [26], respectively, from games of
polynomial type to multilinear games.

3. We prove that given a multilinear game, there exists an approximate NE with
support-size logarithmic in the strategy polytope dimensions. This general-
izes [2], which gave bounds logarithmic in the number of strategies.

1.1 Technical Overview

Our approach is based on a compact representation of mixed strategies as marginal
vectors, which is a point in the strategy polytope induced by the mixed strat-
egy distributions. When the game is multilinear, all mixed strategies with the
same marginal vector are payoff-equivalent (Lemmas 1 and 2), and therefore we
can work in the space of marginal vectors instead of the exponentially higher-
dimensional space of mixed strategies.4 Next we adapt existing algorithmic ap-
proaches such that whenever the algorithm calls for enumeration of pure strate-
gies (e.g., for computing a best response), we instead solve a linear optimization
problem in the space of marginal vectors, which can in turn be reduced to the two
subproblems, namely computation of utility gradient given a marginal strategy
profile, and optimizing a linear function over the polytope of marginal strate-
gies. Assuming polynomial-time procedure for these two, we show a number of
computational results.

Next we analyze complexity of computing an equilibrium. Since normal-form
games are subcase of multilinear games, irrationality of NE [24], and PPAD-
hardness for NE computation [8, 6] follows. Due to exponentially many pure
strategies per player, containment of approximate NE computation in PPAD
does not carry forward to multilinear games. Towards this, we design a fixed-
point formulation to capture NE in marginal profiles, and show that correspond-
ing approximate fixed-points exactly capture approximate NE. Furthermore, we
show polynomial-continuity and polynomial-computability (see the Appendix
or [9] for definitions) of the function by finding its equivalent representation
in terms of projection operator, and obtaining a convex quadratic formulation

4 This technique has been used extensively in the study of subclasses of games, in-
cluding extensive-form games (sequence form), dueling algorithms[13], and security
games. We provide a unified treatment and identify multilinearity as the key property
that enables this technique.



for function evaluation, respectively. Finally, due to a result of [9], all of these
together implies containment of finding an approximate NE in PPAD for mul-
tilinear games. This provides hope of extending algorithms and heuristics for
PPAD problems to multilinear games.

For computing CCE (Theorem 2), we adapt the Ellipsoid Against Hope ap-
proach of [26] and its refinement [15]. Applied directly to our setting, this ap-
proach would involve running the ellipsoid method in a space whose dimension
is roughly the total number of pure strategies of all the players, yielding an
exponential-time algorithm. We instead use a related but different convex pro-
gramming formulation, and then (through use of the multilinear property) trans-
form it into a linear program of polynomial number of variables, which is then
amenable to the ellipsoid method. Although the final output is not in terms of
mixed strategies or marginal vectors (instead it is a correlated distribution with
small support), a crucial intermediate step (the separation oracle of the ellipsoid
method) requires linear optimization over the space of marginal vectors.

Finally, we show existence of approximate NE with logarithmic support using
the probabilistic method, together with applying concentration inequalities on
marginals to avoid union bound on exponentially many terms (Theorem 4).

Due to space constraint next we give an overview of our results, while all the
proofs and some of the details may be found in the Appendix.

2 Preliminaries

Notations. We use boldface letters, like x, to denote vectors, and xi to denote
its ith coordinate. To denote the set of {1, . . . ,m} we use [m]. We use Z+ and
R+ to denote the sets of non-negative integers and reals, respectively.

A game is specified by (N,S, u), where N = {1, . . . , n} is the set of players.
Each player i ∈ N chooses from a finite set of pure strategies Si. Denote by
si ∈ Si a pure strategy of player i. Then S =

∏
i Si is the set of pure-strategy

profiles. Moreover, u = (u1, . . . , un) are the utility functions of the players, where
the utility function of player i is ui : S → R.

In normal-form games, strategy sets Sis and utility functions uis are specified
explicitly. Thus, the size of the representation is of the order of n|S| = n

∏
i |Si|.

A mixed strategy σi of player i is a probability distribution over her pure
strategies. Let Σi = ∆(Si) be i’s set of mixed strategies, where ∆(·) denotes the
set of probability distributions over a finite set. Denote by σ = (σ1, . . . ,σn) a
mixed strategy profile, and Σ =

∏
iΣi the set of mixed strategy profiles. Denote

by σ−i the mixed strategy profile of players other than i. σ induces a probability
distribution over pure strategy profiles. Denote by ui(σ) the expected utility of
player i under σ:

ui(σ) = Es∼σ [ui(s)] =
∑
s∈S

ui(s)
∏
k∈N

σk(sk),

where σk(sk) is player k’s probability of playing the pure strategy sk.



Nash equilibrium (NE). Player i’s strategy σi is a best response to σ−i if
σi ∈ arg maxσ′i∈Σi ui(σ

′
i,σ−i). A mixed strategy profile σ is a Nash equilibrium

if for each player i ∈ N , σi is a best response to σ−i.

Another important solution concept is Coarse Correlated Equilibrium (CCE).
Consider a distribution over the set of pure-strategy profiles. This can be rep-
resented by a vector x, satisfying x ≥ 0,

∑
s∈S xs = 1. The expected utility

for player i under x is ui(x) =
∑
s∈S xsui(s). Given x, the expected utility for

player i if he deviates to strategy si is: usii (x) =
∑
s−i xs−iui(si, s−i), where

xs−i =
∑
si∈Si x(si,s−i) is the marginal probability of s−i in distribution x. Let

gi(x) = max
si∈Si

usii (x), (1)

i.e. player i’s expected utility if he deviates to a best response against x.

Definition 1. A distribution x satisfying x ≥ 0,
∑
s∈S xs = 1 is a Coarse

Correlated Equilibrium (CCE) if it satisfies the following incentive constraints:

ui(x) ≥ gi(x), ∀i ∈ N.

A rational polytope is defined by a set of inequalities with integer coefficients;
formally P = {x ∈ Rm|Dx ≤ f} is a rational polytope if matrix D and vector
f consist of integers.

3 Multilinear Games

3.1 Polytopal Strategy Space

We are interested in games in which a pure strategy has multiple components.
Without loss of generality, if each pure strategy of player i has mi components,
we can associate each such pure strategy with an mi-dimensional nonnegative
integer vector. Then the set of pure strategies for each player i is Si ⊂ Zmi+ . In
general the number of integer points in Si can grow exponentially in mi. Thus,
we need a compact representation of Si.

In most studies of games with structured strategy spaces, each Si can be
expressed as the set of integer points in a rational polytope Pi ⊂ Rmi+ , i.e.,
Si = Pi ∩Zmi+ . We call such an Si a polytopal pure strategy set. We assume Pi is
nonempty, bounded and contained in the nonnegative quadrant Rmi+ . Then, in
order to represent the strategy space, we only need to specify the set of linear
constraints defining Pi = {p ∈ Rmi+ | Dip ≤ f i}, with each linear constraint
requiring us to store O(mi) integers.5 We call a game with this property a game
with polytopal strategy spaces.

For example, one common scenario is when there are k finite sets S1
i , . . . S

k
i ,

and player i needs to simultaneously select one action in each of these sets.

5 We also allow the possibility that Pi requires an exponential number of linear con-
straints to specify, but it is represented in another compact way. We discuss prop-
erties of Pi that enable efficient computation in Section 4.2.



This happens in Bayesian games in which a player needs to choose an action
for each of his type, extensive form games in which a player needs to choose
an action in each information set, and simultaneous auctions, among others.
The player’s pure strategy set Si is a polytopal strategy space with Pi being
the product of k simplices. Second common type of strategy set is a uniform
matroid: given a universe [mi], player i’s pure strategy is a subset of size k. This
can (e.g.) represent security scenarios in which a defender player i in charge of
protecting mi target, but due to limited resources can only cover k of targets
[21]. Then player i’s strategy can be represented as the 0–1 vector encoding the
subset, and the strategy set can be represented as a polytopal strategy set with
Pi = {p ∈ Rmi |

∑
j∈[mi] pj = k}. Third common type of strategy is to select a

path in a network, from a given source to a given destination. This can model
routing of data traffic in an network congestion game, or patrol / attack routes
in security settings [14, 33]. Here, si can be modeled as a 0–1 vector specifying
the subset of edges forming the chosen path. Si can be represented as a polytopal
strategy space, where Pi consists of a set of flow constraints, as in [7].

3.2 Mixed Strategies and Multilinearity

In this paper, we are focusing on computation of solution concepts in which play-
ers are playing mixed strategies, such as Nash equilibrium. The first challenge we
face is the representation of mixed strategies. Recall that a mixed strategy σi of
player i is a probability distribution over the set of pure strategies Si. When |Si|
is exponential, representing σi explicitly would take exponential space. Thus we
would like a compact representation of mixed strategies, i.e., a way to represent a
mixed strategy using only polynomial number of bits. One approach would be to
only use mixed strategies of polynomial-sized support, where support is the set of
pure strategies played with non-zero probability. Such strategies can be stored as
sparse vectors requiring polynomial space; however, the space of small-support
mixed strategies is not convex, and this is problematic for computation.

We list a set of desirable features for a compact representation of mixed
strategies: (1) the expected utilities of the game can be expressed in terms of
this compact representation; (2) the space of the resulting compactly-represented
strategies is convex; (3) given this compact representation, we can efficiently re-
cover a mixed strategy (e.g., as a mixture over a small number of pure strategies,
or by providing a way to efficiently sample pure strategies from the mixed strat-
egy). We show that such a compact representation is possible if the game is
multilinear.

Definition 2. Consider a game Γ with polytopal strategy sets, with Si = Pi ∩
Zmi+ for each player i. Γ is a multilinear game if

1. for each player i, there exists U i ∈ R
∏
k∈N mk such that for all s ∈ S,

ui(s) =
∑

(j1...jn)∈
∏
k[mk]

U ij1...jn

∏
k∈N

sk,jk ,

where [mk] = {1, . . . ,mk};



2. The extreme points (i.e. vertices) of Pi are integer vectors, which implies
that Pi = conv(Si), where conv(Si) is the convex hull of Si.

In particular, given a fixed s−j , ui is a linear function of sj . In other words, a
multilinear game’s utility functions are multilinear in the players’ strategies.

Condition 2 of Definition 2 is satisfied if Pi’s constraint matrix Di is to-
tally unimodular. Total unimodularity is a well-studied property satisfied by the
constraint matrices of many polytopal strategy spaces studied in the literature,
including the network flow constraint matrix of network congestion games, the
uniform matroid constraints of security games [21], and the doubly-stochastic
constraints representing rankings in the search engine ranking duel [13]. When
Condition 2 is not satisfied, we can redefine Pi to be conv(Si), but the new Pi may
have exponentially more constraints. Indeed, dropping Condition 2 would allow
us to express various NP-hard single-agent combinatorial optimization problems
(e.g. set cover, knapsack). Examples 1, 2 and 3 in Appendix A demonstrates
how security, congestion, extensive-form, and Bayesian games are multilinear.

Remark 1. The utility functions of a multilinear game can be represented by
{U i}, with space complexity to the order of n

∏
k∈N mk. This is more compact

than the normal form but still exponential in n. We are not proposing multilinear
games as a concrete compact representation; we are interested in multilinearity
as a desirable property for all compact games because of its implications for
efficient computation.

Given a mixed strategy σi, define the marginal vector πi corresponding to
σi as the expectation over the pure strategy space Si induced by the distri-
bution σi, i.e., πi = Eσi [si] =

∑
si∈Si σi(si)si. Denote by πij the j − th

component of πi. The set of marginal vectors is exactly conv(Si) = Pi. Given a
mixed strategy profile σ, we call the corresponding collection of marginal vectors
π = (π1, . . . ,πn) ∈ P = ×iPi the marginal strategy profile. By slight abuse of
notation let us denote by

ui(π) =
∑

(j1...jn)∈
∏
k[mk]

U ij1...jn

∏
k∈N

πk,jk (2)

player i’s expected utility under marginal strategy profile π.

Lemma 1. Given a mixed strategy profile σ ∈ Σ and a marginal vector π ∈ P ,
if ∀i, πi =

∑
si∈Si σi(si)si then ∀i, ui(σ) = ui(π).

That is, marginal vectors capture all payoff-relevant information about mixed
strategies, and thus we can use them to compactly represent the space of mixed
strategies. We note that this property does not hold for arbitrary games.

Suppose a mixed strategy profile σ with marginals π = (π1, . . . ,πn) is a
Nash equilibrium of a multilinear game. By multilinearity any mixed strategy
profile having the same marginals are payoff-equivalent to σ, and therefore also
a Nash equilibrium. Let us define Nash equilibrium in terms of marginals:



Marginal NE. π ∈ P is a marginal NE iff ∀i, ui(π) ≥ ui(π′i,π−i), ∀π′i ∈ Pi.

The next lemma follows easily using Lemma 1, and the fact that any vector
πi ∈ Pi can be represented as a convex combination of extreme points of Pi, and
extreme points of Pi are in Si.

Lemma 2. A mixed-strategy profile σ ∈ Σ is a NE iff corresponding marginal
strategy profile π ∈ P , where πi =

∑
si∈Si σi(si)si, ∀i ∈ N , is a marginal NE.

The existence of marginal NE follows from the existence of Nash equilibrium
in mixed strategies.

4 Computation with Multilinear Games

We now show that many algorithmic results for computing various solutions
for normal form games and other game representations of polynomial type can
be adapted to multilinear games, with strategies represented as marginals. We
follow a “modular” approach, similar to [7, 26]’s treatment of computation of
Nash equilibrium and correlated equilibrium in games of polynomial type: we
first identify certain key subproblems, then develop general algorithmic results
assuming these subproblems can be efficiently computed (likely by exploiting
specific structure of the representation). We note that a wide variety of games
do has such specific structure (see Appendix A).

4.1 Utility Gradient

Recall that we can express the expected utilities of players using marginal vec-
tors by Equation (2) (Lemma 1). However, a direct computation of expected
utility using (2) would require summing over a number of terms exponential
in n. Furthermore, computing expected utilities may not be enough: consider
the task of determining if a mixed strategy profile (as marginals) is a Nash
equilibrium. One needs to compute the expected utility for each pure strategy
deviation of i in order to verify that i is playing a best response, but that would
require enumerating all pure strategies. Instead, we identify a related but differ-
ent computational problem as the key subtask for equilibrium computation for
multilinear games.

Due to multilinearity, after fixing the strategies of players N \ {k}, ui(π)
is a linear function of πk1, . . . , πkmk . We define the utility gradient of player i
with respect to player k’s marginal, ∇k(ui(π−k)) ∈ Rmk , to be the vector of
coefficients of this linear function. Formally, ∀jk ∈ [mk],

(∇kui(π−i))jk ≡∑
(j1,.,jk−1,jk+1,.,jn)∈

∏N\{k}
`=1 [m`]

U ij1...jn

∏
`∈N\{k}

π`,j` .

Intuitively, (∇kui(π−i))jk is the rate of change to i’s utility when player k in-
creases it’s marginal in dimension jk.



Problem 1 (UtilGradient). Given a compactly represented game that satisfies
multilinearity, given players i, k ∈ N , and π−k, compute ∇k(ui(π−k)).

Consider the problem of computing the utility gradients. As with expected
utility computation, direct summation would require time exponential in n. Nev-
ertheless, with a compact game representation this problem could be solved in
polynomial time. Example 4 in Appendix A shows computation of UtilGradient
for network congestion games.

4.2 PolytopeSolve and Decomposing Marginals

The other key subproblem we identify, PolytopeSolve, is the optimization of an
arbitrary linear objective in each player’s strategy polytope.

Problem 2 (PolytopeSolve). Given a compactly represented game with polytopal
strategy space, player i, and a vector d ∈ Rmi , compute arg maxx∈Pi d

Tx.

To motivate this problem, let us consider the issue of constructing a mixed
strategy given a marginal vector. First of all, since we have assumed that the
extreme points of the polytope Pi are integer points, and thus Pi = conv(Si), this
becomes the problem of describing a point in a polytope by a convex combination
of extreme points of the polytope. By Caratheodory theorem, given πi ∈ Rmi
there exists a mixed strategy of support size at most (mi + 1) that matches the
marginals. There has been existing work that provides efficient constructions
for different types of polytopes, including the Birkhoff-von Neumann theorem
and its generalizations [4]. The most general result by Grostchel, Lovasz and
Schrijver [12] reduces the problem to the task of optimizing an arbitrary linear
objective over the polytope, i.e., PolytopeSolve.

Theorem 1 (Grostchel, Lovasz and Schrijver [12]). Suppose the Polytope-
Solve can be solved in polynomial time. Then, the following problem DECOMPOS-
E(Pi) can be solved in polynomial time: Given πi ∈ Pi, find a polynomial num-
ber of extreme points of Pi (i.e., pure strategies) s1i , . . . s

K
i ∈ Si and weights

λ1, . . . , λK ≥ 0 such that
∑K
k=1 λk = 1 and πi =

∑K
k=1 λks

k
i .

We note that the computational complexity of PolytopeSolve depends only
on the strategy polytopes Pis of the game, and not on the utility functions. Poly-
topeSolve can be definitely solved in polynomial time by linear programming if
Pi is given by a polynomial number of linear constraints; this holds for all exam-
ples we discussed in this paper. Since the objective is linear, arg maxx∈Pi d

Tx =
arg maxx∈Si d

Tx, i.e., we can alternatively solve the optimization problem over
Si, which may be more amenable to combinatorial methods.

For the case when Pi has exponentially many constraints, Grostchel, Lovasz
and Schrijver [12] also showed that PolytopeSolve is equivalent to the SEPARA-
TION problem (also known as a separation oracle): Given a vector πi ∈ Rmi ,
either answers that πi ∈ Pi, or produces a hyperplane that separates πi and Pi
(e.g., a constraint of Pi violated by πi).



4.3 Best Response

We observe that by construction, ui(π) = πTi ∇iui(π−i). Then given π, the best
response for player i is the solution of the following optimization

maximize πTi ∇iui(π−i)
subject to πi ∈ Pi

This is a linear program with feasible region Pi, which is an instance of the
problem PolytopeSolve. The coefficients of the linear objective are exactly the
utility gradient ∇iui(π−i).
Proposition 1. Suppose we have a compact game representation with polynomial-
time procedures for both UtilGradient and PolytopeSolve. Then the best response
problem can be computed in polynomial time.

As a corollary, under the same assumptions, we get that checking if a given
profile π is a Nash equilibrium can be done in polynomial time.

4.4 Computing Coarse Correlated Equilibrium

Another important solution concept is Coarse Correlated Equilibrium (CCE),
defined in Definition 1.

Approximate CCE. Given a multilinear game, an approximate CCE can be
computed by simulating no-regret dynamics (a.k.a. online convex programming)
for each player. For example, one such no-regret dynamic is Generalized Infinites-
imal Gradient Ascent (GIGA) [34], where in each iteration, for each player i we
move πi along the direction of the utility gradient ∇iui(π−i), and then project
the resulting point back to Pi. The projection step is a convex optimization
problem on Pi, and can be solved efficiently given an efficient separation ora-
cle, or equivalently a procedure for PolytopeSolve. Therefore, under the same
assumptions as Proposition 1, approximate CCE can be found efficiently.

Exact CCE. The above procedure does not guarantee exact CCE in polynomial-
time. Next we obtain such a procedure, using LP duality and carefully designed
separation oracle to get the following theorem.

Theorem 2. Consider a multilinear game, with polynomial time subroutines for
UtilGradient and PolytopeSolve. Then an exact Coarse Correlated Equilibrium
(CCE) can be computed in polynomial time.

Recall that a distribution over the set of pure-strategy profiles can be repre-
sented by a vector x, satisfying x ≥ 0,

∑
s∈S xs = 1. Given a multilinear game,

the expected utility for player i under x is

ui(x) =
∑
s
xsui(s) =

∑
s

∑
j1,...,jn

U ij1,...,jnxs
∏
k

sk,jk

Given x, the expected utility for player i if he deviates to strategy si is:

usii (x) =
∑
s−i

xs−iui(si, s−i) =
∑
s−i

∑
j1,...,jn

U ij1,...,jnxs−i
∏
k

sk,jk ,



where xs−i =
∑
si∈Si x(si,s−i) is the marginal probability of s−i in distribution

x. We observe that usii (x) is linear in si. Specifically, usii (x) =
∑
ji
si,ji

∑
s−i∑

j−i
U ij1,...,jnxs−i

∏
k 6=i sk,jk . We can extend the definition of usii (x) beyond

si ∈ Si to any vector in the convex hull Pi; specifically for pi ∈ Pi, u
pi
i (x)

is defined to be
∑
ji
pi,ji

∑
s−i

∑
j−i

U ij1,...,jn xs−i
∏
k 6=i sk,jk . Recall from (1)

that gi(x) = maxsi∈Si u
si
i (x), i.e. player i’s expected utility if he deviates to

a best response against x. Since usii (x) is linear in si, we can write gi(x) =

maxpi∈Pi u
pi
i (x). Recall that a distribution x is a Coarse Correlated Equilibrium

(CCE) if it satisfies the incentive constraints: ui(x) ≥ gi(x), ∀i.
Consider the following optimization problem:

max
∑
i

zi (3)

x ≥ 0,
∑
s
xs = 1, (4)

ui(x)− gi(x)− zi ≥ 0,∀i (5)

zi ≤ 0,∀i (6)

The feasible region correspond to a relaxation of CCE, due to the introduction
of slack variables z. A feasible solution (x, z) with z = 0 is an optimal solution
of the above problem (since z ≤ 0); furthermore such a solution corresponds to
a CCE x by construction.

This optimization problem is convex, but is difficult to handle directly be-
cause it has exponential number of variables xs for each s ∈ S. Take the dual
optimization problem:

min
y≥0

max
x∈∆,z≤0

∑
i

zi +
∑
i

yi(ui(x)− gi(x)− zi) (7)

= min
y≥0

max
x∈∆,z≤0

∑
i

(1− yi)zi +
∑
i

min
pi∈Pi

yi(ui(x)− upii (x)) (8)

= min
0≤y≤1

max
x∈∆

min
p1∈P1,...,pn∈Pn

∑
i

yi(ui(x)− upii (x)) (9)

= min
0≤y≤1

min
p1∈P1,...,pn∈Pn

max
x∈∆

∑
i

yi(ui(x)− upii (x)) (10)

where ∆ = {x ∈ R|S| : x ≥ 0,1Tx = 1}. Going from (8) to (9), we used the fact
that if yi > 1, the maximizer can take zi towards −∞ and get arbitrarily high
objective value. Therefore the outer minimizer should keep yi ≤ 1, in which case
it is optimal for the maximizer to set z = 0 and the term (1−yi)zi disappears. In
the last line we used the Minimax Theorem to switch the min and max operators.

Since
∑
i yi(ui(x)− upii (x)) is linear in x, it attains its maximum at one of the

extreme points of ∆, i.e., one of the pure strategy profiles. Thus the dual problem



is equivalent to

min
y,p1...pn,t

t (11)

0 ≤ y ≤ 1; pi ∈ Pi ∀i (12)

t ≥
∑
i

yi(ui(s
′)− ui(pi, s′−i)), ∀s′ ∈ S (13)

This is a nonlinear optimization problem due to the multiplication of yi and pi in
(13), but can be transformed to a linear optimization problem via the following
variable substitution: let wi = yipi. We now try to express the dual problem
in terms of yi and wi. Recall that Pi = {p ∈ Rmi |Dip ≤ f i} ⊂ R

mi
+ . Then

wi satisfies Diwi ≤ yif i. For positive yi, given wi we can recover pi = wi/yi.
When yi = 0, we need to make sure that wi is also 0. This can be achieved using
the constraints wi ≥ 0 and wij ≤Mijyi, where the constant Mij = maxpi∈Pi pij
for all j ∈ [mi]. Note that this a valid bound on wij when yi > 0. Mij can be
computed in polynomial time by calling PolytopeSolve, and hence is polynomial-
sized. The dual problem is then equivalent to

min
y,w1...wn,t

t (14)

0 ≤ y ≤ 1; Diwi ≤ yif i ∀i (15)

wi ≥ 0, wij ≤Mijyi ∀i, ∀j ∈ [mi] (16)

t ≥
∑
i

yiui(s
′)− ui(wi, s

′
−i), ∀s′ ∈ S (17)

where ui(wi, s
′
−i) is the linear extension of ui(si, s

′
−i); i.e. ui(wi, s

′
−i) =

∑
ji
wi,ji∑

j−i
U ij1...jn

∏
k 6=i s

′
k,jk

. This is a linear program, with polynomial number of
variables and exponential number of constraints. Since we know the primal ob-
jective is less or equal to 0, by LP duality, the optimal t in the dual is less or
equal to 0. The following lemma establishes the existence of CCE in a way that
does not use the existence of NE.

Lemma 3. The dual LP (and therefore the primal LP) has optimal objective 0.

This lemma says that for every candidate solution with t < 0, we can produce
a hyperplane that separates it from the feasible set of the dual LP. We can use
this lemma as a separation oracle in an algorithm similar to Papadimitriou &
Roughgarden’s [26] Ellipsoid Against Hope method to compute a CCE. However
it would encounter similar numerical precision issues as discussed in [15], essen-
tially due to the use of a convex combination of constraints which has a higher
bit complexity than the individual constraints.

On the other hand, if we use a pure separation oracle that given y,w1 . . .wn,
finds s′ such that

∑
i yiui(s

′) − ui(wi, s
′
−i) ≥ 0, we can use the approach as

described in [15] to compute a CCE.

Lemma 4. Consider a multilinear game, with polynomial-time subroutines for
UtilGradient and PolytopeSolve. Then there is a polynomial-time algorithm for



the following pure separation oracle problem: given y,w1 . . .wn, find pure strat-
egy profile s′ ∈ S such that

∑
i yiui(s

′)− ui(wi, s
′
−i) ≥ 0.

Using Lemmas 3 and 4, in Appendix B we extend the approach of approach
of [26, 15] and complete the proof of Theorem 2.

5 Complexity of Approximate NE: Membership in PPAD

In this section we analyze complexity of computing Nash equilibrium in multi-
linear games. Existence of a NE in multilinear game follows from [10] makes the
problem total. On the other hand, since multilinear games contains normal-form
multi-player games as a subcase, the Nash equilibria may be irrational [24]. In
such a case the standard approach is to try approximation.

ε-approximate NE (ε-NE) Given a rational ε > 0 in binary, a mixed strategy
profile σ is an ε-approximate NE iff ∀i ∈ N, ui(σ) ≥ maxσ′i∈Σi ui(σ

′
i,σ−i)− ε.

In case of multilinear games, due to Lemma 1, this is iff corresponding marginal
strategy profile π satisfy ui(π) ≥ maxπ′i∈Pi ui(π

′
i,π−i)− ε.

It is well known that even in two player normal form games, computing
approximate NE is PPAD-complete [27, 8, 6]. Roughly speaking, PPAD captures
the class of total search problems that can be reduced to End-Of-Line [27],
which includes computing approximate fixed-points. Since normal form games
are contained in multilinear games, the next corollary follows:

Corollary 1. Given a rational ε > 0 in binary, computing ε-approximate NE
in multilinear games is PPAD-hard.

Due to exponential size of the strategy spaces, it seems that computing an
ε-NE in multilinear games could be a much harder problem given its generality.
However, as we will show, it is no harder than computing a NE in 2-player games.

We note that, there has been recent efforts on showing PPAD membership
for different classes of games [7]. However, the techniques are for games with
polynomial type property, i.e. polynomial time computation of expected utility
given mixed-strategy, inapplicable to multilinear games. Instead, we will use the
characterization result (Proposition 2.2) of [9] to show that computing NE in
multilinear games is in PPAD. See Appendix C for relevant definitions, and the
proposition statement (Proposition 2).

Proposition 2 implies that to show membership of computing ε-NE in PPAD,
it is enough to capture them as approximate fixed-points of a polynomially
continuous and polynomially computable function. Next we will construct such
a function for multi-linear games.

Consider the following function ϕ : Σ → Σ from [10] where ϕ = (ϕ1, ..., ϕn)
and ϕi : Σ → Σi such that, ϕi(σi,σ−i) = argmaxσi∈Σi [ui(σi,σ−i) − ||σi −
σi||2]. It was used to show existence of NE in concave games which includes
multilinear games. However, notice that for multilinear games, description of
mixed strategies is of exponential size, hence the function is not polynomially-
computable. Its’ polynomial-continuity is unclear.

Instead, once again we will use marginal strategies. Moreover, we can com-
pute the expected utilities using the marginal strategies efficiently as long as



there is polynomial-time procedure to compute the utility gradient. Let P =∏
i∈N Pi, we redefine ϕ : P → P where ϕ = (ϕ1, ..., ϕn) and ϕi : P → Pi is

ϕi(πi,π−i) = argmax
πi∈πi

[ui(πi,π−i)− ||πi − πi||2]. (18)

Clearly, ϕ is a continuous function and therefore has a fixed-point. Next we
show that its approximate fixed-points give approximate NE of the corresponding
game. As the approximation goes to zero in the former we get exact NE in the
latter, in other words exact fixed-points of (18) captures exact NE.

Lemma 5. Given a rational ε > 0, let ε′ = ε
|S|UmaxHn , where H = maxi,pi∈Pi ||pi||1

and Umax = maxi,(j1,...,jn)∈
∏
k[mk]

|U ij1,...,jn |. Then if π ∈ P is an ε′-approximate
fixed-point of (18), i.e., ||ϕ(π)−π||∞ < ε′ then it is a 2ε-approximate NE of the
corresponding multilinear game.

Lemma 5 implies that, for computation of approximate NE, it is enough to
compute approximate fixed-point of function ϕ. Next we show that this function
is polynomially continuous and polynomially computable and therefore com-
puting its approximate fixed-point is contained in PPAD using Proposition 2,
and therefore containment of approximate NE computation in PPAD follows.
Next lemma shows polynomial-continuity by establishing equivalence of ϕi and
a projection operator.

Lemma 6. The function ϕ is polynomially continuous.

By establishing connection to convex quadratic programming, next we show
polynomially-computability of ϕ(π).

Lemma 7. The function ϕ is polynomially computable.

Due to the assumption that PolytopeSolve has polynomial-time sub-routine,
the size of maxpi∈Pi pij , ∀i, ∀j ∈ [mi] is polynomial in the description of the

game. Furthermore, |S| is 2poly(n
∑
imi). Therefore, if L is the size of the game

description, then in Lemma 5 bit-length of H is polynomially bounded, and
hence size(ε′) = O(log(1/ε), poly(size(L))). Therefore, next theorem follows us-
ing Lemmas 5, 6 and 7, together with Proposition 2 (or [9]), and Corollary 1.

Theorem 3. Given a multilinear game with polynomial-time subroutines for
PolytopeSolve and UtilGradient, and ε > 0 in binary, computing an ε-approximate
NE of the game is in PPAD. Furthermore, it is PPAD-complete.

Small Support Approximate NE. Using discussion of Section 4.2, given an
ε-approximate NE π ∈ P , each πi can be represented as distribution over mi+1
pure strategies from Si. However, existence of smaller support approximate NE
is not clear. In Appendix D we study the same and obtain the following result.

Theorem 4. Given a multilinear game, and given an ε > 0, there exists an

ε-approximate NE with support size O(M2 log(n)+log(m)−log(ε)
ε2 ) for each player,

where m = maximi and M = (maxi,π∈P ||∇iui(π)||∞) maxi,πi∈Pi ||πi||1.

Note thatM upper bounds the magnitude of the game’s utilities ui(s),∀i,∀s ∈
S. Finally we provide discussion in Appendix E.
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A Examples

Example 1 (Security Games). Consider a security game [31] between a defender
and an attacker. The defender and attacker want to protect and attack, re-
spectively, some targets in T . For simplicity, the attacker can choose one target
to attack while the defender can protect m (< |T |) targets. The defender and
attacker’s utilities depend on whether the attacked target is covered. The at-
tacker’s strategy space and the defender’s strategy space can be captured using



polytopes and the extreme points of the polytopes are clearly integer vectors.
Moreover, the utilities of the attacker and defender are linear with respect to
other players’ strategies. Therefore, security games are multilinear.

Example 2 (Network Congestion Games). A network congestion game, as, e.g.,
in [5, 7, 28], of n players is defined on a directed graph G = (V,E) with vertex
set V and edge set E. Each player i’s goal is to select a path from its source
si ∈ V to its destination di ∈ V that minimizes the sum of the delay on each
edge where the delay depends on the number of players selects the edge. The
strategy set of each player i is the possible number of paths from si to di in
G. For each player i, its constraint matrix Di of Pi is the |V | by |E| incidence
matrix of G and Di is totally unimodular. Moreover, it is easy to see that the
utility functions of the players are multilinear in the players’ strategies (i.e., for
each player i, the values U i ∈ R|E|n correspond to the costs of the delay of the
edges). Thus, network congestion games are a subclass of multilinear games.

Example 3 (Extensive-Form Games and Bayesian Games). Consider extensive
form games (Bayesian games can be represented as extensive form, and thus is a
special case). The space of behavior strategies can be represented as a product of
simplices; however the utility functions are not multilinear in behavior strategies.
The sequence form representation [18] was proposed to circumvent this. Player’s
mixed strategy space are represented using realization probabilities, which sat-
isfy a polynomial number of linear constraints. The resulting utility function is
multilinear. The case for n-players is discussed in [11].

Example 4 (Computing UtilGradient for Network Congestion Games). Using ei-
ther of the dynamic programming techniques described in [5] for a general class
of congestion games or in [7] for network congestion games, the utility gradients
of network congestion games can be computed in polynomial time given the
marginals.

B Missing Proofs

Proof of Lemma 1.
For each agent i we have the following:

ui(σ) =
∑
s
σ(s)ui(s) (19)

=
∑
s

∏
k∈N

σk(sk)
∑

(j1...jn)∈
∏
k[mk]

U ij1...jn

∏
k∈N

sk,jk (20)

=
∑

(j1...jn)∈
∏
k[mk]

U ij1...jn

∑
s1,...,sn

∏
k∈N

σk(sk)sk,jk (21)

=
∑

(j1...jn)∈
∏
k[mk]

U ij1...jn(
∑
s1∈S1

σ1(s1)s1,j1) . . . (
∑
sn∈Sn

σn(sn)sn,jn) (22)

=
∑

(j1...jn)∈
∏
k[mk]

U ij1...jn

∏
k∈N

πk,jk . (23)



Proof of Lemma 3.
Suppose not, that is the optimal objective (i.e., t) is negative. Then there exists
a feasible solution y,w1 . . .wn such that

∑
i yiui(s

′) − ui(wi, s
′
−i) < 0 for all

s′ ∈ S. Let pi = wi/yi if yi > 0. If yi = 0, (16) ensures that wi = 0, and we can
take pi to be an arbitrary vector in Pi. In either case, we have wi = yipi. Let
x∗ be the product distribution (i.e. mixed strategy profile) where each player
i independently plays a mixed strategy with marginal pi. Consider the convex
combination of

∑
i yiui(s

′)− ui(wi, s
′
−i) by x∗, i.e.∑

s′
x∗s′

∑
i

(yiui(s
′)− ui(wi, s

′
−i)) (24)

=
∑
i

∑
s′
x∗s′ui(s

′)yi − x∗s′ui(pi, s′−i)yi (25)

=
∑
i

(ui(x
∗)− upii (x∗))yi (26)

= 0 (27)

In the last line we use the fact that since x∗ is a product distribution with

marginals (p1, . . . ,pn), we have u
pi
i (x∗) = ui(pi,p−i) = ui(x

∗). This contra-
dicts the assumption that

∑
i yiui(s

′)− ui(wi, s
′
−i) < 0 for all s′. ut

Proof of Lemma 4.
We start with the product distribution x∗ as described in Lemma 3 and then
proceed player by player, changing the player’s strategy to a pure strategy while
maintaining the inequality

∑
s′ x
∗
s′
∑
i yiui(s

′)− ui(wi, s
′
−i) ≥ 0.

1. given y,w1 . . .wn, compute product distribution x∗ as represented by p1, . . . ,pn,
as described in Lemma 3.

2. for k = 1 . . . n:

(a) find sk = arg maxs′k∈Sk
∑
s′−k

x∗s′k,s′−k

∑
i yiui(s

′
k, s
′
−k)− uwi

i (s′k, s
′
−k)

(b) set pk = sk.

3. output the pure strategy profile p1, . . . ,pk.

The correctness of the procedure follows from the fact that the value of the ex-
pression

∑
s′ x
∗
s′
∑
i yiui(s

′)−ui(wi, s
′
−i) is 0 at the beginning of procedure (by

Lemma 3) and weakly increases in each iteration. To show computational effi-
ciency, the only non-obvious step is 2a, where the maximization is over all pure
strategies s′k of player k. Instead of enumerating the pure strategies, we observe
that the objective is linear in s′k and thus we can solve the corresponding LP over
Pk using our PolytopeSolve procedure. What remains is to calculate the coeffi-
cients in the objective. Recall that x∗ is a product distribution (p1, . . . ,pn).
Therefore the argmax can be rewritten as argmaxp′k∈Pk

∑
i yi(ui(p

′
k,p−k) −



u
pi
i (p′k,p−k)). Recall that we can write ui(p

′
k,p−k) = p′Tk ∇kui(p−k), and simi-

larly for u
pi
i (p′k,p−k). Therefore the coefficients of the objective of step 2a can

be written in terms of the utility gradients. ut

Proof of Theorem 2. What remains is an application of the approach of [26,
15] to our primal and dual optimization problems. We sketch the arguments for
completeness. Apply the ellipsoid method to the LP (14). Whenever the ellipsoid
method takes a candidate solution y,w1 . . .wn, t with t < 0, apply the separation
oracle described in Lemma 4 to find s′ such that

∑
i yiui(s

′)− ui(wi, s
′
−i) ≥ 0,

which implies that the corresponding constraint in (17) is violated. Therefore
the ellipsoid method will end (after a polynomial number K of iterations) with
an optimal value of t = 0. Take the series of pure strategy profiles generated
by the separation oracle during the run of ellipsoid method, s(1), s(2), . . . s(K).
We now take the primal optimization problem (3), but with x now restricted
to the support s(1), s(2), . . . s(K). This restricted primal problem has the same
optimal value of 0 as the original primal problem, because running the ellipsoid
method on their respective duals yield the same sequence of iterates and the
same result. The restricted primal problem now has only a polynomial number
(K) of variables. To solve this convex optimization problem, we just need a
separation oracle for constraint (5), which can be done efficiently by solving the

LP maxpi∈Pi u
pi
i (x). Since x now has polynomial support, the coefficients of

the LP can be computed in polynomial time, and we can apply PolytopeSolve.
The result of solving the restricted primal is a correlated distribution supported
on s(1), s(2), . . . s(K). Since it achieves the optimal value of 0, it is a CCE. ut

Proof of Lemma 5.
To the contrary suppose π is an ε′-approximate fixed-point of (18), but not a
2ε-approximate NE. For ease of notation, let aij = (∇iui(π−i))j , ∀i, ∀j ∈ [mi],
then clearly aij ≤ |S−i|Hn−1Umax. Let π̄ = ϕ(π), then it satisfies |π̄ij − πij | <
ε′, ∀i ∈ N, ∀j ∈ [mi]. Therefore, ∀i we have,

|ui(πi,π−i)− ui(π̄i,π−i)| = |
∑
j∈[mi] πijaij −

∑
j∈[mi] π̄ijaij |

= |
∑
j∈[mi](πij − π̄ij)aij |

≤ ε′
∑
j∈[mi] |aij | < ε (∵ |aij | ≤ |S−i|Hn−1Umax)

Now if we manage to show that ui(π̄i,π−i) ≥ maxpi∈Pi ui(pi,π−i)− ε, ∀i,
then using the above derivation we get ui(π) > ui(π̄i,πi)−ε ≥ maxpi ∈ Piui(pi,π−i)−
2ε, ∀i, a contradiction to π not being 2ε-approximate NE, and the lemma follows.

Claim. ui(π̄i,π−i) ≥ maxpi∈Pi ui(pi,π−i)− ε, ∀i

Proof. To the contrary suppose for player i, ∃pi ∈ Pi such that ui(pi,π−i) >
ui(π̄,π−i) + ε. Let τ = ui(pi,π−i) − ui(π̄,π−i) − ε, and δ = τ+ε

8m2H2 , where



m = maximi. Clearly, τ, δ > 0. Consider a marginal profile p′i = (1−δ)π̄i+δpi.

ui(p
′
i,π−i)− ||p′i − πi||2 =

∑
j∈[mi]((1− δ)π̄ij + δpij)aij − ||(1− δ)π̄i + δpi − πi||2

≥ (1− δ)ui(π̄i,π−i) + δui(pi,π−i)− ε′2 − δ2||pi + π̄i||2
≥ ui(π̄i,π−i) + (τ + ε)δ − ε′2 − δ2(4m2H2)

= ui(π̄i,π−i) + δ(τ + ε− ε2

δ(|S|UmaxHn)2 − δ(4m
2H2)

= ui(π̄i,π−i) + δ(τ + ε− ε2

(|S|UmaxHn)2
8m2H2

τ+ε −
τ+ε
2 )

≥ ui(π̄i,π−i) + δ( τ+ε2 −
ε2

(|S|UmaxHn)2
8m2H2

ε )

≥ ui(π̄i,π−i) + δ( τ+ε2 −
ε
2 )

= ui(π̄i,π−i) + δτ
2

> ui(π̄i,π−i)

Since ui(π̄i,π−i) ≥ ui(π̄i,π−i) − ||πi − π̄i||2, we get a contradiction to π̄i =
ϕi(πi,π−i). ut

Proof of Lemma 6.
To show that the function ϕ is polynomially continuous, we first define proji(v)
to be the projection function that maps v ∈ Rmi to the closest point in Pi and
provide the following claim.

Claim. For each player i ∈ N , ϕi(πi,π−i) = proji
(
πi + 1

2∇iui(π−i)
)
.

Proof. It follows that

proji

(
πi +

1

2
∇iui(π−i)

)
= argmin
πi∈Pi

∥∥∥∥πi − πi − 1

2
∇iui(π−i)

∥∥∥∥
= argmin
πi∈Pi

∥∥∥∥−1

2
∇iui(π−i) + πi − πi

∥∥∥∥2
= argmin
πi∈Pi

[−πi∇iui(π−i) + ‖πi − πi‖2]

= argmax
πi∈Pi

[ui(πi,π−i)− ||πi − πi||2].ut

To show the function ϕ is polynomially continuous, we want to show that
||ϕ(x)−ϕ(y)||k ≤ C||x−y||k for all x,y ∈ P for some constant C and norm k. To
show this, it is suffice to show that for each i ∈ N , ||ϕi(xi,x−i)−ϕi(yi,y−i)||2 ≤
C||xi − yi||2. From Lemma B, we have that

||ϕi(xi,x−i)− ϕi(yi,y−i)||2

=

∥∥∥∥proji(xi +
1

2
∇iui(x−i)

)
− proji

(
yi +

1

2
∇iui(y−i)

)∥∥∥∥
2

≤ ||xi − yi||2,

where the inequality due to fact that the projection function onto a convex
compact domain is non-expansive [3]. ut



Proof of Lemma 7.
To show that the function ϕ is polynomially computable, we show that, for each
i ∈ N , ϕi is polynomially computable.

First notice that, for any π = (πi,π−i) ∈ P ,

ϕi(πi,π−i) = argmax
πi∈πi

[ui(πi,π−i)− ||πi − πi||2]

= argmax
πi∈πi

[πi∇iui(π−i)− ||πi − πi||2].

The above problem in fact is a convex quadratic program. Moreover, because
the matrix involving the quadratic term is positive definite, we can solve it using
the ellipsoid method in polynomial time [25]. In addition, if there is a rational
solution, the ellipsoid method is guaranteed to find it [22, 30].

Now, we argue that for any rational π ∈ P , there is a rational solution
of ϕi(π). This follows using the fact that Karush-Kuhn-Tucker conditions of
a convex quadratic program are sufficient, and are captured through a linear
complementarity problem (LCP) [23] with rational parameters. And an LCP
with rational input parameters always has a rational solution [23]. ut

C Proposition 2.2 of [9]

Before stating the proposition, we need the following definitions.

Polynomially-continuous. Let F be the class of functions associated with
a fixed point search problem Π where each instance of I of Π is associated
with the function FI of F . The class F is polynomially continuous if there is
a polynomial q(z) such that for all instances I and all rational ε > 0, there
is a rational δ > 0 such that size(δ) ≤ q(|I| + size(ε)) and such that for all
x,y ∈ DI , ||x − y||∞ < δ =⇒ ||FI(x) − FI(y)||∞ < ε where size(r) denote
the number of bits in the numerator and denominator of a rational number r,
DI is the convex compact domain of the instance I, and the size |I| of the
instance I is the length of the string that represents it. Moreover, all Lipschitz
continuous functions (functions that satisfy ||FI(x) − FI(y)||k ≤ CI ||x − y||k
for all x,y ∈ DI with Lipschitz constant CI ≤ 2poly(|I|) for some norm k) are
polynomially continuous.

Polynomially-computable. The class F is polynomially computable if there
is a polynomial q(z) such that (a) for every instance I, DI is a convex polytope
described by a set of linear inequalities with rational coefficients that can be
computed from I in time q(|I|), and (b) given a rational vector x ∈ DI , the image
FI(x) is rational and can be computed from I and x in time q(|I|+ size(x)).

Finally, we are ready to state the result of [9] below.

Proposition 2. [Proposition 2.2 of [9]] Let F be the class of functions asso-
ciated with a fixed point search problem Π. If F is polynomially continuous



and polynomially computable, then, given an instance I ∈ Π and a rational
ε > 0 in binary as input, the problem of computing a rational x′ ∈ DI such that
||FI(x′)− x′||∞ < ε (ε-approximate fixed-point) is in PPAD.

D Existence of Small Support Nash Equilibrium

The standard approach for such results is to use the probabilistic method: start
with a Nash equilibrium σ. For each player i sample k pure strategies according
to distribution σi. Take the empirical distribution for each player to form a mixed
strategy profile. (Such empirical distribution of k pure strategies is also known
as k-uniform strategies.) Then show that with positive probability, this mixed
strategy profile is an ε-Nash equilibrium. This then establishes the existence of
ε-Nash equilibrium in k-uniform strategies.

However, if we use the standard method to check for ε-Nash equilibrium by
comparing our strategy to every other pure strategy, that would be exponen-
tial number of comparisons. Using the union bound over this set would yield
an exponential factor on our bound. Instead, we avoid this exponential number
of comparisons by exploiting multilinearity. In particular, let π be the marginal
strategy profile of the Nash equilibrium σ. We note that i’s utility is πTi ∇iui(π).
Let σ̃ be the sampled strategy profile, with marginals π̃. Using standard meth-
ods, we can show that w.h.p., πi is close to π̃i and ∇iui(π) is close to ∇iui(π̃),
which then allow us to establish that π̃ is an ε-Nash equilibrium.

A direct application of Hoeffding’s inequality yields the following lemma.

Lemma 8. Let σ̃i (with marginals π̃i) be the empirical distribution of k pure
strategies drawn from a mixed strategy σi with marginals πi. Then Pr(|π̃ij −
πij | > ε) ≤ 2e−ε

2k/(2H2), for all j ∈ [mi], where H = maxi,πi∈Pi ||πi||∞.

Lemma 9. Pr(|(∇iui(π̃))j − (∇iui(π))j | > ε) ≤ 4e−ε
2k/(8H′2)

ε for all j ∈ [mi],
where H ′ = maxi,π∈P ||∇iui(π)||∞.

Proof. We can directly apply Theorem 9 of [2], a concentration inequality for
expectations of product distributions. Indeed, ∇i(ui(π))j is the expectation of
the rate of change of ui w.r.t j-th component of i’s strategy, over the product
distribution σ−i. ut

Proof of Theorem 4. Let m = maximi, and H ′′ = maxi,πi∈Pi ||πi||1, and set

k = 128H′2H′′2(logn+logm+log 8−log ε)
ε2 . By union bound we have

Pr[∃i, ||π̃i − πi||∞ > ε/(2H ′) OR ∃i, ||∇iui(π̃)−∇iui(π)||∞ > ε/(4H ′′)]

≤ nm( 4e−ε
2k/(128H′2H′′2)

ε + 2e−ε
2k/(8H2H′2)) < 8nm e−ε

2k/(128H′2H′′2)

ε = 1.

Thus with positive probability, we have ||π̃i−πi||∞ ≤ ε/(2H ′) and ||∇iui(π̃)−
∇iui(π)||∞ ≤ ε/(4H ′′) for all i. We claim π̃ is an ε-Nash equilibrium. To prove



this we need to show for all i, for all π′i ∈ Pi, ui(π′i, π̃−i) ≤ ui(π̃) + ε. Indeed,

ui(π
′
i, π̃−i) = π′i∇iui(π̃)

≤ π′i∇iui(π) + ε
4

≤ πi∇iui(π) + ε
4

≤ πi∇iui(π̃) + ε
4 + ε

4
≤ π̃i∇iui(π̃) + ε

4 + ε
4 + ε

2
= ui(π̃) + ε.

This yields the asymptotic bound in the theorem statement. ut

E Discussion

In this paper, we defined multilinear games, that generalizes various game forms
like security games, extensive-form games, congestion games, Bayesian games,
and provided a unifying approach to equilibrium characterization and compu-
tation. In multilinear games, pure strategies of a player are a set of integer
points in polynomial dimension, however they may be exponentially many. This
introduces the primary difficulty and we handle it by moving to the space of
marginals. We provide a polynomial-time procedure to compute CCE, and a
polynomially-continuous and polynomially-computable fixed-point formulation
of NE. Using the latter we show that approximate NE computation in multilin-
ear games is in PPAD, i.e., not harder than in normal-form games, which opens
up possibility of designing path following algorithms. It will be interesting and
highly useful to design such an algorithm for multilinear games. The complex-
ity of strong approximation remains open, and we conjecture that it should be
FIXP-complete like normal-form games.

We show existence of approximate NE with support size logarithmic in the
dimension of the strategy polytope for each player. Such a result leads to pseudo-
polynomial time algorithm in normal-form games when number of players is a
contestant. However, due to exponentially many pure strategies in multilinear
games, the result does not extend directly. It will be interesting to see if there
is any way to exploit the marginal space to obtain such an algorithm.

We provided a procedure to compute coarse correlated equilibrium in multi-
linear games by exploiting linear optimization on strategy polytopes. Is there a
way to extend this procedure to compute correlated equilibrium? Finally, it will
interesting to analyze multilinear games with special properties, like potential
games, for say analyzing convergence of natural dynamics like best response.


