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Abstract A natural way of attacking a new, computationally challenging

problem is to find a novel way of combining design elements introduced

in existing algorithms. For example, this approach was made system-

atic in SATenstein (14), a highly parameterized stochastic local search

(SLS) framework for SAT that unifies techniques across a wide range

of well-known SLS solvers. The focus of such work so far has been on

building frameworks and identifying high-performing configurations. Here,

we focus on analyzing such frameworks, a problem that currently requires

considerable manual effort and domain expertise. We propose a quantita-

tive alternative: a new metric that measures the similarity between a new

configuration and previously known algorithm designs. We first introduce

concept DAGs, a data structure that preserves the hierarchical structure

of configurations induced by conditional parameter dependencies. We

then quantify the degree of similarity between two configurations as the

transformation cost between the respective concept DAGs. In the context

of analyzing SATenstein configurations, we demonstrate that visualiza-

tions based on transformation costs can provide useful insights into the

similarities and differences between existing SLS-based SAT solvers and

novel solver configurations.3
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1 Introduction

When faced with a new, computationally hard problem to solve, researchers do
not typically want to reinvent the wheel. Instead, it makes sense to draw on design
ideas from existing high-performance solvers. Such an approach can be made
systematic by designing a single, highly parameterized solver that incorporates
these different ideas, and then identifying a parameter configuration that achieves
good performance via an automatic algorithm configuration method (14; 8).
Indeed, many powerful configuration procedures have recently become available
3 Lin Xu and Ashiqur R. KhudaBukhsh contributed equally to this work.
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to meet this challenge (13; 10; 9; 19). The types of solvers configured in this
way can range from simple heuristic switching (30) to a complex combination of
multiple algorithms (28). While the result is often an algorithm with excellent
performance characteristics, it can be difficult to understand such an algorithm,
e.g., in terms of how similar (or dissimilar) it is to the existing solvers from which
design ideas were drawn—a problem that has received little attention to date
by the research community. This work seeks to address this gap. We propose a
new metric for quantitatively assessing the similarity between configurations for
highly parametric solvers, which computes the distance between two algorithm
configurations in two steps. In the first step, the hierarchical structure of algorithm
parameters is represented by a novel data structure called a concept DAG. In the
second step, we estimate the similarity of two configurations as the transformation
cost from one configuration to another, using concept DAGs.

In order to demonstrate the effectiveness of our approach, we investigate the
configurations of SATenstein, a well-known, highly parameterized SLS solver.
SATenstein has a rich and complex design space with 43 parameters, drawing
design ideas from several existing solvers, and is one of the most complex SLS
solvers in the literature. We show that visualizations based on transformation
costs can provide useful insights into similarities and differences between solver
configurations. In addition, we argue that this metric can help to suggest potential
links between algorithm structure and algorithm performance.

To our knowledge, there is little previous work directly relevant to the problem
of quantifying the similarity of algorithm configurations. Visualization techniques
have been used previously to characterize the structure of instances of the well-
known propositional satisfiability problem (SAT) (25); instead, we focus on
algorithm design elements. Most similar to our work, Nikolić et al. (20) used
the notion of edit distance to automatically quantify algorithm similarity. Our
main innovation is to address hierarchies of conditional parameters by saying
that edits to lower-level parameters are less significant than edits to higher-level
parameters. Conditional parameters are increasingly important as algorithm
development shifts to rely on algorithm configuration tools and hence parameter
spaces become richer and more complex; see e.g., recent work on assessing
parameter importance (12) and finding critical parameters (3).

The remainder of this paper is organized as follows. We present a high-level
description of SATenstein in Section 2. Next, we describe concept DAGs (Section
3) and then present our experimental setup (Section 4). We describe our results
on quantifying similarities between algorithm configurations in Section 5 and
then conclude (Section 6).

2 SATenstein

In this section, we provide a short description of the overall design of SATenstein.
A detailed description of SATenstein is given in (15). As shown in the high-level
algorithm outline, any instantiation of SATenstein proceeds as follows:

1. Optionally execute B1, which performs search diversification.
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2. Execute either B2, B3 or B4, thus performing WalkSAT-based local search,
dynamic local search or G2WSAT-based local search, respectively.

3. Optionally execute B5 to update data structures such as promising list, clause
penalties, dynamically adaptable parameters or tabu attributes.

SATenstein consists of five building blocks and eight components, some of which
are shared across different building blocks. It has 43 parameters in total. The
choice of building block is encoded by several high-level categorical parameters,
while the design strategies within each component are determined by a larger
number of low-level parameters.

3 Concept DAGs

We now introduce concept DAGs, a novel data structure for representing algorithm
configurations that preserves the hierarchical structure of parameter dependencies.
Our notion of a concept DAG is based on that of a concept tree (31). We work with
a DAG-based data structure because parameters may have more than one parent,
where the child is only active if the parents take certain values (e.g., SATenstein’s
noise parameter phi is only activated when both useAdaptiveMechanism and
singleClauseAsNeighbor are turned on). We then define four operators whose
repeated application can be used to map between arbitrary concept DAGs, and
assign each operator a cost. To compare two parameter configurations, we first
represent them using concept DAGs and then define their similarity as the
minimal total cost of transforming one DAG into the other.

A concept DAG is a six-tuple G = (V, E, LV , R, D, M), where V is a set of
nodes, E is a set of directed edges between the nodes in V such that (V, E) is an
acyclic graph, LV is a set of lexicons (terms) for concepts used as node labels,
R is a distinguished node called the root, D is the domain of discourse (i. e., ,
the set of all possible node labels), and M is an injective mapping from V to
LV that assigns a unique label to every node. A parameter configuration can be
expressed as a concept DAG in which each node in V represents a parameter,
and each directed edge in E represents the conditional dependence relationship
between two parameters. LV is the set of parameter values used in a particular
configuration (i. e., a set containing exactly one value from the domain of each
parameter), D is the union of the domains of all parameters, and M specifies
which value assigned to each parameter v ∈ V in the given configuration. We
add an artificial root node R, which connects to all parameter nodes that do not
have any parent, and refer to these parameters as top-level parameters.

We can transform one concept DAG into another by a series of delete, insert,
relabel and move operations, each of which has an associated cost. For measuring
the degree of similarity between two algorithm configurations, we first express
them as concept DAGs, DAG1 and DAG2. We define the distance between these
DAGs as the minimal total cost required for transforming DAG1 into DAG2.
Obviously, the distance between two identical configurations is 0.

The parameters with the biggest impact on an algorithm’s execution path
are likely to appear high in the DAG (i.e., to be conditional upon few or no
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Input: CNF formula ϕ; real number cutoff ;

Booleans performDiversification, singleClauseAsNeighbor,

usePromisingList;
Output: Satisfying variable assignment

Start with random assignment A;

Initialize parameters;

while runtime < cutoff do

if A satisfies ϕ then

return A;

end

varFlipped ← FALSE;

if performDiversification then

B1 with probability diversificationProbability() do

B1 c ← selectClause();

B1 y ← diversificationStrategy(c) ;

B1 varFlipped ← TRUE;

end

if not varFlipped then

if not usePromisingList then

if singleClauseAsNeighbor then

B2 c ← selectClause();

B2 y ← selectHeuristic(c) ;

else

B3 sety ← selectSet();

B3 y ← tieBreaking(sety);

end

else

B4 if promisingList is not empty then

B4 y ← selectFromPromisingList() ;

else

B4 c ← selectClause();

B4 y ← selectHeuristic(c) ;

end

end

flip y ;

B5 update();

end

end

Procedure SATenstein(. . .)

other parameters) and/or to turn on a complex mechanism (i.e., to have many
parameters conditional upon them). Therefore, we say that the importance of a
parameter v is a function of its depth (the length of the longest path from the
root R of the given concept DAG to v) and the total number of other parameters
conditional on it. To capture this definition of importance, we define the cost of
each of the four DAG-transforming operations as follows.
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Deletion cost C(delete(v)) = 1
|V | · (height(DAG) − depth(v) + 1 + |DE(v)|),

where height(DAG) is the height of the DAG, depth(v) is the depth of node
v and DE(v) is the set of descendants of node v. This captures the idea
that it is more costly to delete top-level parameters and parameters that
(de-)activate complex mechanisms.

Insertion cost C(insert(u, v)) = 1
|V | · (height(DAG)−depth(u)+1+ |DE(v)|),

where DE(v) is the set of descendants of v after the insertion.
Moving cost C(move(u, v)) = |V |−2

2·|V | · [C(delete(v)) + C(insert(u, v))], where
|V | > 2.

Relabelling cost C(relabel(v, lv, lv∗) = [C(delete(v))+C(insert(u, v))]·s(lv, lv∗),
where s(lv, lv∗) is a measure of the distance between two labels lv and lv∗ . For
parameters with continuous domains, s(lv, lv∗) = |lv − lv∗ |. For parameters
whose domains are some finite, ordinal and discrete set {lv1 , lv2 , . . . , lvk },
s(lv, lv∗) = abs(v −v∗)/(k −1), where abs(v −v∗) measures the number of in-
termediate values between v and v∗. For categorical parameters, s(lv, lv∗) = 0
if lv = lv∗ and 1 otherwise.

4 Experimental Setup

Our quantitative analysis of SATenstein configurations is based on performance
comparisons with eleven high-performance SLS solvers on six well-known SAT
distributions, listed in Table 1 (we call each of these solvers a challenger) and
Table 2, respectively.

We performed algorithm configuration using ParamILS (10), a well-known
automatic algorithm configurator. On each benchmark distribution, we configured
SATenstein on the training set, and evaluated its performance of the configuration
on the test set. For each test set instance, we ran each solver 25 times with a
per-run cutoff of 600 CPU seconds. Following (10), we evaluate performance in
terms of penalized average run time (PAR), which is defined as average run time
with each timed out run counted as having completed in 10 times the cutoff time
(in this case, 6000 CPU seconds). For a particular solver, we consider an instance
solved if a majority of runs found a satisfying assignment. In practice, PAR can
be sensitive to the choice of cutoff; however, in past work (14), we showed that
PAR did not affect the qualitative evaluation of SATenstein’s performance in all
six distributions we considered.

We conducted all of our experiments on a cluster of 55 machines each equipped
with dual 3.2GHz Intel Xeon CPUs with 2MB cache and 2GB RAM, running
OpenSuSE Linux 11.1 and managed by Sun Grid Engine (version 6.0).

5 Quantitative Comparison of Algorithm Configurations

In previous work, we performed an extensive performance evaluation on six
well-known benchmark distributions, finding that SATenstein outperformed all
challengers in every distribution (15). Moreover, we found that SATenstein
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Algorithm Abbrev Reason for Inclusion Parameters

Ranov (21) Ranov gold 2005 SAT Competition (random) wp
G2WSAT (16) G2 silver 2005 SAT Competition (random) novNoise, dp
VW (23) VW bronze 2005 SAT Competition (random) c, s, wpWalk
gNovelty+ (22) GNOV gold 2007 SAT Competition (random) novNoise, wpWalk, ps
adaptG2WSAT0 (17) AG20 silver 2007 SAT Competition (random) NA
adaptG2WSAT+ (18) AG2+ bronze 2007 SAT Competition (random) NA
adaptNovelty+ (7) ANOV gold 2004 SAT Competition (random) wp
adaptG2WSATp (18) AG2p performance comparable to G2WSAT (16),

Ranov, and adaptG2WSAT+; see (17)
NA

SAPS (11) SAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp
RSAPS (11) RSAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp
PAWS (27) PAWS prominent DLS algorithm maxinc, pflat

Table 1. Our eleven challenger algorithms.

Distribution Description generator Parameters Train/Test size

QCP SAT-encoded quasi-group order O ∈ [10, 30]; 1000/1000
completion problems (5) holes H = h ∗ O1.55,

h ∈ [1.2, 2.2]
SW-GCP SAT-encoded small-world ring lattice size S ∈ [100, 400]; 1000/1000

graph-colouring problems (4) nearest neighbors connected: 10;
rewiring probability: 2−7;
chromatic numbers: 6

R3SAT uniform-random 3-SAT variable: 600; 250/250
instances (24) clauses-to-variables ratio: 4.26

HGEN random instances generated variable n ∈ [200, 400] 1000/1000
by HGEN2 (6)

FAC SAT-encoded factoring prime number ∈ [3000, 4000] 1000/1000
problems (29)

CBMC(SE) SAT-encoded bounded model array size s ∈ [1, 2000]; 302/302
checking (1), preprocessed loop unwinding n ∈ 4, 5, 6
by SatELite (2)

Table 2. Our six benchmark distributions.

outperformed tuned challengers as well, albeit to a reduced extent. In order to
refer to them in what follows, we summarize these results in Tables 4 and 5.

Table 3 gives a high-level description of SATenstein solvers in terms of
building blocks used and overall SLS category. Recall that SATenstein draws
components from three major SLS solver categories: WalkSAT, dynamic local
search and G2WSAT-based algorithms.

5.1 Comparison of SATenstein Configurations

We now compare our automatically identified SATenstein solver designs to all of
the challengers. As shown in Table 1, 3 of our 11 challengers (AG2p, AG2+, and
AG20) are parameter-less. Furthermore, RANOV only differs from ANOV by
the addition of a preprocessing step, and so can be understood as a variant of
the same algorithm. This leaves us with 7 parameterized challengers to consider.
For each, we sampled 50 configurations (consisting of the default configuration,
one configuration optimized for each of our 6 benchmark distributions, and 43
random configurations). We then computed the pairwise transformation cost
between the resulting 359 configurations (7 × 50 challengers’ configurations + 6
SATenstein solvers + AG2p + AG2+ + AG20). The result can be understood
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Solver Uses building blocks Broad category

SATenstein[QCP] 1, 2 and 5 WalkSAT
SATenstein[SW-GCP] 2 and 5 WalkSAT
SATenstein[R3SAT] 1, 3 and 5 Dynamic local search
SATenstein[HGEN] 1, 2 and 5 WalkSAT
SATenstein[FAC] 3 and 5 Dynamic local search
SATenstein[CBMC(SE)] 1, 3 and 5 Dynamic local search

Table 3. High-level summary of SATenstein solvers.

SATenstein[D] 0.08 0.03 1.11 0.02 10.89 4.75
(14) 100% 100% 100% 100% 100% 100%

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

AG20 1054.99 0.64 2.14 137.02 3594.40 2169.77
(17) 81.2% 100% 100% 98.1% 35.9% 61.1%

AG2p 1119.96 0.43 2.35 105.30 1954.83 2294.24
(18) 80.1% 100% 100% 98.4% 80.6% 61.1%

AG2+ 1091.37 0.67 3.04 148.28 1450.89 2181.92
(18) 80.3% 100% 100% 98.0% 91.0% 61.1%

ANOV 25.42 4.86 11.17 109.94 2897.52 2021.22
(7) 99.6% 100% 100% 98.6% 51.4% 61.1%

G2 2942.13 4092.29 3.69 104.55 5947.80 2139.12
(16) 50.9% 31.0% 100% 98.7% 0% 65.4%

GNOV 414.69 1.20 11.14 52.58 5935.39 2236.85
(22) 93.3% 100% 100% 99.4% 0% 61.5%

PAWS 1127.84 4495.50 1.77 62.18 22.05 1693.82
(27) 81.0% 24.3% 100% 99.4% 100% 70.8%

RANOV 73.38 0.15 18.29 151.11 887.33 1227.07
(21) 99.1% 100% 100% 98.2% 96.8% 79.7%

RSAPS 1255.94 5635.54 18.42 33.28 17.86 827.81
(11) 79.2% 5.4% 100% 99.7% 100% 85.0%

SAPS 1248.34 3864.74 22.93 40.17 16.41 646.89
(11) 79.4% 34.2% 100% 99.5% 100% 89.7%

VW 1022.69 161.74 12.45 176.18 3382.02 385.12
(23) 81.9% 99.4% 100% 97.8% 35.3% 93.4%

Table 4. Performance of SATenstein and the 11 challengers. Every algorithm was run
25 times on each instance with a cutoff of 600 CPU seconds per run. Each cell ⟨i, j⟩
summarizes the test-set performance of algorithm i on distribution j as a/b, where a (top)
is the the penalized average runtime; b (bottom) is the percentage of instances solved (i.e.,
those with median runtime < cutoff). The best-scoring algorithm(s) in each column are
indicated in bold, and the best-scoring challenger(s) are underlined.

as a graph with 359 nodes and 128 522 edges, with nodes corresponding to
concept DAGs, and edges labeled by the minimum transformation cost between
them. To visualize this graph, we used a dimensionality reduction method to
map it onto a plane, with the aim of positioning points so that the Euclidean
distance between every pair of points approximates their transformation cost as
accurately as possible. In particular, we used the Isomap algorithm (26), which
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Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

ANOV[D] 26.13 0.06 2.68 119.75 1731.16 994.94
(7) 99.6% 100% 100% 98.2% 90.1% 83.4%

G2[D] 514.29 0.05 3.64 98.70 617.83 1084.60
(16) 91.4% 100% 100% 99.1% 97.8% 81.4%

GNOV[D] 417.33 0.22 8.87 68.24 5478.75 2195.76
(22) 92.9% 100% 100% 99.4% 0.3% 61.8%

PAWS[D] 68.06 0.70 1.91 64.48 22.01 1925.56
(27) 99.2% 100% 100% 99.4% 100% 67.7%

RANOV[D] 75.06 0.15 13.85 141.61 336.27 1223.83
(21) 98.9% 100% 100% 98.1% 100% 80.4%

RSAPS[D] 868.37 0.19 1.32 42.99 12.17 67.59
(11) 85.2% 100% 100% 99.5% 100% 99.0%

SAPS[D] 27.69 0.31 1.54 31.77 10.68 62.63
(11) 99.8% 100% 100% 99.6% 100% 99.0%

VW[D] 0.33 417.71 1.26 57.44 32.38 16.45
(23) 100% 94.8% 100% 99.6% 100% 100%

Table 5. Performance summary of the automatically configured versions of 8 challengers
(three challengers have no parameters). Every algorithm was run 25 times on each problem
instance with a cutoff of 600 CPU seconds per run. Each cell ⟨i, j⟩ summarizes the test-set
performance of algorithm i on distribution j as a/b, where a (top) is the the penalized
average runtime; b (bottom) is the percentage of instances solved (i.e., having median
runtime < cutoff). The best-scoring algorithm(s) in each column are indicated in bold.

builds on a multidimensional scaling technique but has the ability to preserve
the intrinsic geometry of the data, as captured in the geodesic manifold distances
between all pairs of data points. It is capable of discovering the nonlinear degrees
of freedom that underlie complex natural observations.

The final layout of similarities among 359 configurations (16 algorithms) is
shown in Figure 1. Observe that in most cases the 50 different configurations for
a given challenger solver were so similar that they mapped to virtually the same
point in the graph.

As noted earlier, the distance between any two configurations shown in Figure 1
only approximates their true distance. In addition, the result of the visualization
also depends on the number of configurations considered: adding an additional
configuration may affect the position of many or all other configurations. Thus,
before drawing further conclusions about the results illustrated in Figure 1, we
validated the fidelity of the visualization to the original distance data. As can be
seen from Figure 2, although Isomap tended to underestimate the true distances
between configurations, there was a strong correlation between the computed
and mapped distances (Pearson correlation coefficient: 0.93). Also, the mapping
preserved the relative ordering of the true distances between configurations
quite well (Spearman correlation coefficient 0.91)—in other words, distances
that appear similar in the 2D plot tend to correspond to similar true distances
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Figure 1. Visualization of the transformation costs in the design of 16 high-performance

solvers (359 configurations) obtained via Isomap.

(and vice versa). Digging deeper, we confirmed that the challenger closest in
Figure 1 to each given SATenstein solver was indeed the one having the lowest
true transformation cost. This was not true for the most distant challengers;
however, we find this acceptable, since we are mainly interested in examining
which configurations are similar to each other.

Having confirmed that our dimensionality reduction method is performing
reliably, let us examine Figure 1 in more detail. Overall, and unsurprisingly, we
first note that the transformation cost between two configurations in the design
space is very weakly related to their performance difference (quantitatively, the
Spearman correlation coefficient between performance difference (PAR ratio) and
configuration difference (transformation cost) was 0.25). Examining algorithms
by type, we note that all dynamic local search algorithms are grouped together,
on the right side of Figure 1; likewise, the algorithms using adaptive mechanisms
are grouped together at the bottom of Figure 1. SATenstein() solvers were
typically more similar to each other than to challengers, and fell into two broad
clusters. The first cluster also includes the SAPS variants (SAPS, RSAPS), while
the second also includes G2 and VW. None of the SATenstein solvers uses an
adaptive mechanism to automatically adjust other parameters. In fact, as shown
in Table 5, the same is true of the best performance-optimized challengers as
neither SAPS, G2, or VW use adaptive mechanism. This suggests that in many
cases, contrary to common belief (see, e.g., (7; 18)) it may be preferable to expose
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Figure 2. True vs mapped distances in Figure 1. The data points correspond to the

complete set of SATenstein[D] for all domains and all challengers with their default

and domain-specific, optimized configurations.

parameters so they can be instantiated by sophisticated configurators rather
than automatically adjusting them at running time using a simple adaptive
mechanism.

We now consider benchmarks individually. For the FAC benchmark, SATen-

stein[FAC] had similar performance to SAPS[FAC]; as seen in Figure 1, both
solvers are structurally very similar as well. Overall, for the ‘industrial’ distri-
butions, CBMC(SE) and FAC, dynamic local search algorithms often yielded
the best performance amongst all challengers. Our automatically-constructed
SATenstein solvers for these two distributions are also dynamic local search algo-
rithms. Due to the larger search neighbourhood and the use of clause penalties,
dynamic local search algorithms are more suitable for solving industrial SAT
instances, which often have some special global structure.

For R3SAT, a well-studied distribution, many challengers showed good perfor-
mance (the top three challengers were VW, RSAPS, and SAPS). The performance
of SATenstein[R3SAT] is only slightly better than that of VW[R3SAT]. Figure 1
shows that SATenstein[R3SAT] is a dynamic local search algorithm similar to
RSAPS and SAPS.

For HGEN, even the best performance-optimized challengers, RSAPS[HGEN]

and SAPS[HGEN], performed poorly. SATenstein[HGEN] achieves more than
1 000-fold speedups against all challengers. Its configuration is far away from
any dynamic local search algorithm (the best challengers), and closest to VW, a
WalkSAT algorithm, and G2.

For QCP, VW[QCP] does not reach the performance of SATenstein[QCP],
but significantly outperforms all other challengers. Our transformation cost
analysis shows that VW is the closest neighbour to SATenstein[QCP]. For
SWGCP, many challengers achieve similar performance to SATenstein[SWGCP].
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Figure 1 shows that SATenstein[SWGCP] is close to G2[SWGCP], which is the
best performing challenger on SWGCP.

5.2 Comparison to Configured Challengers

Since there were large performance gaps between default and configured chal-
lengers, we were also interested in the transformation cost between the config-
urations of individual challenger solvers. Table 5 shows that after configuring
each challenger for each distribution, we found that SAPS was best on HGEN

and FAC; G2 was best on SWGCP, and VW was best on CBMC(SE), QCP,
and R3FIX. Figure 3 (left) visualizes the parameter spaces for each of these
three solvers (43 random configurations + default configuration + 6 optimized
configurations). Figure 3 (right) shows the same thing, but also adds the best
SATenstein() configurations for each benchmark on which the challenger exhib-
ited top performance.

Examining these figures in the left column of Figure 3, we first note that the
SAPS configurations optimized for FAC and HGEN are very similar but differ
substantially from SAPS’s default configuration. On SWGCP, the optimized
configuration of G2 not only performs much better than the default but, as
seen in Figure 3(c), is also quite different. All three top-performing VW con-
figurations are rather different from VW’s default, and none of them uses the
adaptive mechanism for choosing parameter wpWalk, s, and c. Since the parame-
ter useAdaptiveMechanism is a top-level parameter and many other parameters
are conditionally dependent on it, the transformation costs between VW default
and optimized configurations of VW are very large, due to the high relabelling
cost for these nodes in our concept DAGs.

The right column of Figure 3 illustrates the similarity between optimized
SATenstein() solvers and the best performing challenger for each benchmark. As
previously noted, SATenstein[FAC] and SAPS[FAC] are not only very similar
in performance, but also structurally similar. Likewise, SATenstein[SWGCP] is
similar to G2SWGCP. On R3SAT, many challengers had similar performance.
SATenstein[R3SAT] (PAR=1.11) was quite different from the best challenger
VW[R3SAT] (PAR=1.26), but resembled SAPS[R3SAT] (PAR=1.53). For the
three remaining benchmarks, SATenstein() solvers exhibited much better per-
formance than the best optimized challengers, and their configurations likewise
differed substantially from the challengers’ configurations.

As an aside, it might initially be surprising that qualitative features of the
visualizations in Figures 3 appear to be absent from Figure 1. In particular, the
sets of randomly sampled challenger configurations that are quite well-separated
in Figure 3 are nearly collapsed into single points in Figure 1, although the scales
are not vastly different. The reason for this lies in the fact that the 2D-mapping
of the highly non-planar pairwise distance data performed by Isomap focuses
on minimal overall distortion. For example, when visualizing the differences
within a set of randomly sampled SAPS configurations (Figure 3 (a)), Isomap

spreads these out into a cloud of points to represent their differences. However,
the presence of a single SATenstein configuration that has large transformation
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Figure 3. The transformation costs of configuration of individual challengers

and selected SATenstein solvers. (a): SAPS (best on HGEN and FACT); (b):

SAPS and SATenstein[HGEN, FACT]; (c): G2 (best on SWGCP); (d): G2 and

SATenstein[SWGCP]; (e): VW (best on CBMC(SE), QCP, and R3FIX); (f): VW

and SATenstein[CBMC, QCP, R3FIX].
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costs from all of these SAPS configurations forces Isomap to use one dimension
to capture those differences, leaving essentially only one dimension to represent
the much smaller differences between the SAPS configurations (Figure 3 (b)).
Adding further very different configurations (as present in Figure 1) leads to
mappings in which the smaller differences between configurations of the same
challenger become insignificant.

6 Conclusion

We have proposed a new metric for quantitatively assessing the similarity between
configurations of highly parametric solvers. Our metric is based on a data
structure, concept DAGs, that preserves the internal hierarchical structure of
parameters. We estimate the similarity of two configurations as the transformation
cost from one configuration to another. In the context of SATenstein, a highly
parameterized SLS-based SAT solver, we have demonstrated that visualizations
based on transformation cost can provide useful insights into similarities and
differences between solver configurations. In addition, we believe that this metric
could be useful for suggesting potential links between algorithm structure and
algorithm performance further exploration of which could be an interesting future
research direction.
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