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Incentivizing Evaluation via Limited Access to Ground Truth:

Peer-Prediction Makes Things Worse

Xi Alice Gao James R. Wright Kevin Leyton-Brown

Abstract

In many settings, an effective way of evaluating objects of interest is to collect evaluations from
dispersed individuals and to aggregate these evaluations together. Some examples are categorizing online
content and evaluating student assignments via peer grading. For this data science problem, one challenge
is to motivate participants to conduct such evaluations carefully and to report them honestly, particularly
when doing so is costly. Existing approaches, notably peer-prediction mechanisms, can incentivize truth
telling in equilibrium. However, they also give rise to equilibria in which agents do not pay the costs
required to evaluate accurately, and hence fail to elicit useful information. We show that this problem is
unavoidable whenever agents are able to coordinate using low-cost signals about the items being evaluated
(e.g., text labels or pictures). We then consider ways of circumventing this problem by comparing agents’
reports to ground truth, which is available in practice when there exist trusted evaluators—such as
teaching assistants in the peer grading scenario—who can perform a limited number of unbiased (but
noisy) evaluations. Of course, when such ground truth is available, a simpler approach is also possible:
rewarding each agent based on agreement with ground truth with some probability, and unconditionally
rewarding the agent otherwise. Surprisingly, we show that the simpler mechanism achieves stronger
incentive guarantees given less access to ground truth than a large set of peer-prediction mechanisms.

1 Introduction

In many practical settings, an effective way of evaluating objects of interest is to collect evaluations from
dispersed individuals and aggregate these evaluations together. For example, many millions of users rely on
feedback from Rotten Tomatoes, Yelp and TripAdvisor to choose among competing movies, restaurants, and
travel destinations. Crowdsourcing platforms provide another example, enabling the collection of semantic
labels of images and online content for use in training machine learning algorithms. This is a data science
problem with two main challenges. How should the collected data be aggregated to produce an accurate
estimate? How should incentives be designed to motivate participants to contribute high quality data? In
this paper, we focus on the incentive issues.

We are particularly motivated by the peer grading problem, which we will use as a running example.
Students benefit from open-ended assignments such as essays or proofs. However, such assignments are
used relatively sparingly, particularly in large classes, because they require considerable time and effort
to grade properly. An efficient and scalable alternative is having students grade each other (and, in the
process, learn from each other’s work). Many peer grading systems have been proposed and evaluated in
the education literature [Hamer et al., 2005, Cho and Schunn, 2007, Paré and Joordens, 2008, Shah et al.,
2013, de Alfaro and Shavlovsky, 2014, Kulkarni et al., 2014, Raman and Joachims, 2014, Wright et al., 2015,
Caragiannis et al., 2015, de Alfaro et al., 2015], albeit with a focus on evaluating the accuracy of grades
collected under the assumption of full cooperation by students.

However, no experienced teacher would expect all students to behave nonstrategically when asked to invest
effort in a time-consuming task. An effective peer grading system must therefore provide motivation for stu-
dents to formulate evaluations carefully and to report them honestly. Many approaches have been developed
to provide such motivation. One notable category is peer-prediction methods [Prelec, 2004, Miller et al.,
2005, Jurca and Faltings, 2009, Faltings et al., 2012, Witkowski and Parkes, 2012, Witkowski et al., 2013,
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Dasgupta and Ghosh, 2013, Witkowski and Parkes, 2013, Radanovic and Faltings, 2013, 2014, Riley, 2014,
Zhang and Chen, 2014, Waggoner and Chen, 2014, Kamble et al., 2015, Kong et al., 2016, Shnayder et al.,
2016]. In order to motivate each agent to reveal his private, informative signal, peer-prediction methods offer
a reward based on how each agent’s reports compare with those of his peers. Such rewards are designed
to induce truth telling in equilibrium—that is, they create a situation in which each agent has an interest
in investing effort and revealing his private and informative signal truthfully, as long as he believes that all
other agents will do the same.

Even if they do offer a truthful equilibrium, peer-prediction methods also always induce other uninfor-
mative equilibria, the existence of which is inevitable [Jurca and Faltings, 2009, Waggoner and Chen, 2014].
Intuitively, if no other agent follows a strategy that depends on her private information, there is no reason
for a given agent to deviate in a way that does so either: agents can only be rewarded for coordination,
not for accuracy. When private information is costly to obtain, uninformative equilibria are typically less
demanding for agents to play. This raises significant doubt about whether peer-prediction methods can moti-
vate truthful reporting in practice. Experimental evaluations of peer-prediction methods have mixed results.
Some studies showed that agents reported truthfully [Shaw et al., 2011, John et al., 2012, Faltings et al.,
2014]; another study found that agents colluded on uninformative equilibria [Gao et al., 2014].

Recent progress on peer-prediction mechanisms has focused on making the truthful equilibrium Pareto
dominant, i.e., (weakly) more rewarding to every agent than any other equilibrium [Dasgupta and Ghosh,
2013, Witkowski and Parkes, 2013, Kamble et al., 2015, Radanovic and Faltings, 2015, Shnayder et al., 2016].
This can be achieved by rewarding agents based on the distributions of their reports for multiple objects.
However, we show in this paper that such arguments rely critically on the assumption that every agent
has access to only one private signal per object. This is often untrue in practice; e.g., in peer grading, by
taking a quick glance at an essay a student can observe characteristics such as length, formatting and the
prevalence of grammatical errors. These characteristics require hardly any effort to observe, can be arbitrarily
uninformative about true quality, and are of no interest to the mechanism. Yet their existence provides a
means for the agents to coordinate. We build on this intuition to prove that no mechanism can guarantee
that an equilibrium in which all agents truthfully report their informative signals is always Pareto dominant.
Furthermore, we show that for any mechanism, the truthful equilibrium is always Pareto dominated in some
settings.

Motivated by these negative results, we move on to consider a setting in which the operator of the mecha-
nism has access to trusted evaluators (e.g., teaching assistants) who can reliably provide noisy but informative
signals of the object’s true quality. This allows for a hybrid mechanism that blends peer-prediction with
comparison to trusted reports. With a fixed probability, the mechanism obtains a trusted report and rewards
the agent based on the agreement between the agent’s report and the trusted report [Jurca and Faltings,
2005]. Otherwise, the mechanism rewards the agent using a peer-prediction mechanism. Such hybrid mech-
anisms can yield stronger incentive guarantees than other peer-prediction mechanisms, such as achieving
truthful reporting of informative signals in Pareto-dominant equilibrium (see, e.g., [Jurca and Faltings, 2005,
Dasgupta and Ghosh, 2013]). Intuitively, if an agent seeks to be consistently close to a trusted report, then
his best strategy is to reveal his informative signal truthfully.

In fact, the availability of trusted reports is so powerful that it gives us the option of dispensing with peer-
prediction altogether. Specifically, we can reward students based on agreement with the trusted report when
the latter is available, but simply pay students a constant reward otherwise. Indeed, in Wright et al. [2015]
we introduced such a peer grading system and showed that it worked effectively in practice, based on a study
across three years of a large class. This mechanism has even stronger incentive properties than the hybrid
mechanism—because it induces a single-agent game, it can give rise to dominant-strategy truthfulness.

Our paper’s main focus is on comparing these two approaches in terms of the number of trusted reports
that they require. One might expect that the peer-prediction approach would have the edge, both because it
relies on a weaker solution concept and because it leverages a second source of information reported by other
agents. Surprisingly, we prove that this intuition is backwards. We identify a simple sufficient condition,
which, if satisfied, guarantees that the peer-insensitive mechanism offers the dominant strategy of truthful
reporting of informative signals while querying trusted reports with a lower probability than is required for
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a peer-prediction mechanism to motivate truthful reporting in Pareto-dominant equilibrium. We then show
that all applicable peer-prediction mechanisms of which we are aware satisfy this sufficient condition.

2 Peer-Prediction Mechanisms

We begin by formally defining the game theoretic setting in which we will study the elicitation problem. A
mechanism designer wishes to elicit information about a set O of objects from n risk-neutral agents. Each
object j has a latent quality qj ∈ Q, where Q is a finite set.

Agents have access to private information about the object of interest. In the peer prediction literature,
it is standard to assume that each agent receives information from a single, private signal. Furthermore,
this signal is assumed to be be the only information that agent has about the object of interest. However,
we argue that, in reality, every agent can obtain multiple pieces of information with different quality by
investing different amounts of efforts. To capture this, we consider a simplified scenario by assuming that,
for each object j, agent i has access to two pieces of private information: a high-quality signal shij ∈ Q and

a low-quality signal slj .
The high-quality signal represents useful information about the object’s quality that the mechanism

designer wishes to elicit. It is drawn from a distribution conditional on the object’s actual quality qj . The
joint distributions of the high-quality signals are common knowledge among the agents. An agent i can
form a belief about the high-quality signal of another agent i′ by conditioning on his own high-quality signal.
Obtaining the high-quality signal requires a constant effort cE > 0.

The low-quality signal represents irrelevant information that the mechanism designer does not care about.
Yet it is easy to obtain and provides a way for agents to coordinate their reports. For example, when
evaluating essays, students can easily observe the number of grammatical mistakes or the apparent complexity
of the language used without reading essays carefully. Similarly, one could base a review on the decor without
eating in a restaurant; evaluate the quality of a movie’s trailer; etc. For simplicity, we analyze the extreme
case where the low-quality signal is uncorrelated with the object’s true quality, is perfectly correlated across
agents, and can be observed without effort. Our results extend directly to a more general setting where
agents can invest varying amounts of effort to obtain multiple signals with different degrees of correlation
with the object’s true quality.

Agents may strategize over both whether to incur the cost of effort to observe the high-quality signal
and over what to report. The mechanism designer’s goal is to incentivize each agent to both observe the
high-quality signal, and to truthfully report it. We say that a mechanism has a truthful equilibrium when
it is an equilibrium for agents to observe the high-quality signal and truthfully report it (and, for some
mechanisms, their posterior belief about other agents’ high-quality signals).

The mechanism designer’s aim is to incentivize each agent i ∈ {1, . . . , n} to gather and truthfully report
information about every object in j ∈ O. Let rij and bij denote agent i’s signal and belief reports for object
j respectively. A mechanism is defined by a reward function, which maps a profile of agent reports to a
reward for each agent. We say that a mechanism is universal if it can be applied without prior knowledge
of the distribution from which signals are elicited, and for any number of agents greater than or equal to 3.

Definition 1 (Universal peer-prediction mechanism). A peer-prediction mechanism is universal if it can
be operated without knowledge of the joint distribution of the high-quality signals shij (i.e., it is “detail free”
[Wilson, 1987]) and well defined for any number of agents n ≥ 3.

We focus on universal mechanisms for two reasons. First, in practice, it is extremely unrealistic to assume
that a mechanism designer will have detailed knowledge of the joint signal distribution, so this allows us to
focus on mechanisms that are more likely to be used in practice. Second, it is relatively unrestrictive, as
nearly all of the peer-prediction mechanisms in the literature satisfy universality.

Existing, universal peer-prediction mechanisms can be divided into three categories: output agreement
mechanisms, multi-object mechanisms, and belief based mechanisms.
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Output Agreement Mechanisms Output agreement mechanisms only collect signal reports from agents
and reward an agent i for evaluating object j based on agents’ signal reports for the object [Faltings et al.,
2012, Witkowski et al., 2013, Waggoner and Chen, 2014]. Waggoner and Chen [2014] and Witkowski et al.
[2013] studied the standard output agreement mechanism, where agent i is only rewarded when his signal re-
port matches that of another randomly chosen agent j. Agent i’s reward is zi(r) = 1rij=ri′j

. The Faltings et al.
[2012] mechanism also rewards agents for agreement, scaled by the empirical frequency of the report agreed

upon. Agent i’s reward is zi(r) = α + β
1rij=r

i′j

F (ri′j)
, where α > 0 and β > 0 are constants and F (rj) is the

empirical frequency of rj .

Multi-Object Mechanisms Multi-object mechanisms reward each agent based on his reports for multi-
ple objects [Dasgupta and Ghosh, 2013, Radanovic and Faltings, 2015, Kamble et al., 2015, Shnayder et al.,
2016]. (The Shnayder et al. [2016] mechanism generalizes the Dasgupta and Ghosh [2013] mechanism to the
multi-signal setting. Thus, we only refer to the Shnayder et al. [2016] mechanism below.)

The Shnayder et al. [2016] and Kamble et al. [2015] mechanisms also reward agents for agreement, as
in output agreement mechanisms. They extend output agreement mechanisms by adding additional scaling
terms to the reward. These scaling terms are intended to exploit correlations between multiple tasks to make
the truthful equilibrium dominate (a particular kind of) uninformative equilibria, by reducing the reward to
agents who agree to an amount that is “unsurprising” given their reports on other objects.

The Shnayder et al. [2016] mechanism adds an additive scaling term to the reward for agreement. To
compute the scaling term, consider two sets of non-overlapping tasks Si and Si′ such that agent i has
evaluated all objects in Si but none in Si′ and agent i′ has evaluated all objects in Si′ but none in Si. Let
Fi(s) and Fi′(s) denote the frequency of signal s ∈ Q in sets Si and Si′ respectively. Agent i is rewarded
according to zi(r) = 1rij=ri′j

−
∑

s∈Q Fi(s)Fi′ (s).
In contrast, the Kamble et al. [2015] mechanism adds a multiplicative scaling term to the reward for

agreement. To compute the scaling term, choose 2 agents k and k′ uniformly at random. For each signal

s ∈ Q, let f j(s) = 1rkj=s1rk′j=s. Define f̂(s) =
√

1
N

∑

j∈O f j(s). If f̂(s) ∈ {0, 1}, then agent i’s reward is

0. Otherwise, agent i’s reward is 1rij=ri′j
· K

f̂(s)
for some constant K > 0.

The Radanovic and Faltings [2015] mechanism rewards the agents for report agreement using a reward
function inspired by the quadratic scoring rule. To reward agent i for evaluating object j, first choose another
random agent i′ who also evaluated object j. Then construct a sample Σi of reports which contains one
report for every object that is not evaluated by agent i. The sample Σi is double-mixed if it contains all
possible signal realizations at least twice. If Σi is not double-mixed, agent i’s reward is 0. Otherwise, if
Σi is double-mixed, the mechanism chooses two objects j′ and j′′ (j′ 6= j, j′′ 6= j and j′ 6= j′′) such that
the reports of j′ and j′′ in the sample are the same as agent i’s report for j, i.e. Σi(j

′) = Σi(j
′′) = rij .

For each of j′ and j′′, randomly select two reports ri′′j′ and ri′′′j′′ . Agent i’s is rewarded according to
zi(r) =

1
2 + 1ri′′j′=ri′j

− 1
2

∑

s∈Q 1ri′′j′=s1ri′′′j′′=s.

Belief Based Mechanisms Finally, some peer-prediction mechanisms collect both signal and belief
reports from agents and reward each agent based on all agents’ signal and belief reports for each ob-
ject [Witkowski and Parkes, 2012, 2013, Radanovic and Faltings, 2013, 2014, Riley, 2014]. Below, let R

denote a proper scoring rule.
The robust Bayesian Truth Serum (BTS) [Witkowski and Parkes, 2012, 2013] rewards agent i for how

well his belief report bi and shadowed belief report b′i predict the signal reports of another randomly chosen
agent k. Agent i’s reward is zi(r, b) = R(b′i, rk) + R(bi, rk). Agent i’s shadowed belief report is calculated
based on his signal report and another random agent j’s belief report: b′i = bj + δ if ri = 1 and b′i = bj − δ

if ri = 0 where δ = min(bj , 1− bj).
The multi-valued robust BTS [Radanovic and Faltings, 2013] rewards agent i if his signal report matches

that of another random agent j and his belief report accurately predicts agent j’s signal report. Agent i’s
reward is zi(r, b) =

1
bj(ri)

1ri=rj +R(bi, rj).

The divergence-based BTS [Radanovic and Faltings, 2014] rewards agent i if his belief report accurately
predicts another random agent j’s signal report. In addition, it penalizes agent i if his signal report matches
that of agent j but his belief report is sufficiently different from that of agent j. Agent i’s reward is
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−1ri=rj ||D(bi,bj)>θ + R(bi, rj) where D(||) is the divergence associated to the strictly proper scoring rule R,
and θ is a parameter of the mechanism.

The Riley [2014] mechanism rewards agent i for how well his belief report predicts other agents’ signal
reports. Moreover, agent i’s reward is bounded above by the score for the average belief report of other
agents reporting the same signal. Formally, let δi = mins∈Q |{rj = s|j 6= i}| be the minimum number of
other agents who have reported any given signal. If δi = 0, agent i’s reward is R(bi, r−i). Otherwise, if
δi ≥ 1, compute the proxy prediction qi(ri) to be the average belief report for all other agents who made the
same signal report as agent i. Agent i’s reward is min{R(bi, r−i), R(qi(ri), r−i)}.

Non-Universal Mechanisms We are aware of several additional peer-prediction mechanisms that we do
not consider further in this paper because they are not universal in the sense of Definition 1. The Miller et al.
[2005], Zhang and Chen [2014] and Kong et al. [2016] mechanisms all derive the agents’ posterior beliefs
based on their signal reports (hence requiring knowledge of the distribution from which signals are drawn);
they all then reward the agents based on how well the derived posterior belief predicts other agents’ signal
reports using proper scoring rules. The Jurca and Faltings [2009] mechanism requires knowledge of the prior
distribution over signals to construct rewards that either penalize or eliminate symmetric, uninformative
equilibria. The Bayesian Truth Serum (BTS) mechanism [Prelec, 2004] requires an infinite number of agents
to guarantee the existence of the truthful equilibrium. While we do not consider this mechanism, we note
that Prelec [2004] pioneered the idea of eliciting both signal and belief reports from each agent. This
key idea was leveraged in much subsequent work to sustain the truthful equilibrium while not requiring
knowledge of the prior distributions of the signals to operate the mechanism [Witkowski and Parkes, 2012,
2013, Radanovic and Faltings, 2013, 2014, Riley, 2014].

Hierarchical Mechanism [de Alfaro et al., 2015] Independent to our work, de Alfaro et al. [2015] also
proposed the idea of using peer prediction mechanisms in conjunction with limited access to trusted reports.
In their hierarchical mechanism, students are placed into a tree structure. Students in the top layer of the
tree are incentivized through trusted reports whereas students in the layers below are incentivized via a peer
prediction mechanism. By an inductive argument, the truthful equilibrium exists and is unique, so long as the
top-layer students are sufficiently incentivized. This mechanism is detail free with respect to the distribution
of signals, and is thus universal. However, the existence of the truthful equilibrium requires every student
to know which layer of the tree structure they occupy; that is, different students are treated differently ex-
ante. This is another example of work in which a widespread, seemingly innocuous assumption—in this case,
anonymity; in the case of our own work, the single-signal assumption—turns out to have major implications.
In future work we intend to further explore relaxations of the single-signal assumption and anonymity, and
connections between them.

3 Impossibility of Pareto-Dominant, Truthful Elicitation

In this section, we show that when agents have access to multiple signals about an object, Pareto-dominant
truthful elicitation is impossible for any universal elicitation mechanism that computes agent rewards solely
based on a profile of strategic agent reports (i.e., without any access to ground truth). The intuition is that
without knowledge of the distributions from which the signals are drawn, the mechanism cannot distinguish
the signal that it hopes to elicit from other, irrelevant signals. Thus, it cannot guarantee that the truthful
equilibrium always yields the highest rewards to all agents.

We focus on universal elicitation mechanisms that compute agent rewards solely based on a profile of
agent reports. Let M denote such a mechanism. Let a signal structure be a collection of signals {si}

n
i=1

drawn from a joint distribution F , where each agent i observes si. We say that a signal structure is M -
elicitable if there exists an equilibrium of M where every agent i truthfully reports si. Let πF

i be agent i’s
ex-ante expected reward in this equilibrium. A multi-signal environment is an environment in which the
agents have access to at least two M -elicitable signal structures. We refer to the signal structure that the
mechanism seeks to elicit as the high-quality signal, and all the others as low-quality signals.
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Theorem 1. For any universal elicitation mechanism, there exists a multi-signal environment in which the
truthful equilibrium is not Pareto dominant.

Proof. Let F, F ′ be M -elicitable signal structures such that πF
i ≥ πF ′

i for all i, with πF
i > πF ′

i for some i. If
no such pair of signal structures exists, then the result follows directly, since the truthful equilibrium does
not Pareto dominate an equilibrium where agents report a low-quality signal. Otherwise, consider a multi-
signal environment where the high-quality signal is distributed according to F ′, and a low-quality signal is
distributed according to F . The equilibrium in which agents reveal this low-quality signal Pareto dominates
the truthful equilibrium in this environment.

Now suppose that observing the high-quality signal is more costly to the agents than observing a low-
quality signal. Concretely, assume that observing the high-quality signal has an additive cost of ci > 0 for
each agent i, and observing a low-quality signal has zero cost. Call this a costly-observation multi-signal
environment. In this realistic environment, an even stronger result holds.

Theorem 2. For any universal elicitation mechanism, there exists a costly-observation multi-signal envi-
ronment in which the truthful equilibrium is Pareto dominated.

Proof. Let F, F ′ be M -elicitable signal structures such that πF
i ≥ πF ′

i for all i. At least one such pair
must exist, since every distribution has this relationship to itself. Fix a costly-observation multi-signal
environment where the high-quality signal structure is jointly distributed according to F ′, and a low-quality
signal structure is jointly distributed according to F . Then each agent’s expected utility in the truthful
equilibrium is πF ′

i − ci < πF
i . Hence every agent prefers the equilibrium in which agents reveal this low-

quality signal, and the truthful equilibrium is Pareto dominated.

The essential insight of these results is that, in the presence of multiple elicitable signals, there is no
way for a universal elicitation mechanism to be sure which signal it is eliciting. In particular, the truthful
equilibrium is only Pareto dominant if the high-quality signal happens to be drawn from a distribution
yielding higher reward than every other signal available to the agents. In costly-observation environments,
the element of luck is even stronger. The truthful equilibrium is Pareto dominant only if the high-quality
signal structure happens to yield sufficiently high reward to compensate for the cost of observing the signals.

One way for the mechanism designer to ensure that agents are reporting the high-quality signal is to
stochastically compare agents’ reports to reports known to be correlated with that signal. In the next
section, we introduce a class of mechanisms that takes this approach.

4 Combining Elicitation with Limited Access to Ground Truth

Elicitation mechanisms are designed for situations where it is infeasible for the mechanism designer to evaluate
each object herself. However, in practice, it is virtually always possible, albeit costly, to obtain trusted reports,
i.e. unbiased evaluations of a subset of the objects. In the peer grading setting, the instructor and teaching
assistants can always mark some of the assignments. Similarly, review sites could in principle hire an expert
to evaluate restaurants or hotels that its users have reviewed; and so on.

In this section, we define a class of mechanisms that take advantage of this limited access to ground truth
to circumvent the result from Section 3.

Definition 2 (spot-checking mechanism). A spot-checking mechanism is a tuple M = (p, y, z), where p is
the spot check probability; y is a vector of functions yij(rij , s

t
j) called the spot check mechanism; and z is

a vector of functions zij(b, r) called the unchecked mechanism.
Let ∆(Q) be the set of all distributions over the elements of Q. Each agent i makes a signal report

rij ∈ Q, and a belief report bij ∈ ∆(Q) for each object j ∈ Ji. The signal report is the signal that i claims to
have observed, and the belief report represents i’s posterior belief over the signal reports of the other agents.

Agents may strategically choose whether or not to incur the cost of observing the high-quality signal, and
having chosen which signal to observe, may report any function of either signal. Formally, let Gh

i = {g :
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Q → Q} be the set of all full-effort pure strategies, where an agent observes the high-quality signal—incurring
observation cost cE—and then reports a function g(shij) of the observed value. Let Dl be the domain of slij.

Let Gl
i = {g : Dl → Q} be the set of all no-effort pure strategies, where an agent observes the low-quality

signal—incurring no observation cost—and then reports a function gl(slij) of the observed value. The set

of pure strategies available to an agent is thus Gh
i ∪ Gl

i. We assume that agents apply the same strategy to
every object that they evaluate; however, we allow agents to play a mixed strategy by choosing the mapping
stochastically.

With probability p, the mechanism will spot check an agent i’s report for a given object j. In this case,
the mechanism obtains a trusted report—that is, a sample from the signal stj. The agent is then rewarded
according to the spot check mechanism, applied to the profile of signal reports and spot checked objects.
With probability 1 − p, the object is not spot checked, and the agent is rewarded according to the unchecked
mechanism.

Thus, given a profile of signal reports r ∈
∏

i∈N QJi and belief reports b ∈
∏

i∈N ∆(Q)Ji , an agent i

receives a reward of πi =
∑

j∈Ji
πij , where

πij =

{

yij(ri, s
t) if agent i’s report on object j is spot checked,

zij(b, r) otherwise.
(1)

We assume that the mechanism designer has no value for the reward given to the agents. Instead, we seek
only to minimize the probability of spot-checking required to make the truthful equilibrium either unique
or Pareto dominant, since access to trusted reports is assumed to be costly.1 This models situations where
agents are rewarded by grades (as in peer grading), virtual points or badges (as in online reviews), or other
artificial currencies.

The low-quality signal might be arbitrarily correlated with the underlying quality. However, we assume
that the high-quality signal is more correlated, in the sense that paying the cost of observing the high-quality
signal is worthwhile. Formally,

E
[

yij(s
h, st)− cE

]

> E
[

yij(s
l, st)

]

.

That is, an agent who knows that they will be spot checked would prefer to pay the cost to observe the
high-quality signal rather than observing the low-quality signal for free. As an extreme example, if the
low-quality signal were perfectly correlated with the quality, then no amount of spot-checking would induce
an agent to observe the high-quality signal (nor, indeed, would a mechanism designer want them to).

In this work we compare two approaches to using limited access to ground truth for elicitation. The first
approach is to augment existing peer-prediction mechanisms with spot-checking:

Definition 3 (spot-checking peer-prediction mechanism). Let z be a peer-prediction mechanism. Then
any spot-checking mechanism that uses z as its unchecked mechanism is a spot-checking peer-prediction
mechanism.

The second approach is to rely exclusively on ground truth access to incentivize truthful reporting:

Definition 4 (peer-insensitive mechanism). A peer-insensitive mechanism is a spot-checking mechanism in
which the unchecked mechanism is a constant function. That is, zij(b, r) = W for some constant W > 0.

5 When Does Peer-Prediction Help?

We compare the peer-insensitive mechanism with all universal spot-checking peer-prediction mechanisms.
In Theorem 3, we show that, if a simple sufficient condition is satisfied, then compared to all universal
spot-checking peer-prediction mechanisms, the peer-insensitive mechanism can achieve stronger incentive

1If access to trusted reports were not costly, then querying strategic agents rather than trusted reports on all the objects
would be pointless.
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properties (dominant-strategy truthfulness versus Pareto dominance of truthful equilibrium) while requiring
a smaller spot check probability.

We first define the gl strategy to be an agent’s best no-effort strategy when a spot check is performed.
What is special about this strategy is that, if an agent chooses to invest no effort, then this is his best
strategy for any spot check probability p ∈ [0, 1]. Thus, the gl equilibrium is stable and the best equilibrium
for all agents conditional on not investing effort.

Definition 5. Let gl = argmaxg∈G E[y(gl(sl), st)] be an agent’s best strategy when a spot check is performed
and the agent invests no effort. Let the gl equilibrium be the equilibrium where every agent uses the gl

strategy.

In Lemma 1, we analyze the peer-insensitive mechanism and derive an expression for the minimum spot
check probability pds at which the truthful strategy is a dominant strategy for the peer-insensitive mechanism.
When the spot check probability is pds, any agent is indifferent between playing the gl strategy and investing
effort and reporting truthfully.

Lemma 1. The minimum spot check probability pds at which the truthful strategy is dominant for the peer-
insensitive mechanism satisfies the following equation.

pdsE[y(s
h, st)]− cE = pds E[y(g

l(sl), st)]. (2)

Proof. Please see Appendix A.

Next, we consider any spot-checking peer-prediction mechanism. Our goal is to derive a lower bound for
pPareto, the minimum spot check probability at which the truthful equilibrium is Pareto dominant.

For the truthful equilibrium to be Pareto dominant, it is necessary that the truthful equilibrium Pareto
dominates the gl equilibrium. This can be achieved in two ways. If we can increase the spot check probability
until pel at which the gl equilibrium is eliminated, then the truthful equilibrium trivially Pareto dominates
the gl equilibrium. Otherwise, we can increase the spot check probability until pex at which the truthful
equilibrium Pareto dominates the gl equilibrium assuming that the gl equilibrium exists when p = pex. Thus,
min(pel, pex) is the minimum spot check probability at which the truthful equilibrium Pareto dominates the
gl equilibrium, and it is also a lower bound for pPareto.

In Lemma 2, we derive an expression for pel and show that it is greater than or equal to pds under
certain assumptions. Intuitively, in order to eliminate the gl equilibrium, we need to increase the spot check
probability enough such that an agent is persuaded to playing his best strategy with full effort rather than
playing the gl strategy. On one hand, the agent incurs a cost deviating from the gl equilibrium when all
other agents follow it. On the other hand, the agent’s best strategy with full effort gives him no greater spot
check reward than the truthful strategy. The combined effect means that it is more costly to persuade an
agent to deviate from the gl equilibrium than to motivate a single agent to report truthfully.

The sufficient conditions characterized in Lemmas 2 and 3 and Theorem 3 are required to hold when
cE = 0. Note however, that if this condition is satisfied when cE = 0, then the consequents of these lemmas
and theorems hold in settings with all positive cost of effort cE ≥ 0 as well. Moreover, we will show that
these sufficient conditions are satisfied by all universal peer-prediction mechanisms that we are aware of in
the literature.

Lemma 2. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists when cE = 0 and
p = 0, then pel ≥ pds for all cE ≥ 0.

Proof. Please see Appendix B.

In Lemma 3, we show that pex is greater than or equal to pds under certain assumptions. The intuition is
that, when no spot check is performed, the gl equilibrium Pareto dominates the truthful equilibrium. Thus,
assuming that the gl equilibrium exists, it is more costly (in terms of increasing spot check probability) to
make the truthful equilibrium Pareto dominate the gl equilibrium than to motivate a single agent to report
truthfully.

8



Lemma 3. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists and Pareto domi-
nates the truthful equilibrium when cE = 0 and p = 0, then pex ≥ pds for all cE ≥ 0.

Proof. Please see Appendix C.

If the conditions in Lemmas 2 and 3 are satisfied, it is clear that pPareto ≥ pds because min(pel, pex), which
lower bounds pPareto, is already greater than or equal to pds. Thus, a sufficient condition for pPareto ≥ pds is
simply all conditions in the two lemmas, as shown in Theorem 3.

Theorem 3 (Sufficient condition for Pareto comparison). For any spot-checking peer-prediction mechanism,
if the gl equilibrium exists and Pareto dominates the truthful equilibrium when cE = 0 and p = 0, then
pPareto ≥ pds for all cE ≥ 0.

Proof. Please see Appendix D.

We now show that, under very natural conditions, every universal peer-prediction mechanism of which
we are aware in the literature satisfies the conditions of Theorem 3; hence, in this setting, the peer-insensitive
spot-checking mechanism requires less ground truth access than any spot-checking peer-prediction mecha-
nism.

First, we assume that the low-quality signal sl is drawn from a uniform distribution over Q; this is
essentially without loss of generality, since in any setting where the agents see a description of the object as
well as their evaluation, a distribution of this form can be obtained by, e.g., hashing the description. More
realistically, objects may have names that are approximately uniformly distributed. Second, we fix the spot
check mechanism as in Equation (3), using a form inspired by Dasgupta and Ghosh [2013]. Let J t be the set
of objects that was spot-checked. Let i be an agent whose report rij on object j ∈ Ji has been spot checked.
Let j′ ∈ Ji be an object that j evaluated, chosen uniformly at random, and let j′′ ∈ J t\Ji be a spot-checked
object, also chosen uniformly at random.2 Then agent i’s reward for object j is

yij(ri, s
t) = 1rij=st

j
− 1rij′=st

j′′
. (3)

Lemma 4. For the spot check reward function in Equation (3), an agent’s best strategy conditional on not
investing effort is always to report the low-quality signal sl.

Proof. Please see Appendix E.

Corollary 1. For spot-checking peer-prediction mechanisms based on Faltings et al. [2012], Witkowski et al.
[2013], Dasgupta and Ghosh [2013], Waggoner and Chen [2014], Kamble et al. [2015], Radanovic and Faltings
[2015] and Shnayder et al. [2016], the minimum spot check probability pPareto for the Pareto dominance of the
truthful equilibrium is greater than or equal to the minimum spot check probability pds at which the truthful
strategy is a dominant strategy for the peer-insensitive mechanism.

Proof. Please see Appendix F.

Corollary 2. For spot-checking peer-prediction mechanisms based on Witkowski and Parkes [2012, 2013],
Radanovic and Faltings [2013, 2014] and Riley [2014], if the peer-prediction mechanism uses a symmetric
proper scoring rule, then the minimum spot check probability pPareto for the Pareto dominance of the truthful
equilibrium is greater than or equal to the minimum spot check probability pds at which the truthful strategy
is a dominant strategy for the peer-insensitive mechanism.

Proof. Please see Appendix G.

2Note that in Dasgupta and Ghosh [2013], it is important for strategic reasons that object j′ has not been evaluated by the
opposing agent; this is not important in our setting, since the trusted reports are assumed to be nonstrategic.
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6 Conclusions and Future Work

We consider the problem of using limited access to noisy but unbiased ground truth to incentivize agents to
invest costly effort in evaluating and truthfully reporting the quality of some object of interest. Absent such
spot-checking, peer-prediction mechanisms already guarantee the existence of a truthful equilibrium that
induces both effort and honesty from the agents. However, this truthful equilibrium may be less attractive
to the agents than other, uninformative equilibria.

Some mechanisms in the literature have been carefully designed to ensure that the truthful equilibrium
is the most attractive equilibrium to the agents (i.e., Pareto dominates all other equilibria). However, these
mechanisms rely crucially on the unrealistic assumption that agents’ only means of correlating are via the
signals that the mechanism aims to elicit. We show that under the more realistic assumption that agents
have access to more than one signal, no universal peer-prediction mechanism has a Pareto dominant truthful
equilibrium in all elicitable settings.

In contrast, we present a simpler peer-insensitive mechanism that provides incentives for effort and
honesty only by checking the agents’ reports against ground truth. While one might have expected that
peer-prediction would require less frequent access to ground truth to achieve stronger incentive properties
than the peer-insensitive mechanism, we proved the opposite for all universal spot-checking peer-prediction
mechanisms.

This surprising finding is intuitive in retrospect. peer-prediction mechanisms can only motivate agents
to behave in a certain way as a group. An agent has a strong incentive to be truthful if all other agents are
truthful; conversely, when all other agents coordinate on investing no effort, the agent again has a strong
incentive to coordinate with the group. peer-prediction mechanisms thus need to provide a strong enough
incentive for agents to deviate from the most attractive uninformative equilibrium in the worst case, whereas
the peer-insensitive mechanism only needs to motivate effort and honesty in an effectively single-agent setting.

Many exciting future directions remain to be explored. For example, we assumed that the principal does
not care about the total amount of the artificial currency rewarded to the agents. One possible direction
would consider a setting in which the principal seeks to minimize both spot checks and the agents’ rewards.
Also, in our analysis, we assumed that the spot check probability does not depend on the agents’ reports.
Conditioning the spot check probability on the agents’ reports might allow the mechanism to more efficiently
detect and punish uninformative equilibria.
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A Proof of Lemma 1

Lemma 5. The minimum spot check probability pds at which the truthful strategy is dominant for the peer-
insensitive mechanism satisfies the following equation.

pdsE[y(s
h, st)]− cE = pds E[y(g

l(sl), st)]. (4)

Proof. Consider the peer insensitive mechanism with a fixed spot check probability p ≥ 0. When an agent
uses the truthful strategy, his expected utility is

pE[y(sh, st)] + (1− p)W − cE . (5)

When an agent invests no effort, his best strategy is gl. His expected utility from playing the gl strategy is

pE[y(gl(sl), st)] + (1− p)W. (6)

When p = pds, it must be that an agent’s expected utilities in the above two expressions (5) and (6) are
the same.

pds E[y(s
h, st)] + (1− pds)W − cE = pdsE[y(g

l(sl), st)] + (1 − pds)W

pds E[y(s
h, st)]− cE = pdsE[y(g

l(sl), st)].
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B Proof of Lemma 2

Lemma 6. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists when cE = 0 and
p = 0, then pel ≥ pds for all cE ≥ 0.

Proof. Recall that pel is the minimum spot check probability at which the gl equilibrium is eliminated. We
first derive an expression for pel.

We consider a spot checking peer prediction mechanism. By our assumption, the gl equilibrium exists
when cE = 0 and the spot check probability is 0.

Assume that all other agents play the gl strategy and analyze agent i’s best response. First, we note
that, if agent i invests no effort, then agent i’s best strategy is the gl strategy for any spot check probability.
(To maximize his spot check reward y, he should play the gl strategy by the definition of the gl strategy.
To maximize his non spot check reward, his best strategy is also the gl strategy because the gl equilibrium
exists at p = 0. ) Thus, to eliminate the gl equilibrium, we need to increase the spot check probability until
agent i prefers to play his best strategy conditional on investing full effort.

Consider a fixed spot check probability p and suppose that the gl equilibrium exists at this spot check
probability. Suppose that all other agents play the gl strategy.

If agent i does not invest effort, his best response is to also play the gl strategy and his expected utility
is

pE[y(gl(sl), st)] + (1− p)E[z(gl(sl), gl(sl))]. (7)

If agent i invests full effort, let gbr denote agent i’s best response and his expected utility by playing this
best response is

pE[y(gbr(sh), st)] + (1− p)E[z(gbr(sh), gl(sl))]− cE . (8)

By definition of pel, when p = pel, an agent’s expected utility in the above two expressions (7) and (8)
are the same. Thus pel must satisfy

pelE[y(g
br(sh), st)] + (1− pel)E[z(g

br(sh), gl(sl))]− cE

= pelE[y(g
l(sl), st)] + (1− pel)E[z(g

l(sl), gl(sl))]

pelE[y(g
br(sh), st)] + (1− pel) (E[z(g

br(sh), gl(sl))]− E[z(gl(sl), gl(sl))])− cE

= pelE[y(g
l(sl), st)]. (9)

Next, we would like to show that pel ≥ pds.
Since the gl equilibrium exists when cE = 0 and p = 0, it follows from the definition of equilibrium that

E[z(gbr(sh), gl(sl))] ≤ E[z(gl(sl), gl(sl))]. (10)

Taking pel and substituting into the LHS of (2) (definition of pds), in a setting with arbitrary positive
cE ≥ 0, we have

pelE[y(s
h, st)]− cE

≥ pelE[y(s
h, st)] + (1 − pel) (E[z(g

br(sh), gl(sl))]− E[z(gl(sl), gl(sl))])− cE (11)

> pelE[y(g
br(sh), st)] + (1 − pel) (E[z(g

br(sh), gl(sl))] − E[z(gl(sl), gl(sl))])− cE (12)

= pelE[y(g
l(sl), st)]. (13)

Inequality (11) holds due to Equation (10). Inequality (12) holds due to the truthfulness of spot checks:
reporting high-quality signal maximizes the spot check reward. Equation (13) follows from Equation (9).

Thus, if we substitute pel into Equation (2), then the resulting LHS is greater than the RHS. By definition
of pds, it is the minimum spot check probability for which the LHS of (2) is greater than its RHS. Thus, it
must be that pel ≥ pds.
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C Proof of Lemma 3

Lemma 7. For any spot-checking peer-prediction mechanism, if the gl equilibrium exists and Pareto domi-
nates the truthful equilibrium when cE = 0 and p = 0, then pex ≥ pds for all cE ≥ 0.

Proof. Recall that pex is the minimum spot check probability at which the gl equilibrium Pareto dominates
the truthful equilibrium while the gl equilibrium exists at p = pex. We first derive an expression for pex.

We consider a spot checking peer prediction mechanism. By our assumption, the gl equilibrium exists
and Pareto dominates the truthful equilibrium when cE = 0 and p = 0.

Consider a fixed spot check probability p ≥ 0. Assume that the gl equilibrium exists at this spot check
probability. At the truthful equilibrium, an agent’s expected utility is

pE[y(sh, st)] + (1− p)E[z(sh, sh)]− cE . (14)

At the gl equilibrium, an agent’s expected utility is

pE[y(gl(sl), st)] + (1− p)E[z(gl(sl), gl(sl))]. (15)

When p = pex, it must be that an agent’s expected utility in the above two expressions (14) and (15) are
the same. Thus pex must satisfy

pexE[y(s
h, st)] + (1− pex)E[z(s

h, sh)]− cE

= pex E[y(g
l(sl), st)] + (1− pex)E[z(g

l(sl), gl(sl))]

pexE[y(s
h, st)] + (1− pex)

(

E[z(sh, sh)]− E[z(gl(sl), gl(sl))]
)

− cE

= pex E[y(g
l(sl), st)]. (16)

Next, we would like to show that pex ≥ pds.
Since the gl equilibrium exists and Pareto dominates the truthful equilibrium for cE = 0 and p = 0, it

follows from the definition of Pareto dominance that

E[z(sh, sh)] ≤ E[z(gl(sl), gl(sl))]. (17)

Taking pex and substituting it into the LHS of Equation (2) (definition of pds), in a setting with arbitrary
positive cE ≥ 0, we have

pex E[y(s
h, st)]− cE

≥ pexE[y(s
h, st)] + (1− pex)

(

E[z(sh, sh)]− E[z(gl(sl), gl(sl))]
)

− cE (18)

= pexE[y(g
l(sl), st)] (19)

Equation (18) follows from Equation (17). Equation (19) follows from Equation (16).
Thus, if we substitute pex into Equation (2), then the resulting LHS is weakly greater than the RHS. By

definition of pds, it is the minimum spot check probability for which the LHS of (2) is greater than its RHS.
Thus, it must be that pex ≥ pds.

D Proof of Theorem 3

Theorem 3 (Sufficient condition for Pareto comparison). For any spot-checking peer-prediction mechanism,
if the gl equilibrium exists and Pareto dominates the truthful equilibrium when cE = 0 and p = 0, then
pPareto ≥ pds for all cE ≥ 0.
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Proof. Consider any spot checking peer prediction mechanism.
For the truthful equilibrium to be Pareto dominant, it is necessary that either the gl equilibrium is

eliminated or the truthful equilibrium Pareto dominates the gl equilibrium while the gl equilibrium exists.
pel is the minimum spot check probability at which the gl equilibrium is eliminated. pex is the minimum
spot check probability at which the truthful equilibrium Pareto dominates the gl equilibrium while the gl

equilibrium exists at p = pex. Thus, the minimum of pel and pex is a lower bound of ppareto. Formally

ppareto ≥ min(pel, pex). (20)

By assumption, the gl equilibrium exists when p = 0. By Lemma 2, we have

pel ≥ pds. (21)

By assumption, the gl equilibrium exists and Pareto dominates the truthful equilibrium when p = 0. By
Lemma 3, we have

pex ≥ pds. (22)

By Equations (20), (21) and (22), we have

ppareto ≥ min(pel, pex)

≥ min(pds, pex)

≥ min(pds, pds)

= pds.

E Proof of Lemma 4

Lemma 8. For the spot check reward function in Equation (3), an agent’s best strategy conditional on not
investing effort is always to report the low-quality signal sl.

Proof. Consider the spot check reward mechanism in Equation (3).
If an agent invests no effort, his expected spot check reward is:

∑

s∈Q

Pr(r = s)



Pr(st = s|r = s)−
∑

s′∈Q

Pr(st = s′)Pr(r = s′)





=
∑

s∈Q

Pr(st = s, r = s)−
∑

s′∈Q

Pr(st = s′)Pr(r = s′)

If the agent always makes a fixed report r, then the TA’s signal st and the agent’s report r are independent
random variables, i.e.

Pr(st = s, r = s) = Pr(st = s)Pr(r = s),

for any s ∈ Q. Thus the agent’s expected reward must be zero.

∑

s∈Q

Pr(st = s, r = s)−
∑

s′∈Q

Pr(st = s′)Pr(r = s′)

=
∑

s∈Q

Pr(st = s)Pr(r = s)−
∑

s′∈Q

Pr(st = s′)Pr(r = s′)

= 0
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If the agent truthfully reports the low-quality signal sl, then the agent’s expected reward is:

∑

s∈Q

Pr(r = s)



Pr(st = s|r = s)−
∑

s′∈Q

Pr(st = s′)Pr(r = s′)





=
∑

s∈Q

Pr(r = s)
(

Pr(st = s|r = s)− Pr(st = s′)
)

≥ 0

Thus the agent’s expected spot check reward is maximized when he reports the low-quality signal sl.

F Proof of Corollary 1

Corollary 3. For spot-checking peer-prediction mechanisms based on Faltings et al. [2012], Witkowski et al.
[2013], Dasgupta and Ghosh [2013], Waggoner and Chen [2014], Kamble et al. [2015], Radanovic and Faltings
[2015] and Shnayder et al. [2016], the minimum spot check probability pPareto for the Pareto dominance of the
truthful equilibrium is greater than or equal to the minimum spot check probability pds at which the truthful
strategy is a dominant strategy for the peer-insensitive mechanism.

Proof. By Lemma 4, for any spot checking peer prediction mechanism, the gl strategy is to always report
the low-quality signal sl.

To verify that the conditions of Theorem 3 are satisfied, it suffices to verify that when p = 0, the sl

equilibrium of the peer prediction mechanism exists and Pareto dominates the truthful equilibrium. We
verify these two conditions for all of the listed peer prediction mechanisms below.

We first consider output agreement peer prediction mechanisms.

The Standard Output Agreement Mechanism [Witkowski et al., 2013, Waggoner and Chen,
2014] When cE = 0 and p = 0, the sl equilibrium exists. (If all other agents except i report sl, then agent
i’s best response is to also report sl in order to perfectly agree with other reports.)

When cE = 0 and p = 0, at the sl equilibrium, every agent’s expected utility is 1 because their reports
always perfectly agree.

When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is
∑

sh∈Q

Pr(sh)Pr(sh|sh) <
∑

sh∈Q

Pr(sh) = 1,

where the inequality is due to the fact that the high-quality signals are noisy. That is, for every realization
sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality signal
such that Pr(sh|sh) < 1. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when cE = 0
and p = 0. The conditions of Theorem 3 are therefore satisfied, and hence pPareto ≥ pds for all settings with
positive effort cost cE ≥ 0.

Peer Truth Serum [Faltings et al., 2012] When cE = 0 and p = 0, the sl equilibrium exists. (If all
other agents except i report sl, then agent i’s best response is to also report sl.)

When cE = 0 and p = 0, at the sl equilibrium, everyone reports sl and the empirical frequency of sl

reports is 1 (F (sl) = 1). Thus, every agent’s expected utility is

α+ β
1

F (sl)
= α+ β.

When cE = 0 and p = 0, at the truthful equilibrium, if agent receives the high-quality signal sh for an object,
then he expects the empirical frequency of this signal to be Pr(sh|sh). Thus, at this equilibrium, an agent’s
expected utility is

α+ β
∑

sh∈Q

Pr(sh)Pr(sh|sh)
1

Pr(sh|sh)
= α+ β.
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Thus, the sl equilibrium (weakly) Pareto dominates the truthful equilibrium when cE = 0 and p = 0. The
conditions of Theorem 3 are therefore satisfied, and hence pPareto ≥ pds for all settings with positive effort
cost cE ≥ 0.

Next, we consider multi-object peer prediction mechanisms.

Dasgupta and Ghosh [2013], Shnayder et al. [2016] When cE = 0 and p = 0, the sl equilibrium
exists. (If all other agents always report the low-quality signal sl for every object, then agent i’s best
response is also to report sl in order to maximize the probability of his report agreeing with other agents’
reports for the same object.)

When p = 0, at the sl equilibrium, an agent’s expected utility is

∑

sl∈Q

Pr(sl)Pr(sl|sl)−
∑

sl∈Q

Pr(sl)Pr(sl) =
∑

sl∈Q

Pr(sl)−
∑

sl∈Q

Pr(sl)Pr(sl)

= 1−
∑

sl∈Q

1

|Q|2
= 1−

1

|Q|
,

where the first equality was due to the fact that the low-quality signal sl is noiseless (Pr(sl|sl) = 1) and the
second equality was due to the fact that sl is drawn from a uniform distribution (Pr(sl) = 1

|Q| ).

When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is

∑

sh∈Q

Pr(sh)Pr(sh|sh)−
∑

sh∈Q

Pr(sh)Pr(sh) <
∑

sh∈Q

Pr(sh)−
∑

sh∈Q

Pr(sh)2

= 1−
∑

sh∈Q

Pr(sh)2 ≤ 1−
1

|Q|
,

where the first inequality was due to the fact that the high-quality signal is noisy. That is, for every realization
sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality signal such
that Pr(sh|sh) < 1. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when cE = 0 and
p = 0. The conditions of Theorem 3 are therefore satisfied, and hence pPareto ≥ pds for all settings with
positive effort cost cE ≥ 0.

Kamble et al. [2015] When cE = 0 and p = 0, the sl equilibrium exists. (If all other agents always
report sl, an agent’s best response is also to report sl because doing so maximizes the probability of his
report agreeing with other agents’ reports for the same object.)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is

∑

sl∈Q

Pr(sl)Pr(sl|sl) lim
N→∞

r(sl) =
∑

sl∈Q

Pr(sl)
K

√

Pr(sl, sl)
= K

∑

sl∈Q

Pr(sl)
√

Pr(sl)

= K
∑

sl∈Q

√

Pr(sl) = K
∑

sl∈Q

√

1

|Q|
,

where the first two equalities were due to the fact that the low-quality signal sl is noiseless (Pr(sl|sl) = Pr(sl)),
and the final equality was due to the fact that the low-quality signal sl is drawn from a uniform distribution.

When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is

∑

sh∈Q

Pr(sh)Pr(sh|sh) lim
N→∞

r(sh) =
∑

sh∈Q

Pr(sh, sh)
K

√

Pr(sh, sh)

= K
∑

sh∈Q

√

Pr(sh, sh) < K
∑

sh∈Q

√

Pr(sh) ≤ K
∑

sh∈Q

√

1

|Q|
,
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where the first inequality was due to the fact that the high-quality signal sh is noisy. That is, for every
realization sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality
signal such that Pr(sh|sh) < 1. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when
cE = 0 and p = 0. The conditions of Theorem 3 are therefore satisfied, and hence pPareto ≥ pds for all
settings with positive effort cost cE ≥ 0.

Radanovic and Faltings [2015] When cE = 0 and p = 0, the sl equilibrium exists. (If all other agents
always report sl for every object, then any sample taken will not be “double mixed”.3 Thus, an agent’s
expected utility is zero regardless of his strategy. In particular also reporting sl for every object is a best
response.)

When cE = 0 and p = 0, at the sl equilibrium, it must be that ri′′j′ = ri′j and ri′′j′ = ri′′′j′′ = rij . An
agent’s expected utility at the sl equilibrium is:

1

2
+ 1ri′′j′=ri′j

−
1

2

∑

s∈Q

1ri′′j′=s1ri′′′j′′=s =
1

2
+ 1−

1

2
∗ 1 = 1.

Let π(Σ) be the probability that the sample Σ is double mixed. When cE = 0 and p = 0, at the truthful
equilibrium, an agent’s expected utility is:

π(Σ)





1

2
+ Pr(ri′′j′ |rij)−

1

2

∑

s∈Q

Pr(s|rij)
2



 ≤
1

2
+ Pr(ri′′j′ |rij)−

1

2

∑

s∈Q

Pr(s|rij)
2

≤
1

2
+ 1−

1

2
∗ 1 = 1,

where the first inequality is due to the fact that π(Σ) ≤ 1 and the second inequality was due to the fact that
the agent’s expected utility is maximized when Pr(ri′′j′ |rij) = 1. Thus, the sl equilibrium Pareto dominates
the truthful equilibrium when cE = 0 and p = 0. The conditions of Theorem 3 are therefore satisfied, and
hence pPareto ≥ pds for all settings with positive effort cost cE ≥ 0.

G Proof of Corollary 2

Corollary 4. For spot-checking peer-prediction mechanisms based on Witkowski and Parkes [2012, 2013],
Radanovic and Faltings [2013, 2014] and Riley [2014], if the peer-prediction mechanism uses a symmetric
proper scoring rule, then the minimum spot check probability pPareto for the Pareto dominance of the truthful
equilibrium is greater than or equal to the minimum spot check probability pds at which the truthful strategy
is a dominant strategy for the peer-insensitive mechanism.

Proof. By Lemma 4, for any spot checking peer prediction mechanism, the gl strategy is to always report
the low-quality signal sl.

To verify that the conditions of Theorem 3 are satisfied, it suffices to verify that when p = 0, the sl

equilibrium of the peer prediction mechanism exists and Pareto dominates the truthful equilibrium. We
verify these two conditions for all of the listed peer prediction mechanisms below.

Let bs denote a belief report which predicts that signal s is observed with probability 1, i.e. Pr(s) = 1
and Pr(s′) = 0, ∀s′ ∈ Q, s′ 6= s. Let the sl equilibrium denote the equilibrium where every agent’s signal
report is sl and belief report is bsl .

For mathematical convenience, we assume that the scoring rule is symmetric [Gneiting and Raftery, 2007].
That it, the reward for reporting a signal that is predicted with probability 1 is the same regardless of the
signal’s identity:

R(bs, s) = R(bs′ , s
′), ∀s 6= s′.

3A sample is double mixed if every possible value appears at least twice. This mechanism behaves differently depending on
whether or not it collects a double mixed sample of reports from the agents.
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This is a very mild condition that is satisfied by all standard scoring rules that compute rewards based purely
on the predicted probabilities and the outcome, including the quadratic scoring rule and the log scoring rule.

For symmetric scoring rules, when p = 0, an agent’s expected score is maximized by predicting bs when
s is observed for any signal s ∈ Q.

Binary Robust BTS [Witkowski and Parkes, 2012, 2013] When cE = 0 and p = 0, the sl equilibrium
exists. (If all other agents report sl and bsl , then the best belief report for agent i is bsl . Moreover the best
signal report for agent i is sl which leads to a shadowed belief report of bsl .)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is R(bsl , s
l) + R(ssl , s

l).
This is the maximum possible expected utility that an agent can achieve because the proper scoring rule
R is symmetric. Therefore, it must be greater than or equal to the agent’s expected utility at the truthful
equilibrium when cE = 0 and p = 0.

Multi-valued Robust BTS [Radanovic and Faltings, 2013] When cE = 0 and p = 0, the sl equilib-
rium exists. (If all other agents report sl and bsl , then the best belief report for agent i is bsl . Moreover, the
best signal report for agent i is sl which maximizes the probability of his signal report agreeing with other
agents’ signal reports.)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is

∑

sl

Pr(sl)Pr(sl|sl) +R(bsl , s
l) =

∑

sl

Pr(sl) +R(bsl , s
l) = 1 +R(bsl , s

l),

where the first equality was due to the fact that the low-quality signal sl is noiseless (Pr(sl|sl) = 1).
When cE = 0 and p = 0, at the truthful equilibrium, an agent’s expected utility is

∑

sh∈Q

Pr(sh)Pr(sh|sh)
1

Pr(sh|sh)
+ E[R(Pr(rj |s

h), rj)]

=
∑

sh∈Q

Pr(sh) + E[R(Pr(rj |s
h), rj)] = 1 + E[R(Pr(rj |s

h), rj)] ≤ 1 +R(bsl , s
l),

where the inequality was due to the fact that the proper scoring rule R is symmetric. Thus, the sl equilibrium
Pareto dominates the truthful equilibrium when cE = 0 and p = 0. The conditions of Theorem 3 are therefore
satisfied, and hence pPareto ≥ pds for all settings with positive effort cost cE ≥ 0.

Divergence-Based BTS [Radanovic and Faltings, 2014] When cE = 0 and p = 0, the sl equilibrium
exists. (If all other agents report sl and bsl , then the best belief report for agent i is bsl . Moreover, the best
signal report for agent i is sl, which means that the penalty is 0 because the agent’s signal reports agree and
their belief reports also agree.)

When cE = 0 and p = 0, at the sl equilibrium, an agent’s expected utility is

−1sl=sl||D(b
sl
,b

sl
)>θ +R(bsl , s

l) = R(bsl , s
l).

At the truthful equilibrium, an agent’s expected utility is

− 1sh
i′j

=sh
i′j

||D(Pr(r|sh
ij
),Pr(r|sh

i′j
))>θ +R(Pr(r|sh), sh) < R(Pr(r|sh), sh) < R(bsl , s

l),

where the first inequality was due to the fact that the high-quality signal sl is noisy. That is, for every
realization sh of the high-quality signal, Pr(sh|sh) ≤ 1 and there exists one realization sh of the high-quality
signal such that Pr(sh|sh) < 1. The second inequality was due to the fact that the proper scoring rule R

is symmetric. Thus, the sl equilibrium Pareto dominates the truthful equilibrium when cE = 0 and p = 0.
The conditions of Theorem 3 are therefore satisfied, and hence pPareto ≥ pds for all settings with positive
effort cost cE ≥ 0.
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Riley [2014] When cE = 0 and p = 0, the sl equilibrium exists. (When all other agents always report sl,
for agent i, δi = 0 because for any signal other than sl, the number of other agents who reported the signal
is 0. Thus, agent i’s reward is R(bi, s

l). Since agent i’s signal report does not affect his reward, reporting sl

is as good as reporting any other value. Moreover, since all other agents report sl, the best belief report for
agent i is to report bsl .)

When cE = 0 and p = 0, at the sl equilibrium, δi = 0 because for any signal other than sl, the number
of other agents who reported the signal is 0. Thus, an agent’s expected utility is R(bsl , s

l). By the definition
of the mechanism, an agent’s reward is at most R(bi, r−i), which is less than or equal to R(bsl , s

l) because
R is a symmetric proper scoring rule. Therefore, an agent achieves the maximum expected utility at the sl

equilibrium, which is greater than or equal to the agent’s expected utility at the truthful equilibrium when
cE = 0 and p = 0.
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