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Abstract
Algorithms for NP-complete problems often have different
strengths and weaknesses, and thus algorithm portfolios often
outperform individual algorithms. It is surprisingly difficult
to quantify a component algorithm’s contribution to such a
portfolio. Reporting a component’s standalone performance
wrongly rewards near-clones while penalizing algorithms that
have small but distinct areas of strength. Measuring a compo-
nent’s marginal contribution to an existing portfolio is better,
but penalizes sets of strongly correlated algorithms, thereby
obscuring situations in which it is essential to have at least
one algorithm from such a set. This paper argues for analyz-
ing component algorithm contributions via a measure drawn
from coalitional game theory—the Shapley value—and yields
insight into a research community’s progress over time. We
conclude with an application of the analysis we advocate to
SAT competitions, yielding novel insights into the behaviour
of algorithm portfolios, their components, and the state of SAT
solving technology.

Introduction
Many important problems in AI are NP-complete but can still
be solved very efficiently in practice by algorithms that ex-
ploit various kinds of instance structure. Different algorithms
exploit such structure in subtly different ways, with the result
that a given algorithm may dramatically outperform another
on one problem instance, but the situation may be reversed
on another. Algorithm portfolios (Huberman, Lukose, and
Hogg 1997; Gomes and Selman 2001) are sets of algorithms
that complement each other across an instance distribution.
There has been much recent interest in algorithm portfolios,
fueled by practical successes in SAT (Nudelman et al. 2003;
Xu et al. 2008), CSP (O’Mahony et al. 2008), AI planning
(Helmert, Röger, and Karpas 2011), Max-SAT (Malitsky,
Mehta, and O’Sullivan 2013), QBF (Pulina and Tacchella
2009), ASP (Gebser et al. 2011), and many other problems
(see, e.g., Kotthoff, 2014). Portfolios can run all algorithms
in parallel, can use learned models to select an algorithm on
a per-instance basis, or can employ variations of these ideas.

Regardless of how a portfolio is turned into an actual solver,
it is often important to understand how much each compo-
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nent algorithm contributes to the success of the portfolio,
both in order to winnow down the portfolio and to learn
more about the algorithms themselves. This is also relevant
in competitions that determine the current state of the art;
the competition ranking and scores alone are often insuffi-
cient to adequately quantify the extent to which an algorithm
contributes to the state of the art.

Perhaps the most natural way to assess the contribution
of an algorithm is by simply assessing its standalone perfor-
mance. More formally, let X denote a fixed set of instances
of a given problem, A = {i}ni=1 denote the set of avail-
able algorithms, and A ⊆ A denote an algorithm portfolio.
Moreover, let perf(A) denote the performance achieved by
leveraging the complementary strengths of the algorithms in
A (e.g., by evaluating the performance on X of executing
algorithm selection, or running all algorithms in parallel),
and let contr(i, A) denote the contribution of i to A. Now if
this contribution is evaluated solely based on the standalone
performance of i, then we obtain the following measure of
contribution:

contrs(i, A) = perf({i}),

where s means standalone. While this measure is easy to
compute, it fails to consider synergies in a portfolio and
hence can give too much credit to strong but highly corre-
lated algorithms. Furthermore, this measure fails to reward
algorithms that perform poorly overall, but dramatically out-
perform other algorithms in A on some nontrivial subset of
X (in a competition setting this means that the winner may
perform very poorly on this subset). Motivated by these is-
sues, Xu et al. (2012) argued that each algorithm i should
be evaluated in terms of its marginal contribution to a given
portfolio A. That is,

contrm(i, A) = perf(A)− perf(A \ {i}),

where m stands for marginal contribution. The authors also
included an application to SAT; Amadini, Gabbrielli, and
Mauro (2013) conducted an analogous evaluation of CSP
solvers. While the measure contrm addresses the problems
discussed above, it raises some (arguably less severe) prob-
lems of its own—notably that it penalizes correlated compo-
nent algorithms. In the most extreme case, a very important



solver becomes completely unimportant if two identical ver-
sions are present in the portfolio, because neither makes a
marginal contribution given the presence of the other.

In this work, we argue that the problem of assessing an
algorithm’s contribution benefits from being seen through
the lens of coalitional (or “cooperative”) game theory—a
branch of microeconomic theory that studies the formation of
coalitions and the ways in which they might divide rewards.
One basis for such a division is fairness: we seek to reward
players according to their contribution to the overall success
of the coalition. The canonical measure of fairness in this
sense is the Shapley value (Shapley 1953). Modelling portfo-
lios of algorithms as coalitions—with players representing
algorithms and the coalition’s reward representing portfolio
performance—we argue that the contribution of each algo-
rithm should be measured according to the Shapley value.
We apply the methodology to four SAT competitions (SAT
Competitions Website 2014) and demonstrate that the Shap-
ley value provides a more nuanced and useful assessment
of component algorithm contributions. Notably, we identify
cases in which an algorithm with top performance according
to previous measures makes only small contributions to a
portfolio, while the top contributor is not identified by other
measures. This gives us a clearer picture of the state of the art
in SAT solving—it is not just the competition winner or even
the top ranked solvers that define it, but also solvers who on
their own perform poorly and may not even have very large
marginal contributions to the portfolio of all solvers.

The Shapley value can also be useful for assessing which
algorithms should be included in a portfolio, but does not
constitute an automatic technique for doing so. Instead, build-
ing an actual portfolio with a machine learning model for
selecting the algorithm to run on a problem instance also
needs to take the performance of the selection model into
account. In particular, it may not be beneficial to include all
algorithms that make a positive Shapley contribution as the
selection model may not be able to leverage this. Conversely,
algorithms that make no contribution at all may be neutral
from the perspective of performance if the model is able
to avoid them reliably. Overall, a portfolio containing algo-
rithms selected according to Shapley values will be weakly
larger than one containing algorithms selected based on their
marginal contributions, giving it the potential to achieve bet-
ter performance. However, investigating this issue is beyond
the scope of this paper.

Assessing Algorithms with the Shapley Value
Coalitional game theory considers how coalitions form and
in what ways it makes sense for them to assign credit for the
value they create. Formally, a coalitional game is defined as
a pair (N, v), where N = {1, . . . , n} is a set of n players,
and v : 2N → R is a characteristic function that maps each
subset (or coalition) of players C ⊆ N to a real number
v(C). This number is called the value of coalition C, which
typically represents the reward that can be attained by the
members of C when they work together and coordinate their
activities. The coalition of all the players, N , is called the
grand coalition. We can represent our setting as a coalitional

game by setting N = A, where each solver corresponds to a
distinct player, and defining v(C) = perf(C).

The Shapley Value
Coalitional game theorists often assume that the grand coali-
tion forms, and then ask how the value of this coalition should
be divided amongst the players. There are many ways of
answering this question; such answers are called solution
concepts. One desirable criterion is fairness: assessing the
extent to which each player contributed to the coalition’s
value. The solution concept that is canonically held to fairly
divide a coalition’s value is called the Shapley value (Shap-
ley 1953). Indeed, out of all possible solution concepts, the
Shapley value uniquely satisfies a set of desirable properties
that characterize fair division of coalitional value, and thus it
has been applied very widely (see, e.g., the book by Solan,
Zamir, and Maschler, 2013).

We now describe the intuition behind the Shapley value.
Arguably, if players joined the grand coalition one by one
in a fixed order, a reasonable way to assess the contri-
bution of each player would be simply to compute that
player’s marginal contribution to those who arrived be-
fore him. For instance, given three players, and given
the joining order: (2, 3, 1), the contribution of player 1
is perf({2, 3, 1}) − perf({2, 3}), the contribution of 3 is
perf({2, 3}) − perf({2}), and of 2 is perf({2}) − perf(∅).
The Shapley value effectively generalizes this idea to situ-
ations in which there is no fixed sequential joining order,
computing the average marginal contribution of each player
over all possible joining orders. Formally, let ΠN denote the
set of all permutations of N , each representing a different
joining order. Moreover, given a permutation π ∈ ΠN , let
Cπi denote the coalition consisting of all predecessors of i
in π. That is, Cπi = {j ∈ N : π(j) < π(i)}, where π(i)
denotes the position of i in π. The Shapley value of player
i ∈ N is then defined as:

φi =
1

n!

∑
π∈ΠN

(v(Cπi ∪ {i})− v(Cπi )) . (1)

Observe that v(Cπi ∪ {i})− v(Cπi ) is the marginal contribu-
tion of i to Cπi .

One can use the notion of joining orders to contrast the
standalone and marginal contribution metrics with the Shap-
ley value. In particular, given a solver, i, the standalone met-
ric assumes a joining order in which i comes first, whereas
the marginal contribution metric assumes a joining order in
which i comes last. As such, both metrics fail to capture all
interactions between i and other solvers. The Shapley value,
on the other hand, explicitly considers all possible joining
orders. Indeed, Equation (1) can be rewritten as

φi =
1

n

n−1∑
c=0

1(
n−1
c

) ∑
C⊆N\{i}:
|C|=c

(v(C ∪ {i})− v(C)) , (2)

showing that the Shapley value is simply an average of av-
erage marginal contributions over the possible coalitions of
each size. This means that it directly incorporates both the



standalone and the marginal contribution metrics—these are
the first and last terms in the sum, respectively.

Now, consider the following four properties, which seem
desirable for a contribution measure, contr, to satisfy. It turns
out that they characterize the Shapley value, in the sense that
the Shapley value is the only measure that satisfies them all.

(1) Efficiency:
∑
i∈A contr(i, A) = v(A). Informally, the

measure exactly splits the overall value achieved by the
portfolio among the solvers.

(2) Dummy player: If v(C) = v(C∪{i}) for allC ⊆ A, then
contr(i, A) = 0. Informally, if a solver does not impact
the performance of any portfolio, P (C) : C ⊆ A, then it
receives a score of zero.

(3) Symmetry: If two solvers i and j are identical in that they
make the same marginal contributions to every portfolio
C ⊆ A \ {i, j} (i.e., v(C ∪ {i}) = v(C ∪ {j})) then they
receive the same score (i.e., contr(i, A) = contr(j, A)).

(4) Additivity: Consider two arbitrary performance measures,
perf1 and perf2. Define a new performance measure:
perf1+2(C) = perf1(C) + perf2(C) for every C ⊆ A.
Define contrperf(i, C) as our assessment of algorithm i’s
contribution to portfolio C given the performance mea-
sure perf. Then, contrperf1+2

(i, C) = contrperf1(i, C) +

contrperf2(i, C) for every algorithm i and every C ⊆ A.
This, along with other properties, imply linearity: i.e., mul-
tiplying the performance measure by a constant—as could
occur, e.g., because of running experiments on hardware
of different speed—does not affect the ranking of solvers.1

SAT Competition Analysis
We apply the methodology outlined above to the SAT compe-
tition (SAT Competitions Website 2014) to assess the state
of the art in SAT solving, and specifically, to fairly quantify
the contributions of the participating solvers to the state of
the art. We conducted experiments on solvers and problem
instances from all SAT competitions for which the required
performance data is publicly available—the 2014, 2013, 2011
and 2009 competitions. The competitions consist of three
tracks of problem instances: random, crafted and application.
We analyze the most recent competition—2014—first and in
most detail, as it best reflects the current state of the art in
SAT solving.

We assess each algorithm’s contribution to the virtual best
solver (VBS), an oracle that chooses the best algorithm for
every problem instance and also represents the wall-clock per-
formance of an (overhead-free) parallel portfolio. The VBS-
based portfolio solver serves as a theoretical upper bound on
any portfolio solver’s performance.

Performance measure
In the SAT competition, solvers are ranked by the number
of instances they solve. Ties are broken to prefer algorithms
with lower runtimes. We unify these criteria into a single

1See Macho-Stadler, Perez-Castrillo, and Wettstein (2007) for
more details on the linearity of the Shapley value.

scoring function as follows. Let scorex(i) denote the score
of an algorithm i ∈ A on an instance x ∈ X:

scorex(i) =

{
0 instance x not solved by i
1 + c−t

|X|·c·|A|+1 otherwise
(3)

where c is the captime for running an instance and t the time
required to solve it. We chose the denominator such that
contributions to the score through runtime can never add up
to more than 1, meaning that runtime differences can never
be more important than solving an additional instance.

The score of a coalition C ⊆ A is

scorex(C) = max
i∈C

scorex(i), (4)

or the “virtual best score.” The performance of C on a set of
instances is

perfX(C) =
∑
x∈X

scorex(C). (5)

We define the characteristic function v to be score and omit
the subscript denoting the instance set as it is defined by the
context.

Importantly, we show in Appendix 1 that the above charac-
teristic function can be represented compactly as a marginal
contribution network and thus admits polynomial-time com-
putation of the Shapley value (Chalkiadakis, Elkind, and
Wooldridge 2011; Ieong and Shoham 2005).

Note that the Shapley value does not require the character-
istic function to have any specific properties; it can be applied
to any domain with any performance measure.

2014 Competition
The random track of the 2014 SAT competition consisted
of 225 hard uniform k-SAT instances; the crafted track con-
tained 300 instances manually designed to be challenging
for typical SAT solvers; and the application track comprised
300 instances originating from applications of SAT to real
world problems (e.g., software and hardware verification,
cryptography, planning). For each track, we consider both
satisfiable and unsatisfiable instances. Different specialized
solvers participated in each track (10, 33 and 32 solvers for
the random, crafted and application tracks, respectively).

Random Track
We first consider the random track of the 2014 SAT Competi-
tion and look in detail at differences between the standalone
performance, marginal value and Shapley value measures.
All of the solvers submitted to this track are stochastic local
search solvers except for SGSeq, which combines the local
search solver SATtime and the DPLL-based complete solver
Glucose.

Figure 1 contrasts the three different measures of algorithm
contribution to the VBS-based solvers. The three columns
show the relative positions of each algorithm according to
the standalone performance, Shapley value, and marginal
value measures respectively, with lines connecting the three
contribution measures calculated for each solver.



dimetheus 115.0475

BalancedZ 101.03902

CSCCSat2014 98.03815
probSAT 96.03747

YalSAT 87.03609
CCgscore 83.03147

sattime2014r 78.02886

CCA2014 70.02659

Ncca. 66.02509
SGSeq 42.01773

32.53505

18.09312

15.12961
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12.40019
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10.8442
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Standalone performance Shapley value Marginal contribution

Figure 1: Standalone performance and contributions to the
VBS portfolio for the random track 2014.

The results show that marginal contribution is very ineffec-
tive for distinguishing between algorithms; many solvers had
very similar marginal contribution values. dimetheus beat
all other algorithms under every contribution measure—in
addition to very good standalone performance, it also com-
plemented portfolios very well and was able to solve 16 more
instances than all the other solvers combined. The set of in-
stances it solved complements the sets of other solvers, and
its Shapley value is almost twice as large as that of the second-
ranked solver, while the difference in terms of standalone
performance is much smaller.

In this case, the ranking under standalone performance is
the same as the ranking under the Shapley value. However,
the ranking under marginal contribution is significantly differ-
ent. For example, BalancedZ loses out to CSCCSat, because
it made smaller reductions in solution time on instances that
were solved by other solvers, although it solved three more in-
stances on its own. sattime2014r ranks fourth by marginal
contribution, as it solved one instance that no other solver
could tackle, while its standalone performance was poor, and
it failed to complement the other solvers well. SGSeq, the
only solver that employs non-local-search-based techniques,
ranks last under standalone and Shapley value.

Crafted Track
Figure 2 shows the detailed Shapley value, standalone and
marginal contribution results for the crafted track. In con-
trast to the random track, the rankings according to stan-
dalone performance and Shapley value are different. In par-
ticular, glueSplit clasp, which has the best standalone per-
formance, is ranked second after SparrowToRiss in terms
of Shapley value. Interestingly, we can see from marginal
contributions that SparrowToRiss did not solve any in-
stances not solved by at least one other solver, whereas
glueSplit clasp solved two additional instances. The set
of instances that SparrowToRiss solved is diverse and con-
tains many instances that were solved by relatively few other
solvers.

Again we see limitations of the marginal contribution mea-
sure: the values for many algorithms are exactly the same,
with most solvers not making any marginal contribution at
all, meaning that they do not solve any additional instances
or solve any instances more quickly than the VBS portfolio
consisting of all other solvers. In contrast, the Shapley value
yields a more nuanced quantification of contributions, and
some of solvers that make no marginal contribution make

glueSplit_clasp 208.01743
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Figure 2: Standalone performance and contributions to the
VBS portfolio for the crafted track 2014.

large Shapley value contributions.
The difference in Shapley value amongst the top-ranked

solvers is much smaller than for the random track, indicating
that the solvers show more similar performance, and the
winner did not dominate as clearly as in the random track.

Riss and Riss.1 exhibit identical standalone performance.
Their marginal contributions are 0, indicating that they did
not contribute anything to a portfolio containing all the other
solvers. The Shapley value shows that they did contribute to
smaller portfolios, and therefore suggests that at least one of
them should be included in a portfolio.

Some solvers are ranked much lower in terms of Shap-
ley value than in terms of standalone performance, notably
glucose and glue lgl split. These solvers exhibited good
performance in areas of the problem space where other
solvers were good as well—they did not complement the
state of the art well. Some other solvers, such as ROKK and
BFS.Glucose mem 32 70, have relatively high Shapley val-
ues but low standalone performance. These solvers comple-
mented the state of the art more than they achieved on their
own—combining them with other solvers in a portfolio pro-
duced something much more potent.

Many solvers that achieve high ranks in terms of Shapley
value—e.g., CCAnr.glucose, SGSeq and RSeq2014—make
no marginal contribution at all. This is clearly misleading;
they have both very good standalone performance and com-
plement many other portfolios well.
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Figure 3: Standalone performance and contributions to the
VBS portfolio for the application track 2014.

Application Track
Figure 3 shows results for the application track. Similar to
the crafted track, the rankings under standalone performance
and Shapley value are different, although the top solver,
Lingeling, ranks highest under all three measures. The per-
formance values indicate that it did not dominate the other
solvers to the same extent as dimetheus did in the random
track. Again, we see no marginal contribution from a large
number of solvers, and almost no marginal contribution for a
large fraction of the remainder.

The second and third-ranked solvers in terms of Shapley
value, Lingeling-no-agile and ntusatbreak, have almost
the same Shapley value. This is somewhat surprising, as one
of the solvers solves 10% more instances. The reason for
this lies in the fact that ntusatbreak, although weaker in
terms of standalone performance, contributed somewhat more
across the gamut of portfolios including other solvers from
this track.

SWDiA5BY, on the other hand, shows very good
standalone performance, but only mediocre Shapley
value contribution. This indicates that the types of in-
stances where this solver shone were already adequately
covered by other solvers, and that it did not con-
tribute much on instances on which other solvers did
not perform well. cryptominisat.v41.tuned.st and
cryptominisat.4.1.st are ranked towards the bottom in
terms of standalone performance and Shapley value, but at
the top in terms of marginal contribution. This indicates that
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Figure 4: Standalone performance and contributions to the
VBS portfolio for the random track 2013.
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Figure 5: Standalone performance and contributions to the
VBS portfolio for the application track 2013.

these solvers achieved a small performance improvement on
a very small set of instances, but did not contribute meaning-
fully otherwise.

2009–2013 Competitions
We now turn to an analysis of performance data from the
2013, 2011 and 2009 Competitions. Our findings were similar
to those for the 2014 data—in many cases, we saw significant
rank changes under the Shapley value ranking as compared
to standalone performance and marginal contribution. We do
not show results for all years and all tracks due to lack of
space, but report some of the most interesting results.

Portfolio solvers were not allowed to enter the most re-
cent SAT competition, but did participate in earlier competi-
tions. We observe that when they were submitted (SATzilla,
ppfolio, CSHC, Satisfiability Solver Selector), they
did not consistently the highest Shapley values. This may
be surprising, considering the success of portfolio solvers in
SAT competitions. However, there is a simple explanation:
this occurred when very high-performing new algorithms
were newly introduced and hence not included in portfolio



borg−sat−11.03.02−seq−random (fixed) 415.03838

Satisfiability Solver Selector−2011−03−18 408.03723

T09 reference solver: SATzilla2009_R−2009−03−22 384.03504
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ppfolio−seq 375.0334
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sattime2011−2011−03−02 334.03039
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Figure 6: Standalone performance and contributions to the
VBS portfolio for the random track 2011.

Satisfiability Solver Selector−2011−03−18 163.01919

ppfolio−par 155.01834

ppfolio−seq 152.01838

clasp−2.0−R4092−crafted 149.01603

T09 reference solver: clasp−1.2.0−SAT09−32 149.01521

MPhaseSAT−2011−02−15 132.01533

glucose−2 125.01388

T07 reference solver: minisat−SAT 2007 122.01333

claspmt−2.0−R4095 121.01363

PicoSAT−941 121.01338

claspmt−2.0−R4095−patched (fixed) 119.01383

Sol−2011−04−04 116.01436

T09 reference solver: SATzilla2009_C−2009−03−22 116.01278
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CryptoMiniSat−Strange−Night2−st (fixed) 110.01317
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Figure 7: Standalone performance and contributions to the
VBS portfolio for the crafted track 2011.

submissions, which are only able to draw on previously pub-
lished solvers. For example, the winner of the 2011 random
track (Figure 6), borg-sat-11.03.02-seq-random, did not
participate in 2009 and could therefore not be included
in the portfolio solver Satisfiability Solver Selector,
which placed second. glucose-2 beat the portfolio solvers in
the 2011 application track (Figure 8), as only its predecessor,
glucose-1 participated in 2009.

The minipure solver in the 2013 application track (Fig-
ure 5) achieved the most notable difference between stan-
dalone and Shapley value rankings: on its own, it ranks third
last; in terms of Shapley value, it ranks second! We can
conclude that it complemented portfolios of other solvers
extremely well, even though on its own, it was only able to
solve a small number of instances.

Multi-Year Analysis
Considering multiple years of SAT competitions allows us to
analyse how the state of the art has evolved. We illustrate the
insights that can be gained from considering multiple years
by a few examples and defer a more in-depth analysis to an
extended version of this paper due to limited space.

The 2009 and 2011 competitions include the top-ranked

glucose−2 215.02028

glueminisat−2.2.5 211.01964

Lingeling−587f (fixed) 208.01983

Lingeling−587 208.0198

CryptoMiniSat−Strange−Night2−st (fixed) 207.01998

QuteRSat−2011−05−12 (fixed) 206.0197
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MPhaseSAT64−2011−05−14 (fixed) 201.01889
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minisat hack: minisat_psm−2011−04−01 197.01869
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Figure 8: Standalone performance and contributions to the
VBS portfolio for the application track 2011.

SATzilla2009_R−2009−03−22 435.05627

TNM−2009−03−22 379.04912
gnovelty+2−2009−03−22 355.04639

hybridGM3−3 340.04505

adaptg2wsat2009++−2009−03−23 338.04435

T07 reference solver: gnovelty+−2007−02−08 318.04166

gNovelty+−T−2009−03−22 314.04094

march_hi−hi 313.03918

T07 reference solver: SATzilla−RANDOM 308.03953

T07 reference solver: March KS−2007−02−08 308.03854
T07 reference solver: adaptg2wsat+−2007−02−08 298.03911

iPAWS−2009−03−22 288.03806
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Figure 9: Standalone performance and contributions to the
VBS portfolio for the random track 2009.

solvers from the respective previous competitions. In the
2011 crafted track (Figure 7), for example, the highest-ranked
solver from 2009, clasp-1.2.0, achieves only fifth place in
terms of standalone performance, and its rank in terms of
marginal contribution is even lower. However, the Shapley
value contribution puts it in second place, indicating that it
still contributes substantially to the state of the art.

Conclusions
We have introduced a measure for the contribution of a solver
to the performance of a portfolio-based approach, such as
an algorithm selector or a parallel portfolio. Our measure
is based on a foundational concept from coalitional game
theory, the Shapley value. We have shown how the Shapley
value addresses weaknesses of two established measures,
standalone and marginal contribution, and permits a more
nuanced analysis that produces interesting additional insights.
Although we have illustrated its application in the context
of SAT solving (arguably the area in which portfolio-based
techniques have had the largest impact), we expect it to be
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Figure 10: Standalone performance and contributions to the
VBS portfolio for the application track 2009.

equally useful for the analysis of component contributions
to portfolio-based solvers for other problems. Because it
does a better job of surfacing solvers that introduce novel,
complementary strategies, we argue that the Shapley value
should be used as a scoring function for SAT competitions
and other competitive solver evaluations.
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Appendix 1
Let us comment on the computational aspects of the Shap-
ley value. In general, if we interpret Equation (2) as an
algorithm—which is less demanding than Equation (1) —
computing the marginal contribution of every solver to every
C ⊆ A takes time O(2|A|). When the characteristic func-
tion exhibits certain regularities, however, it becomes pos-
sible to represent the game more concisely (Chalkiadakis,
Elkind, and Wooldridge 2011). Various such concise repre-
sentations have been proposed to facilitate the computation
of the Shapley value in polynomial time. Perhaps the most
widely used one is the marginal contribution nets (MC-nets)
representation by Ieong and Shoham (2005) and its various
generalizations (Elkind et al. 2009; Aadithya, Michalak, and
Jennings 2011) and extensions (Michalak et al. 2010). We
leverage this representation to compute the Shapley value in
polynomial time.

With this scheme, a game is represented by a set of rules,
R, each of which is of the form F → V , where F is a propo-
sitional formula over A and V is a real number. A coalition
C is said to meet a given formula F if and only if F evaluates
to true when all Boolean variables corresponding to the
agents in C are set to true, and all Boolean variables cor-
responding to agents outside C are set to false. We write
C |= F to denote that C meets F . In MC-nets, if coalition
C does not meet any rule then its value is 0. Otherwise, the
value of C is the sum of V from every rule in which F is met
by C. More formally:

v(C) =
∑

F→V∈R: C|=F

V. (6)

For example, the MC-net where R = {2 → 3, 1 ∧ 2 → 5}
corresponds to the game G = ({1, 2}, v) where v({1}) = 0,
v({2}) = 2 and v({1, 2}) = 8. Intuitively, in this example,
the rules mean that whenever 2 is present in a coalition, the
value of that coalition increases by 3, and whenever 1 and 2
are present together in a coalition, its value increases by 5.

Ieong and Shoham (2005) focused on a particular version
of their representation, called basic MC-nets, where F is
made only of conjunctions of positive and/or negative literals,
i.e., it has the form

pi1 ∧ . . . ∧ pik ∧ ¬nj1 ∧ . . . ∧ ¬njl → V. (7)

Let us write such a basic rule as F(P,N ) → V , where
P (N ) is the set of positive (negative) literals. Ieong and
Shoham showed that if a coalitional game is represented by a
set of such basic rules

R =
{
F (P1,N1)→ V1, . . . ,F

(
P|R|,N|R|

)
→ V|R|

}
,

then the Shapley value can be computed in time O(|A| · |R|).
We will now prove that, in the coalitional game given

by the characteristic function (5), the Shapley value can be
computed in polynomial time. To this end, we will show that
this game can be represented with the set of MC-net rules,

the size of which is polynomial in the number of solvers, |A|,
and instances, |X|.

In the first step, for each instance x ∈ X , let us sort solvers
i ∈ A in the ascending order with respect to their individual
performance on x. Given x ∈ X , we will denote such an
ordering by −→s x. More formally, −→s x is a function A →
{1, . . . , |A|} and we will denote by −→s −1

x (i) the position of
solver i in −→s x.

The following holds:
Theorem 1. The game given by the characteristic function
(5) can be represented as the following set of basic MC-net
rules:

R =
⋃
x∈X


−→s x(1)

∧|A|
k=2 ¬

−→s x(k)→ scorex(−→s x(1))
−→s x(2)

∧|A|
k=3 ¬

−→s x(k)→ scorex(−→s x(2))
. . .
−→s x(|A|)→ scorex(−→s x(|A|))


(8)

the size of which is |X| × |A|.

Proof. First, let us assume that there is only one problem
instance, i.e., X = {x}. Then, the set becomes:

Rx =


−→s x(1)

∧|A|
k=2 ¬

−→s x(k)→ scorex(−→s x(1))
−→s x(2)

∧|A|
k=3 ¬

−→s x(k)→ scorex(−→s x(2)
. . .
−→s x(|A|)→ scorex(−→s x(|A|))

 .

(9)
We will now show that the above set of basic MC-nets rep-
resents the coalitional game given by the characteristic func-
tion (4). To this end, let us denote iC the best performing
solver in coalition C ⊆ A, i.e., such i ∈ C for which
scorex(i) is maximal. As per (4), the value ofC is scorex(iC).
Now, we claim that the only basic MC-net rule fromRx that
is met by coalition C is:

iC ∧|A|
k=−→s −1

x (iC)
¬−→s x(k)→ scorex(iC). (10)

Indeed, any rule

−→s x(j)

|A|∧
k=j+1

¬−→s x(k)→ scorex(−→s x(j)) (11)

such that j < −→s −1
x (iC) is not met by C. This is be-

cause iC belongs to C but appears as a negative literal in∧|A|
k=j+1 ¬

−→s x(k) in rule (11). Similarly, any rule (11) for

j > −→s −1
x (iC) is not met by C because this would contradict

the assumption that iC is the best performing solver in C.2
Since rule (10) is the only one from set Rx as defined in
Equation (9) that is met by C, we conclude that the value of
C under the MC-net representation given byRx in (9) is also
scorex(iC). Given that C ⊆ A is arbitrary, we have shown
that Rx defined by Equation (9) represents the coalitional
game given by the characteristic function (4).

2Recall that we ordered solvers ascendingly with respect to their
individual performance on x. Hence, any solver −→s x(j) such that
j > −→s −1

x (iC) performs better than iC .



Finally, we observe that, because the value of any coalition
under the MC-nets representation (Equation 6) is the sum of
all the rules that are met by C, the value of any C ⊆ A in
the game represented by the set of basic MC-nets rulesR (as
defined in Equation 8) is:∑

x∈X
max
i∈C

scorex(i),

which is the characteristic function (5).

Example 1. Let X = {x1, x2}, A = {1, 2, 3},
scorex1(1) = 10, scorex1(2) = 15, scorex1(3) = 12,
scorex2(1) = 40, scorex2(2) = 30, and scorex2(3) = 45.
We have −→s x1

= [2, 3, 1], −→s x2
= [3, 1, 2] and:

R =

{
2 ∧ ¬3 ∧ ¬1→ 15; 3 ∧ ¬1→ 12; 1→ 10;
3 ∧ ¬1 ∧ ¬2→ 45; 1 ∧ ¬2→ 40; 3→ 30;

}
We conclude that, because each MC-net rule from R

(Equation 8) has at most |A| elements and there are |X|×|A|
such rules, the characteristic function (5) can be represented
as an MC-net in time O(|X| × (|A| log |A|+ |A|2)). Hence,
we have the following corollary to Theorem 1 and the result
by Ieong and Shoham (2005):
Corollary 1. The characteristic function (5) can be com-
puted in polynomial time.

Therefore, we can compute the Shapley value for solver
contributions in polynomial time. Our implementation uses
a dynamic programming approach to compute it efficiently.
For example, the largest portfolio we considered contained
33 solvers (233 = 8 589 934 592 possible coalitions), but our
implementation took only 14 seconds to compute the Shapley
value on a 3-year old laptop.

Appendix 2
Here we present the experimental results omitted from the
paper for space reasons; namely for the crafted track 2013
(Figure 11) and for the crafted track 2009 (Figure 12).

BreakIDGlucose 208.01707

gluebit_clasp 208.01705

glucose 202.01665

glueminisat 198.01637

Riss3g 196.01631

strangenight 196.01594

ShatterGlucose 195.01622

gluH_simp 195.01533

Solver43a 194.01494

Lingeling.1 193.01614

SparrowToRiss 191.01565

forl 190.01616

Solver43b 188.01526

MIPSat.1 187.01385

sattimeRelbackSeq 187.01128

sattimeRelbackShr 185.01503

Lingeling 182.01519

CSHCcombCS 178.01384

clasp_vflip 176.01449

MIPSat 174.01335

GlucoRed 173.01717

ZENN 172.01437
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Figure 11: Standalone performance and contributions to the
VBS portfolio for the crafted track 2013.

clasp−1.2.0−SAT09−32 156.04362

SATzilla2009_C−2009−03−22 155.04316

T07 reference solver: minisat−SAT 2007 150.04152

IUT_BMB_SAT−1.0 149.04141

SApperloT−base 149.04098

MXC−2009−03−10 146.04102

VARSAT−industrial−2009−03−22 145.03946
precosat−236 141.03985

LySAT−c/2009−03−20 141.03915

T07 reference solver: SATzilla−CRAFTED 137.03835
MiniSat−2.1 (Sat−race'08 Edition) 137.0383

glucose−1.0 135.03795
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Figure 12: Standalone performance and contributions to the
VBS portfolio for the crafted track 2009.


