
SATenstein: Automatically Building

Local Search SAT Solvers from Components

Ashiqur R. KhudaBukhsh*1a, Lin Xu*b, Holger H. Hoosb, Kevin
Leyton-Brownb

aDepartment of Computer Science, Carnegie Mellon University
akhudabu@cs.cmu.edu

bDepartment of Computer Science, University of British Columbia
{xulin730, hoos, kevinlb}@cs.ubc.ca

Abstract

Designing high-performance solvers for computationally hard problems is a
difficult and often time-consuming task. Although such design problems
are traditionally solved by the application of human expertise, we argue
instead for the use of automatic methods. In this work, we consider the
design of stochastic local search (SLS) solvers for the propositional satisfia-
bility problem (SAT). We first introduce a generalized, highly parameterized
solver framework, dubbed SATenstein, that includes components drawn from
or inspired by existing high-performance SLS algorithms for SAT. The pa-
rameters of SATenstein determine which components are selected and how
these components behave; they allow SATenstein to instantiate many high-
performance solvers previously proposed in the literature, along with trillions
of novel solver strategies. We used an automated algorithm configuration
procedure to find instantiations of SATenstein that perform well on several
well-known, challenging distributions of SAT instances. Our experiments
show that SATenstein solvers achieved dramatic performance improvements
as compared to the previous state of the art in SLS algorithms; for many
benchmark distributions, our new solvers also significantly outperformed all
automatically tuned variants of previous state-of-the-art algorithms.

Keywords: SAT, stochastic local search, automatic algorithm configuration

1We thank Paul Cernek for helping to run experiments and contributing to the SATen-
stein codebase. Ashiqur R. KhudaBukhsh and Lin Xu contributed equally to this work.

Preprint submitted to Artificial Intelligence November 17, 2015

1. Introduction

In Mary Shelley’s classic novel Frankenstein; or, The Modern Prometheus,
a brilliant scientist, Victor Frankenstein, set out to create a perfect human
being by combining scavenged human body parts. We pursue a similar idea:
scavenging components from existing high-performance algorithms for a given
problem and combining them to build new high-performance algorithms. Our
idea is inspired by the fact that many new solvers are created by augmenting
an existing algorithm with a mechanism found in a different algorithm (see,
e.g., Hoos, 2002; Li et al., 2007b) or by combining components of different
algorithms (see, e.g., Pham et al., 2008). Unlike Victor Frankenstein’s cre-
ation, we propose to use an automated construction process that enables us
to optimize performance with minimal human effort.

Traditionally, high-performance heuristic algorithms are designed through
an iterative, manual process in which most design choices are fixed at devel-
opment time, usually based on preliminary experimentation, leaving only a
small number of parameters exposed to the user. In contrast, we propose a
new approach to heuristic algorithm design in which the designer fixes as few
design choices as possible, instead exposing all promising design choices as
parameters. This approach removes from the algorithm designer the burden
of making early design decisions without knowing how different algorithm
components will interact on problem distributions of interest. Instead, it
encourages the designer to consider many alternative designs, drawing from
known solvers as well as novel mechanisms. Of course, such flexible, highly
parameterized algorithms must be instantiated appropriately to achieve good
performance on a given instance set. With the availability of advanced auto-
mated parameter configurators and cheap computational resources, finding
a good parameter configuration from a huge parameter space becomes prac-
tical (see, e.g., Hutter et al., 2007b; Birattari et al., 2002; Chiarandini et al.,
2008). Of course, we are not the first to propose building algorithms by using
automated methods to search a large design space. Rather, our work can be
seen as part of a general and growing trend, fueled by an increasing demand
for high-performance solvers for difficult combinatorial problems in practical
applications, by the desire to reduce the human effort required for building
such algorithms, and by an ever-increasing availability of cheap computing
power that can be harnessed for automating parts of the algorithm design
process (see also Hoos, 2008). There are many examples of work along these
lines (Gratch and Dejong, 1992; Minton, 1993; Carchrae and Beck, 2005; Xu

2

et al., 2008; Gagliolo and Schmidhuber, 2006; Fukunaga, 2002; Oltean, 2005;
Westfold and Smith, 2001; Monette et al., 2009; Gaspero and Schaerf, 2007).

Although our general approach is not specifically tailored to a particular
domain, in this work we address the challenge of constructing stochastic local
search (SLS) algorithms for the propositional satisfiability problem (SAT):
an NP-complete problem of great interest to the scientific and industrial com-
munities alike. SLS-based solvers are important because they have exhibited
consistently dominant performance for several families of SAT instances; they
also play an important role in state-of-the-art portfolio-based automated al-
gorithm selection methods for SAT (Xu et al., 2008). Substantial research
and engineering effort has been expended in building SLS algorithms for SAT
since the late 1980s (see, e.g., Selman et al., 1992; Hoos, 2002; Pham et al.,
2008), with new solvers being introduced every year.

We leveraged this rich literature (discussed in detail later) to design
SATenstein-LS. This algorithm draws mechanisms from 25 high-performance
SLS SAT solvers and also incorporates many novel strategies. The resulting
design space contains a total of 2.01 × 1014 candidate solvers, and includes
most existing, state-of-the-art SLS SAT solvers that have been proposed in
the literature. We demonstrate experimentally that our new, automatically-
constructed solvers dramatically outperform the best SLS-based SAT solvers
currently available (with the default parameter configurations manually tuned
by their authors) on six well-known SAT instance distributions, ranging from
hard random 3-SAT instances to SAT-encoded factoring and software verifi-
cation problems. In most cases, our new solvers also significantly outperform
the best SLS-based SAT solvers even when we automatically tune the orig-
inally exposed parameters of every one of these incumbent solvers. Because
SLS-based SAT solvers are the best known methods for solving most of our
benchmark distributions, our new solvers represent a substantial advance in
the state of the art for solving the respective sub-classes of SAT. On one
of the two instance families for which this is not the case—SAT-encoded
number factoring problems—our new solvers narrow the gap between the
performance of the best SLS algorithms and the best DPLL-based solvers.

This paper2 is organized as follows. Section 2 discusses related work; we

2An early version of the work described in this article was published at IJCAI (Khud-
aBukhsh et al., 2009). This article substantially extends that work in five key ways. (1) It
describes SATenstein-LS’s architecture in considerably more detail, and (2) presents all-
new experiments based on longer configuration runs, albeit on the same distributions.

3

describe the design and implementation of SATenstein-LS in Section 3. We
then describe the setup we used for empirically evaluating SATenstein-LS

(Section 4) and present the results from our experiments (Section 5). Sec-
tion 6 presents some general conclusions and an outlook on future work.

2. Related Work

The propositional satisfiability problem (SAT) asks, for a given proposi-
tional formula F, whether there exists a complete assignment of truth values
to the variables of F under which F evaluates to true (see, e.g., Biere et al.,
2009). F is called satisfiable if there exists at least one such assignment and
unsatisfiable otherwise. A SAT instance is usually represented in conjunctive
normal form (CNF), i.e., as a conjunction of disjunctions of literals, where
each literal is a propositional variable or the negation of variables. Each dis-
junction of literals is called a clause. In this case, the goal for a SAT solver is
to find a variable assignment that satisfies all clauses of a given CNF formula
or to prove that no such assignment exists.

2.1. Local-Search SAT Solvers

Over the past decades, considerable research and engineering effort has
been invested into designing and optimizing algorithms for SAT. State-of-
the-art SAT solvers include tree-search algorithms (see, e.g., Sörensson and
Eén, 2007; Heule and Maaren, 2007a; Biere, 2008; Dubois and Dequen, 2001;
Audemard and Simon, 2009; Heule et al., 2012), local search algorithms (see,
e.g., Hutter et al., 2002; Pham and Anbulagan, 2007; Li and Huang, 2005;
Prestwich, 2005; Pham et al., 2008; Cai and Su, 2012) and resolution-based
preprocessors (see, e.g., Subbarayan and Pradhan, 2005; Dechter and Rish,
1994; Bacchus and Winter, 2003). Every year, competitions are held, in
which new state-of-the-art solvers emerge. The trend of continuing perfor-
mance improvement in SAT competitions suggests that there is room for
even further enhancements of current solver technology.

(3) Our comparison with tuned versions of challengers (Section 5.2) is entirely new, as is
(4) our comparison with complete solvers (Section 5.3). (5) We extended SATenstein-LS

with a local search strategy found in the recent high-performance SAT solver, Sattime,
and compared the performance of the augmented SATenstein-LS with three recent SLS-
based SAT solvers, including Sattime.

4

Stochastic local search (SLS) algorithms represent the state of the art
in solving certain types of SAT instances and have been the subject of an
intense and sustained interest since the early 1990s (see, e.g., Selman et al.,
1992; Wah and Wu, 2005). A typical SLS algorithm for SAT consists of an
initialization phase and a local search phase. In the initialization phase, all
variables are assigned truth values. At each step of the local search phase, the
truth value of a single, heuristically chosen variable is changed. Exceptions
include SLS solvers based on evolutionary algorithms (e.g., Lardeux et al.
(2006)) that maintain a population of candidate solutions and use recombi-
nation techniques. The search process is terminated when either a satisfying
assignment is found or a given bound on the runtime or run length is reached
or exceeded. Almost all SLS algorithms for SAT are incomplete, i.e., they
cannot establish the unsatisfiability of a given formula.

The vast majority of existing SLS-based SAT solvers can be grouped into
four broad categories: GSAT-based (Selman et al., 1992), WalkSAT-based
(Selman et al., 1994), dynamic local search algorithms (Hutter et al., 2002;
Thornton et al., 2004), and G2WSAT variants (Li and Huang, 2005). Al-
most all of the recent high-performance SLS SAT solvers are based on Walk-
SAT, dynamic local search, or G2WSAT. SATenstein-LS thus draws deeply
on these families of solvers, which we discuss in more detail in Section 3.
GSAT-based algorithms are mostly of historical importance, but ideas that
originated in GSAT remain important in more modern solvers. Partly for
that reason, we briefly describe its architecture here.

At each step, GSAT evaluates each variable using a scoring function, then
flips the variable with the highest score. The score of a variable is deter-
mined from two quantities, MakeCount and BreakCount. The MakeCount
of a variable with respect to an assignment is the number of previously un-
satisfied clauses that will be satisfied if the variable is flipped. Similarly, the
BreakCount of a variable with respect to an assignment is the number of
previously satisfied clauses that will be unsatisfied if the variable is flipped.
The scoring function of GSAT is MakeCount – BreakCount.

2.2. UBCSAT

UBCSAT (Tompkins and Hoos, 2004) is an SLS solver implementation
and experimentation environment for SAT. It provides implementations of
many existing high-performance SLS algorithms from the literature. These
implementations generally match or exceed the efficiency of the respective

5

implementations made available by the original authors. UBCSAT imple-
mentations have therefore been widely used as reference implementations for
many well-known local search algorithms (see, e.g., Prestwich, 2005; Kroc
et al., 2009). In addition, UBCSAT also provides a rich interface that includes
numerous statistical and reporting features facilitating empirical analysis of
SLS algorithms.

Many existing SLS algorithms for SAT share common components and
data structures. The general design of UBCSAT allows for the reuse and
extension of such common components and mechanisms. This made UBC-
SAT an ideal environment for the implementation of SATenstein-LS (de-
scribed below). However, UBCSAT and SATenstein-LS are quite different
at a conceptual level. UBCSAT implements many well-known solvers in a
stand-alone fashion; it does not provide for the creation of new solvers by
combining existing solver components.

2.3. Automated Algorithm Design

There is a large body of literature in AI and related areas that deals
with automated methods for building heuristic algorithms. This includes
work on automatic algorithm configuration (see, e.g., Gratch and Dejong,
1992; Minton, 1993), algorithm selection (see, e.g., Leyton-Brown et al., 2003;
Carchrae and Beck, 2005; Xu et al., 2008, 2010), parallel portfolios (see, e.g.,
Gomes and Selman, 2001; Gagliolo and Schmidhuber, 2006), and, to some
extent, genetic programming (see, e.g., Fukunaga, 2002, 2004; Oltean, 2005),
hyper-heuristics (see, e.g., Maturana et al., 2010), autonomous search (see,
e,g., Hamadi et al., 2012), and algorithm synthesis (see, e.g., Westfold and
Smith, 2001; Monette et al., 2009; Gaspero and Schaerf, 2007). In what fol-
lows, we restrict our discussion to research efforts that are related particularly
closely to our approach.

2.3.1. Automated Construction of Algorithms

Here we consider three closely related lines of previous work in more
detail, contrasting them with our own. First, Minton (1993) used meta-level
theories to produce distribution-specific versions of generic heuristics, and
then found the most useful combination of these heuristics by evaluating
their performance on a small set of test instances. He focused on producing
distribution-specific versions of candidate heuristics and only considered at
most 100 possible heuristics. The performance of the resulting algorithms
was comparable to that of algorithms designed by a skilled programmer,

6

but not an expert. In contrast, our work lays out a generalized, highly
parameterized framework that can be instantiated to yield many trillions of
distinct candidate solvers. We achieved performance exceeding the current
state of the art on most of the instance distributions we considered.

Second, Gratch and Dejong (1992) presented a system that starts with a
STRIPS-like planner and augments it by incrementally adding search control
rules. In contrast, SATenstein does not augment an existing solver; rather,
our goal is to design a method for automatically building new solvers by
combining components from as many existing solvers as possible.

Finally, and most closely related to our work, Fukunaga’s (2002; 2004)
genetic programming approach has a similar goal to our own: the automated
construction of local search heuristics for SAT. Fukunaga considered a po-
tentially unbounded design space, based only on GSAT-based and WalkSAT-
based SLS algorithms up to the year 2000. His candidate variable selection
mechanisms were evaluated on uniform random 3-SAT and graph coloring
instances with at most 250 variables. While Fukunaga’s approach could in
principle be used to obtain high-performance solvers for specific types of SAT
instances, to the best of our knowledge, this potential has never been real-
ized; the best automatically-constructed solvers obtained by Fukunaga only
achieved a performance level similar to that of the best WalkSAT variants
available in 2000, based on an evaluation on moderately-sized SAT instances.
In contrast, as mentioned above, we consider a huge but bounded combina-
torial space of algorithms, based on components taken from two dozen of
the best SLS algorithms for SAT currently available, and we employ an off-
the-shelf, general-purpose algorithm configuration procedure to search this
space. The solvers thus obtained perform substantially better than current
state-of-the-art SLS-based SAT solvers on a broad range of challenging SAT
instances with up to 4 978 variables.

2.3.2. Automated Algorithm Configuration

Recently, considerable attention has been paid to the problem of auto-
mated algorithm configuration. F-Race (Birattari et al., 2002; Balaprakash
et al., 2007; Birattari et al., 2010) uses a non-parametric statistical test to
iteratively filter out configurations that are significantly worse than others
(“racing”), continuing until a cutoff time is reached and only a small num-
ber of good configurations are left. ParamILS (Hutter et al., 2007b, 2009)
is a model-free method based on iterated local search and with a “challenge
incumbent” procedure somewhat akin to racing. GGA (Ansotegui et al.,

7

2009) is a model-free method based on a genetic algorithm. Finally, SMAC
(Hutter et al., 2011) performs sequential model-based optimization, iterating
between fitting models and using them to make choices about which configu-
rations to investigate. The experiments in this paper make use of ParamILS;
this method offers the advantages of scalability to large parameter spaces,
stability, and previous success in applications (see, e.g., Hutter et al., 2007a;
Chiarandini et al., 2008). However, in principle, SATenstein-LS could be
configured using any state-of-the-art algorithm configuration procedure.

2.3.3. Programming by Optimization

SATenstein advocates designing new solvers by inducing a single param-
eterized solver from distinct examples in the literature, and then searching
this parameter space automatically (KhudaBukhsh et al., 2009). This ap-
proach is an example of—and indeed was part of the inspiration for—a design
philosophy we call Programming by Optimization (PbO) (Hoos, 2012). In
general, PbO means seeking and exposing design choices during a develop-
ment process, and then automatically finding instantiations of these choices
that optimize performance in a given use context. SATenstein-LS can be
seen as an example of PbO in which the algorithm design space has been
obtained by unifying a large number of local search schemes for SAT into
a tightly integrated, highly parametric algorithm framework. However, the
PbO philosophy goes further and is ultimately more general: it emphasizes
encouraging developers to identify and expose design choices as parameters,
rather than merely recovering parameters from existing, fully implemented
examples. Because of its emphasis on changing the software development
process, the PbO paradigm is also supported by programming language ex-
tensions that allow parameters and design choices to be exposed quickly and
transparently (for further details, see www.prog-by-opt.net).

2.3.4. Algorithm Selection and SATzilla

To address a potential source of confusion, we contrast SATenstein with
our similarly-named—but rather different—previous work on SATzilla. For
a given problem instance or problem distribution, we often have to solve an
“algorithm selection problem” (Rice, 1976): which algorithm(s) should be
run in order to minimize some performance objective, such as expected run-
time? Different machine learning techniques can be applied to solve this
problem (see, e.g., Leyton-Brown et al., 2002; Guerri and Milano, 2004;
Carchrae and Beck, 2005; Xu et al., 2008; Kadioglu et al., 2010, 2011).

8

www.prog-by-opt.net

SATzilla (Nudelman et al., 2003; Xu et al., 2008) instantiates such an ap-
proach, using predictive models to select among a portfolio of existing al-
gorithms on a per-instance basis. In contrast, SATenstein is an approach
for automatically building solvers from components, yielding a huge candi-
date set of solvers, most of which have never been studied before. Indeed,
the two approaches are complementary: methods like SATzilla can take ad-
vantage of solvers obtained using the automated design approach pursued in
this work. In fact, SATzilla2009 R and 3S, which both performed extremely
well in the random category of the 2009 and 2012 SAT Competitions (each
winning a gold medal for random SAT+UNSAT), both make use of multi-
ple SATenstein-LS solvers (Xu et al., 2009; Kadioglu et al., 2011). Indeed,
the synergy between SATenstein and SATzilla runs even deeper: an ap-
proach dubbed Hydra (Xu et al., 2010) automatically builds portfolio-based
algorithm selectors, based only on a single, highly parameterized algorithm
such as SATenstein. Experiments show that Hydra outperformed SATzilla

based on 17 state-of-the-art SLS solvers, even when restricted only to multi-
ple different instantiations of SATenstein-LS.

2.3.5. Further Related Work

Frankenstein was also used as a metaphor for algorithm design in work
by Montes de Oca et al. (2009), where a Particle Swarm Optimization (PSO)
algorithm is created by combining algorithm components drawn from existing
high-performance PSO algorithms. These component designs were hand-
picked by the algorithm designer; in contrast, we specify a combinatorial
design space from which we use an automated algorithm configurator to find
a good design for a given problem distribution. Frankenstein’s PSO can
thus be seen an example of manual algorithm design, whereas our goal is to
automate the algorithm-building process.

Existing work on algorithm synthesis is mostly focused on automatically
generating algorithms that satisfy a given formal specification or that solve
a specific problem from a large and diverse domain (see, e.g., Westfold and
Smith, 2001; Monette et al., 2009; Gaspero and Schaerf, 2007). In contrast,
like other research that falls under the PbO umbrella (Hoos, 2012), our work
is focused on finding an efficient solver from a huge space of candidate solvers
that are all guaranteed to be correct by construction.

9

3. SATenstein-LS

SATenstein-LS is a highly parameterized, stochastic local search (SLS)
SAT solver that not only draws components from several high-performance
SLS-based SAT solvers, but also incorporates several novel mechanisms.
SATenstein-LS can be configured to instantiate dozens of well-known SLS
solvers, along with many trillions of others that have never been studied be-
fore. In this section, we present a high-level outline of SATenstein-LS and
explain the functionality of the major building blocks used in our design. We
also give a detailed description of the parameters exposed by SATenstein-LS.

3.1. Design

As discussed in Section 2.1, most SLS algorithms for SAT fall into one of
four broad categories: GSAT-based, WalkSAT-based, dynamic local search,
and G2WSAT variants. Since no recent, state-of-the-art SLS solver is GSAT-
based, we constructed SATenstein-LS by drawing components from algo-
rithms belonging to the three remaining categories.

As shown in the high-level algorithm outline (Procedure SATenstein-LS),
SATenstein-LS is comprised of five major building blocks, B1–B5. Any
instantiation of SATenstein-LS follows the same high-level structure:

1. Optionally execute B1, which performs search diversification.
2. Execute either B2, B3 or B4, thus performing a WalkSAT-based, dy-

namic local search or G2WSAT-based procedure, respectively.
3. Optionally execute B5 to update data structures such as promising list,

clause penalties, dynamically adaptable parameters or tabu attributes.

Each of our building blocks consists of one or more components (listed
in Table 2); some of these components are shared across different building
blocks. Each component is configurable by one or more parameters. Out of
42 parameters overall, 6 of SATenstein-LS’s parameters are integer-valued
(listed in Table B.11), 19 are categorical (listed in Table B.12), and 17 are
real-valued (listed in Table B.13). All of these parameters are exposed on the
command line so that they can be optimized using an automatic configurator.
After fixing the domains of integer- and real-valued parameters to between
3 and 16 values each (as we did in our experiments, reported later) the total
number of valid SATenstein-LS instantiations was 2.01× 1014.

We now give a high-level description of each of the building blocks. In
particular, we provide detailed descriptions of SATenstein-LS’s three key

10

building blocks, B2, B3 and B4, which map to three broad categories of
SLS-based SAT solvers.

3.1.1. Block B1

B1 is constructed using the SelectClause(), DiversificationStrategy() and
DiversificationProbability() components. SelectClause() is configured by one
categorical parameter and, depending on its value, either selects an unsatis-
fied clause uniformly at random or selects a clause with probability propor-
tional to its clause penalty (Tompkins and Hoos, 2004). Component diversi-
ficationStrategy() can be configured by a categorical parameter to do any of
the following with probability diversificationProbability(): flip the least re-
cently flipped variable (Li and Huang, 2005); flip the least frequently flipped
variable (Prestwich, 2005); flip the variable with minimum variable weight
(Prestwich, 2005); or flip a randomly selected variable (Hoos, 2002).

3.1.2. Block B2 (WalkSAT-based Algorithms)

Block B2 instantiates WalkSAT-based algorithms, which—unlike GSAT

or its variants—select in each step a single unsatisfied clause (typically uni-
formly at random from the set of all currently unsatisfied clauses), and con-
sider only the variables appearing therein as candidates for flipping; the vari-
able to be flipped is chosen using a heuristic. WalkSAT/SKC (Selman et al.,
1994), one of the earliest and most prominent algorithms from this family,
uses a scoring function that only depends on BreakCount (see Section 2.1)
for variable selection.

As previously described in the context of B1, component SelectClause()
is used to select an unsatisfiable clause c. The SelectHeuristic() component
selects a variable from c for flipping. Depending on a categorical parameter,
SelectHeuristic() can instantiate any of the thirteen well-known WalkSAT-
based heuristics, notably including Novelty variants, VW1 and VW2. Table 3
lists these heuristics and related continuous parameters. We also extended
the Novelty variants with an optional “flat move” mechanism, as found in
the selection strategy in gNovelty+ (Thornton et al., 2004; Pham et al.,
2008).

WalkSAT/Tabu (McAllester et al., 1997) is an extension of WalkSAT/SKC

that forbids variables that have been flipped within the last t steps from being
flipped again, where t is a parameter called the tabu tenure. If all variables
in all unsatisfied clauses are tabu, then the tabu list is ignored. Tabu variants

11

of WalkSAT algorithms can be configured in SATenstein-LS by setting the
categorical parameter performTabuSearch.

Novelty (McAllester et al., 1997) and its variants are also very prominent
WalkSAT algorithms. Novelty scores the variables in the selected clause us-
ing the same scoring function as GSAT. If the variable with the highest score
is not the most-recently-flipped variable within the clause, then it is deter-
ministically selected for flipping. Otherwise, it is selected with probability (1
- p), where p is a parameter called the noise setting (with probability p, the
second-best variable is selected). To prevent search stagnation, Novelty has
been augmented with a probabilistic conflict-directed random walk mech-
anism, leading to the Novelty+ algorithm (Hoos, 1999). Later Novelty

variants (e.g., adaptNovelty+; Hoos, 2002) also use a dynamic mechanism
for changing the noise parameter during the search process; this mechanism
has since been extended to many other SLS-based SAT solvers (e.g., Li et al.,
2007b) and can be instantiated in SATenstein-LS by setting the parameter
useAdaptiveMechanism to 1 (for further details, see, Table B.12).

3.1.3. Block B3 (Dynamic Local Search Algorithms)

Block B3 instantiates dynamic local search algorithms. The most promi-
nent feature of dynamic local search (DLS) algorithms is the use of penalties
(or weights) associated with the clauses of the given CNF formula. DLS
algorithms typically use a GSAT-like variable selection mechanism, but cal-
culate scores taking clause penalties into account, reflecting the perceived
importance of satisfying each clause. At each step, penalties associated with
unsatisfied clauses are increased (additively (Thornton et al., 2004) or mul-
tiplicatively (Hutter et al., 2002)); this enables the local search process to
escape from local minima of the objective function defined by the sum of the
penalties of unsatisfied clauses. In order to ensure that the penalty values
do not increase unboundedly and to appropriately emphasize recent search
history, occasional smoothing steps are performed to reduce penalties.

In SATenstein-LS, the task of pruning the set of variables based on clause
weights is accomplished by the selectSet() component. selectSet() first con-
siders the set of variables that occur in any unsatisfied clause and associates
with each such variable v a score, which depends on the clause weights of
each clause that changes satisfiability status when v is flipped. After scor-
ing the variables, selectSet() returns all variables with maximal score. Our
implementation of this component incorporates three different scoring func-
tions, including those due to McAllester et al. (1997), Selman et al. (1994),

12

and a novel, greedier variant that only considers the number of previously
unsatisfied clauses that are satisfied by a variable flip. The tieBreaking()
component selects a variable from the maximum-scoring set according to the
same strategies used by the diversificationStrategy() component.

3.1.4. Block B4 (G2WSAT Variants)

Block B4 instantiates G2WSAT-based algorithms that combine key features
of the GSAT and WalkSAT architectures and use a data structure promising
list containing promising decreasing variables. (The definition of a promis-
ing decreasing variable is somewhat technical; interested readers should refer
to Appendix A.) Like GSAT, G2WSAT has a deterministic greedy compo-
nent that looks at the promising list first. If this list contains at least one
variable (promising decreasing variable), G2WSAT deterministically selects
the variable with the best score for flipping, breaking ties in favor of the
least recently flipped variable. If the promising list is empty, the stochastic
component of G2WSAT is employed, a Novelty variant that belongs to the
WalkSAT architecture.

In SATenstein-LS, selection of promising variable is performed by the se-
lectFromPromisingList() component. For this component, in addition to two
existing strategies found in the G2WSAT literature (see, e.g., Li and Huang
(2005); Li et al. (2007b)), we added nine novel strategies based on variable
selection heuristics from other solvers. These, to the best of our knowledge,
have never been used before in the context of promising variable selection
for G2WSAT-based algorithms. For example, in previous work, variable selec-
tion mechanisms used in Novelty variants were only applied to variables of
unsatisfiable clauses, not to promising lists. Table 1 lists the eleven possi-
ble strategies for selectFromPromisingList. If promising list is empty, B4
behaves exactly as B2, which instantiates WalkSAT-based algorithms.

Except for G2WSAT (Li and Huang, 2005), all G2WSAT variants use the re-
active mechanism found in adaptNovelty+ (Hoos, 1999). gNovelty+ (Pham
et al., 2008), the winner of the 2007 SAT Competition in the random sat-
isfiable category, also uses clause penalties and a smoothing mechanism
found in dynamic local search algorithms (Thornton et al., 2004) which can
be activated in SATenstein-LS by setting the categorical parameter use-
ClausePenalty to 1. As already mentioned in the context of B2, the reactive
mechanism for is activated by setting the categorical parameter useAdaptive-
Mechanism to 1.

13

Param Value Design choice Based on

1 If freebie exists, use tieBreaking(); (Selman et al., 1994)
else, select uniformly at random

2 Variable with best score (Li and Huang, 2005)
3 Least-recently-flipped variable (Li et al., 2007b)
4 Variable with best VW1 score (Prestwich, 2005)
5 Variable with best VW2 score (Prestwich, 2005)
6 Variable selected uniformly at random (Hoos, 1999)
7 Variable selection from Novelty (McAllester et al., 1997)
8 Variable selection from Novelty++ (Li and Huang, 2005)
9 Variable selection from Novelty+ (Hoos, 1999)

10 Variable selection from Novelty++′ (Li et al., 2007a)
11 Variable selection from Novelty+p (Li et al., 2007a)

Table 1: Design choices for selectFromPromisingList().

3.1.5. Block B5

Block B5 updates data structures required by the previously mentioned
mechanisms, (e.g., dynamic local search) after a variable has been flipped.
Performing these updates in an efficient manner is of crucial importance for
the performance of many SLS algorithms. As the SATenstein-LS frame-
work supports the combination of mechanisms from many different SLS al-
gorithms, each depending on different data structures, the implementation
of the update() function was technically quite challenging.

3.2. Implementation and Validation

As already mentioned, SATenstein-LS is built on top of UBCSAT (Tomp-
kins and Hoos, 2004). UBCSAT makes use of a trigger-based architecture
that facilitates the reuse of existing mechanisms. While designing and im-
plementing SATenstein-LS, we not only studied existing SLS algorithms, as
presented in the literature, but we also analyzed the SAT competition sub-
missions of such algorithms. We found that the published pseudocode of VW2
(Prestwich, 2005) differed from its 2005 SAT Competition version, which in-
cludes a reactive mechanism; we included both versions in SATenstein-LS’s
implementation. We also found that in the SAT competition implementa-
tion of gNovelty+, Novelty used a PAWS-like (Thornton et al., 2004) “flat
move” mechanism. We implemented this alternate version of Novelty in
SATenstein-LS and exposed a categorical parameter to choose between the
two implementations. While examining the implementations of various SLS
solvers, we noticed that certain key data structures were implemented in dif-
ferent ways. In particular, different G2WSAT variants use different realizations

14

Procedure SATenstein-LS(. . .)
Input: CNF formula φ; real number cutoff ;

Booleans performDiversification, singleClauseAsNeighbor,
usePromisingList ;

Output: Satisfying variable assignment

Start with random assignment A;
Initialize parameters;
while runtime < cutoff do

if A satisfies φ then
return A;

varFlipped ← FALSE;
if performDiversification then

B1 with probability diversificationProbability() do
B1 c ← selectClause();
B1 y ← diversificationStrategy(c) ;
B1 varFlipped ← TRUE;

if not varFlipped then
if not usePromisingList then

if singleClauseAsNeighbor then
B2 c ← selectClause();
B2 y ← selectHeuristic(c) ;

else
B3 sety ← selectSet();
B3 y ← tieBreaking(sety);

else
B4 if promisingList is not empty then
B4 y ← selectFromPromisingList() ;

else
B4 c ← selectClause();
B4 y ← selectHeuristic(c) ;

flip y ;
B5 update();

of the update scheme of promising list. We included all these update schemes
in SATenstein-LS and declared parameter updateSchemePromList to select
between them.

Since SATenstein-LS is quite complex, we took great care in validating
its implementations of existing SLS-based SAT solvers. We compared our
SATenstein-LS implementation with ten well-known algorithms’ reference

15

Component Block Parameters Instantiations Detailed Info

diversificationStrategy() 1 searchDiversificationStrategy 4 Table B.12
SelectClause() 1, 2, 4 selectClause 2 Table B.12
diversificationProbability() 1 rdp, rfp, rwp 216 Table B.13
selectFromPromisingList() 4 selectPromVariable 4312 Table 1, B.12

promDp, promWp, promNovNoise Table B.13
selectHeuristic() 2, 4 heuristic Table 3, B.12

performAlternateNovelty 1.83 × 106 Table B.12
wp, dp, wpWalk, novNoise, s, c Tabel B.13

selectSet() 3 scoringMeasure, smoothingScheme Table B.12
maxinc 24576 Table B.11
alpha,rho, sapsthresh, pflat Table B.13

tiebreaking() 3 tieBreaking 4 Table B.12
update() 5 useAdaptiveMechanism, adaptivenoisescheme, Table B.12

adaptWalkProb, performTabuSearch, Table B.12
useClausePenalty, adaptiveProm, Table B.12
adaptpromwalkprob, updateSchemePromList, 1.76 × 108 Table B.12
tabuLength, phi, theta, promPhi,promTheta, Table B.11
ps Table B.13

Table 2: SATenstein-LS components.
.

Param. Value Selected Heuristic Dependent Parameters

1 Novelty (McAllester et al., 1997) novnoise
2 Novelty+ (Hoos, 2002) novnoise, wp
3 Novelty++ (Li and Huang, 2005) novnoise, dp
4 Novelty++′ (Li et al., 2007a) novnoise, dp
5 R-Novelty (McAllester et al., 1997) novnoise
6 R-Novelty+ (Hoos, 2002) novnoise, wp
7 VW1 (Prestwich, 2005) wpwalk
8 VW2 (Prestwich, 2005) s, c, wpwalk
9 WalkSAT-SKC (Selman et al., 1994) wpwalk

10 Noveltyp (Li et al., 2007a) novnoise
11 Novelty+p (Li et al., 2007a) novnoise, wp
12 Novelty++p (Li et al., 2007a) novnoise, dp
13 Novelty++′p (Li et al., 2007a) novnoise, dp

Table 3: List of heuristics chosen by the parameter heuristic and dependent parameters.

implementations (specifically, every algorithm listed in Table 5 except for
Ranov), measuring running times as the number of variable flips.3 These ten
algorithms span G2WSAT-based, WalkSAT-based, and dynamic local search
procedures, and also make use of all the prominent SLS solver mechanisms
discussed earlier. Our validation results showed that in every case, reference
solvers and their SATenstein-LS implementations have the same run-length
distributions on a small set of 10 validation instances chosen from block world

3SATenstein-LS does not support preprocessing, as a consequence of being built on
top of UBCSAT. We thus manually disabled the preprocessing steps of G2, AG2p, AG2+,
and AG20 when performing this validation.

16

and software verification, based on a Kolmogorov-Smirnov test (5000 runs
per solver–instance pair with significance threshold 0.05).

4. Experimental Setup

In order to study the effectiveness of our proposed approach for algorithm
design, we configured SATenstein-LS on training sets from various distribu-
tions of SAT instances and compared the performance of the SATenstein-LS
solvers thus obtained against that of several existing high-performance SAT
solvers on disjoint test sets.

4.1. Instance Distributions

We considered six sets of well-known benchmark instances for SAT (see
Table 4). These six distributions can be grouped into three broad categories:
industrial (CBMC(SE), FAC), handmade (QCP, SW-GCP), and random (R3SAT,
HGEN). Because SLS algorithms are unable to prove unsatisfiability, we con-
structed our benchmark sets to include only satisfiable instances.

The instance generators for HGEN and FAC only produce satisfiable in-
stances. For each of these two distributions, we generated 2000 instances
with the generator settings shown in Table 4. For the remaining distribu-
tions, we filtered out unsatisfiable instances using complete solvers. For QCP,
we generated 23 000 instances around the solubility phase transition, using
the parameters suggested by Gomes and Selman (1997). We first filtered out
unsatisfiable instances and then chose 2000 satisfiable instances uniformly
at random. For SW-GCP, we generated 20 000 instances following Gent et al.
(1999) and then drew a sample of 2000 satisfiable instances uniformly at ran-
dom from this set. For R3SAT, we generated a set of 1000 instances with 600
variables and a clauses-to-variables ratio of 4.26. We identified 521 satisfi-
able instances using complete solvers, then chose 500 of these uniformly at
random. Finally, we used the CBMC generator to create 611 SAT-encoded
software verification instances based on a binary search algorithm with differ-
ent array sizes and loop-unwinding values. We preprocessed these instances
using SatELite (Eén and Biere, 2005), identifying 604 of them as satisfiable
and the remaining 7 as unsatisfiable.

Finally, we randomly split each of the six instances sets thus obtained
into training and test sets of equal size.

17

Distribution Description generator Parameters Train/Test size

QCP SAT-encoded quasi-group order O ∈ [10, 30]; 1000/1000
completion problems holes H = h ∗O1.55,
(Gomes and Selman, 1997) h ∈ [1.2, 2.2]

SW-GCP SAT-encoded small-world graph-
colouring problems

ring lattice size S ∈ [100, 400]; 1000/1000

(Gent et al., 1999) nearest neighbors connected: 10;
rewiring probability: 2−7;
chromatic numbers: 6

R3SAT uniform-random 3-SAT variable: 600; 250/250
instances (Simon, 2002) clauses-to-variables ratio: 4.26

HGEN random instances generated variable n ∈ [200, 400] 1000/1000
by HGEN2 (Hirsch, 2002)

FAC SAT-encoded factoring problems prime number ∈ [3000, 4000] 1000/1000
(Uchida and Watanabe, 1999)

CBMC(SE) SAT-encoded bounded model array size s ∈ [1, 2000]; 302/302
checking (Clarke et al., 2004), loop unwinding n ∈ 4, 5, 6
preprocessed by SatELite
(Eén and Biere, 2005)

Table 4: Our six benchmark distributions.

4.2. Configuration Protocol

In order to perform automatic algorithm configuration, we first had to
quantify performance using an objective function. Consistent with most
previous work on SLS algorithms for SAT, we chose to focus on mean runtime.
In order to deal with runs that had to be terminated at a given cutoff time,
following Hutter et al., (2009), we used a variant of mean runtime known
as PAR-10, defined as the average runtime over a given set of runs, where
timed-out runs are counted as 10 times the given cutoff time. Unless explicitly
stated otherwise, all runtimes reported in this article were measured using
PAR-10 over the respective set of instances.

To perform automated configuration, we used the FocusedILS procedure
from the ParamILS framework, version 2.3 (Hutter et al., 2008). We chose
this method because it has been demonstrated to operate effectively on many
extremely large, discrete parameter spaces (see, e.g., Hutter et al., 2007b,
2010; Tompkins et al., 2011; Pop and Iordache, 2011), and because it sup-
ports conditional parameters (discussed below). FocusedILS takes as input
a parameterized algorithm (the so-called target algorithm), a specification
of domains and (optionally) conditions for all parameters, a set of training
instances, and an evaluation metric. It outputs a parameter configuration
of the target algorithm that approximately minimizes the given evaluation
metric.

As just mentioned, FocusedILS supports conditional parameters, which
are important to SATenstein-LS. For example, condition A|B = b means

18

that A is activated if B take the value b. When more than one such condition
is given for the same parameter A, these are interpreted as being connected
by logical ‘and’. For example, the two conditions, A|B = b and A|C = c, are
interpreted as A|(B = b)∧ (C = c). Some parameters in SATenstein-LS can
be activated in more than one way. While this cannot be directly specified
in the input to FocusedILS, we can express such disjunctive conditions using
dummy parameters, as illustrated in the following example. Consider an
algorithm S with four parameters, {A,B,C,D}, and where A is activated if
B = b or C = c, while D is activated if A = a. As it is impossible to express
the condition A|(B = b) ∨ (C = c) directly in the input to FocusedILS,
we introduce two dummy parameters, A∗ and D∗. Using these additional
parameters, the given conditions can be expressed as A|B = b; A∗|C = c;
A∗|B 6= b; D|A = a; D∗|A∗ = a. Since only one of (A,A∗)/(D,D∗) is
activated, we can simply map A∗ to A and D∗ to D when instantiating S

with a parameter configuration found by FocusedILS.
We used a cutoff time of 5 CPU seconds for each target algorithm run,

and allotted 7 days to each run of FocusedILS; we note that, while 5 CPU
seconds is unrealistically short for assessing the performance of SAT solvers,
using short cutoff times during configuration is important for the efficiency
of the configuration process and typically works well, as demonstrated by our
SATenstein-LS results. Since ParamILS cannot operate directly on continu-
ous parameters, each continuous parameter was discretized into sets contain-
ing between 3 and 16 values that we considered reasonable (see Table B.11).
Except for a small number of cases (e.g., the parameters s,c) for which we
used the same discrete domains as mentioned in the publication first de-
scribing it (Prestwich, 2005)), we selected these values using a regular grid
over a range of values that appeared reasonable. For each integer param-
eter, we specified 4 to 10 values, always including the known defaults (see
Table B.13). In all cases, these choices included the parameter values re-
quired to cover the default configurations of the solvers whose components
were integrated into SATenstein-LS’s design space. Categorical parameters
and their respective domains are listed in Table B.12. As mentioned before,
based on this discretization, SATenstein-LS’s parameter configuration space
consists of 2.01× 1014 distinct configurations.

Since the performance of FocusedILS can vary significantly depending on
the order in which instances appear in the training set, we ran FocusedILS
20 times on the training set, using different, randomly determined instance
orderings for each run. From the 20 parameter configurations obtained from

19

FocusedILS for each instance distribution D, we selected the parameter con-
figuration with the best penalized average runtime on the training set. We
then evaluated this configuration on the test set. For a given distribution D,
we refer to the corresponding instantiation of a solver S as S[D].

4.3. Solvers Used for Performance Comparison

For each instance distribution D, we compared the performance of SATen-
stein-LS[D] against that of 11 high-performance SLS-based SAT solvers on
the respective test set. We included every SLS algorithm that won a medal in
any category of a SAT competitions between 2002 and 2007, because those
algorithms are all part of the SATenstein-LS design space. Although dy-
namic local search (DLS) algorithms have not won medals in recent SAT
competitions, we also included three prominent, high-performing DLS algo-
rithms for two reasons. First, some of them represented the state of the
art when introduced (e.g., SAPS (Hutter et al., 2002)) and still offer com-
petitive performance on many instances. Second, techniques used in these
algorithms have been incorporated into other recent high-performance SLS
algorithms. For example, the additive clause weighting scheme used in PAWS

is also used in the 2007 SAT Competition winner gNovelty+ (Pham et al.,
2008). We call these algorithms challengers and list them in Table 5. In
order to demonstrate the full performance potential of these solvers, we also
tuned the parameters for all parameterized challengers using the same con-
figuration procedure and protocol as for SATenstein-LS, including the same
choices of discrete values for continuous and integer parameters.

SATenstein-LS can be instantiated such that it emulates all 11 chal-
lenger algorithms (except for preprocessing components used in Ranov, AG2p,
AG2plus, and AG20). However, in some cases, the original implementations
of these algorithms are more efficient—on our data, by at most a factor of
two on average per instance set—mostly, because SATenstein-LS’s gener-
ality rules out some data structure optimizations. Thus, we based all of
our experimental comparisons on the original algorithm implementations, as
submitted to the respective SAT Competitions. The exceptions are PAWS,
whose implementation within UBCSAT is almost identical to the original in
terms of runtime, as well as SAPS, RSAPS, and ANOV, whose UBCSAT imple-
mentations are those used in the competitions. All of our comparisons on
the test set are based on running each solver 25 times per instance, with a
per-run cutoff of 600 CPU seconds.

20

Algorithm Abbrev Reason for Inclusion Parameters

Ranov
(Pham and Anbulagan, 2007)

Ranov gold 2005 SAT Competition (random) wp

G2WSAT
(Li and Huang, 2005)

G2 silver 2005 SAT Competition (random) novNoise, dp

VW
(Prestwich, 2005)

VW bronze 2005 SAT Competition (random) c, s, wpWalk

gNovelty+

(Pham et al., 2008)
GNOV gold 2007 SAT Competition (random) novNoise, wpWalk, ps

adaptG2WSAT0
(Li et al., 2007a)

AG20 silver 2007 SAT Competition (random) NA

adaptG2WSAT+
(Li et al., 2007b)

AG2+ bronze 2007 SAT Competition (random) NA

adaptNovelty+

(Hoos, 2002)
ANOV gold 2004 SAT Competition (random) wp

textttadaptG2WSATp
(Li et al., 2007b)

AG2p performance comparable to G2WSAT (Li
and Huang, 2005), Ranov, and
adaptG2WSAT+; see (Li et al., 2007a)

NA

SAPS
(Hutter et al., 2002)

SAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp
RSAPS
(Hutter et al., 2002)

RSAPS prominent DLS algorithm alpha, ps, rho, sapsthresh, wp
PAWS
(Thornton et al., 2004)

PAWS prominent DLS algorithm maxinc, pflat

Table 5: Our eleven challenger algorithms.

Category Solver Reason for Inclusion

Industrial Picosat gold, silver
(CBMC(SE) and FAC) (Biere, 2008, 2007) 2007 SAT Competition (industrial)

Minisat2.0 bronze, silver
(Sörensson and Eén, 2007) 2007 SAT Competition (industrial)

Handmade Minisat2.0 bronze, silver
(QCP and SW-GCP) (Sörensson and Eén, 2007) 2007 SAT Competition (handmade)

March pl Improved, bug-free version of
(Heule and Maaren, 2007a) March ks (Heule and Maaren, 2007b),

gold in 2007 SAT Competition (handmade)
Random Kcnfs 04 silver

(HGEN and R3SAT) (Dubois and Dequen, 2001) 2007 SAT Competition (random)
March pl Improved, bug-free version of
(Heule and Maaren, 2007a) March ks (Heule and Maaren, 2007b), silver

in 2007 SAT Competition (random)

Table 6: Complete solvers we compared against.

Our goal was to improve the state of the art in SAT solving. Thus,
although the design space of SATenstein-LS consists solely of SLS solvers,
we have also compared its performance to that of high-performance complete
solvers (listed in Table 6). Unlike SLS solvers, these complete solvers are
deterministic. Thus, for every instance in each distribution, we ran each
complete solver once with a per-run cutoff of 600 CPU seconds.

4.4. Execution Environment

We carried out our experiments on a cluster of 55 machines each equipped
with dual 3.2GHz Intel Xeon CPUs with 2MB cache and 2GB RAM, running

21

OpenSuSE Linux 11.1. Our computer cluster was managed by a distributed
resource manager, Sun Grid Engine (version 6.0). Runtimes for all algorithms
(including FocusedILS) were measured as CPU time on these reference ma-
chines. Each run of any solver only used one CPU.

5. Results

We now present the results of performance comparisons between SATen-

stein-LS and the 11 challenger SLS solvers (listed in Table 5), configured
versions of these challengers, and two complete solvers for each of our bench-
mark distributions (listed in Table 6). Although in our configuration exper-
iments, we optimized SATenstein-LS for penalized average runtime (PAR-
10), we also examine its performance in terms of other performance metrics,
such as median runtime and percentage of instances solved within the given
cutoff time.

5.1. Comparison with Challengers

For every one of our six benchmark distributions, we were able to find
a SATenstein-LS configuration that outperformed all 11 challengers. Our
results are summarized in Table 7.

In terms of penalized average runtime, the performance metric we explic-
itly optimized using ParamILS (with a cutoff time of 5 CPU seconds rather
than the 600 CPU seconds used here for testing, as explained in Section 5.2),
our SATenstein-LS solvers achieved better performance than every chal-
lenger on every distribution. For QCP, HGEN, and CBMC(SE), SATenstein-LS
achieved a PAR-10 that was orders of magnitude better than the respective
best challengers. For SW-GCP, R3SAT, and FAC, there was substantial, but less
dramatic improvement. The modest improvement in R3SAT was not very sur-
prising (Figure C.1: Left); R3SAT is a well-known SAT distribution on which
SLS solvers have been evaluated and optimized for decades. Conversely,
on a new benchmark distribution, CBMC(SE), where DPLL solvers represent
the state of the art, SATenstein-LS solvers performed markedly better than
every SLS-based challenger. We were surprised to see the amount of improve-
ment we obtained for HGEN, a hard random SAT distribution very similar to
R3SAT, and QCP, a widely-known SAT distribution. We noticed that on HGEN,
some older solvers such as SAPS and PAWS performed much better than more
recent medal winners such as GNOV and AG20. Also, for QCP, a somewhat older
algorithm, ANOV, turned out to be the best challenger. These observations

22

0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
(KhudaBukhsh et al., 2009) 100% 100% 100% 100% 100% 100%

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

1054.99 0.64 2.14 137.02 3594.40 2169.77
AG20 0.03 0.11 0.13 0.57 N/A 0.56
(Li et al., 2007a) 81.2% 100% 100% 98.1% 35.9% 61.1%

1119.96 0.43 2.35 105.30 1954.83 2294.24
AG2p 0.02 0.06 0.14 0.48 330.26 2.57
(Li et al., 2007b) 80.1% 100% 100% 98.4% 80.6% 61.1%

1091.37 0.67 3.04 148.28 1450.89 2181.92
AG2+ 0.03 0.08 0.16 0.59 238.31 0.64
(Li et al., 2007b) 80.3% 100% 100% 98.0% 91.0% 61.1%

25.42 4.86 11.17 109.94 2897.52 2021.22
ANOV 0.02 0.04 0.15 0.50 588.23 3.10
(Hoos, 2002) 99.6% 100% 100% 98.6% 51.4% 61.1%

2942.13 4092.29 3.69 104.55 5947.80 2139.12
G2 341.60 N/A 0.13 0.60 N/A 0.57
(Li and Huang, 2005) 50.9% 31.0% 100% 98.7% 0% 65.4%

414.69 1.20 11.14 52.58 5935.39 2236.85
GNOV 0.03 0.09 0.15 0.71 N/A 0.67
(Pham et al., 2008) 93.3% 100% 100% 99.4% 0% 61.5%

1127.84 4495.50 1.77 62.18 22.05 1693.82
PAWS 0.03 N/A 0.08 0.82 10.41 0.18
(Thornton et al., 2004) 81.0% 24.3% 100% 99.4% 100% 70.8%

73.38 0.15 18.29 151.11 887.33 1227.07
RANOV 0.1 0.12 0.36 0.90 152.16 0.58
(Pham and Anbulagan, 2007) 99.1% 100% 100% 98.2% 96.8% 79.7%

1255.94 5635.54 18.42 33.28 17.86 827.81
RSAPS 0.05 N/A 1.86 2.33 11.53 0.02
(Hutter et al., 2002) 79.2% 5.4% 100% 99.7% 100% 85.0%

1248.34 3864.74 22.93 40.17 16.41 646.89
SAPS 0.04 N/A 1.77 2.65 10.56 0.02
(Hutter et al., 2002) 79.4% 34.2% 100% 99.5% 100% 89.7%

1022.69 161.74 12.45 176.18 3382.02 385.12
VW 0.25 40.26 0.82 3.13 N/A 0.23
(Prestwich, 2005) 81.9% 99.4% 100% 97.8% 35.3% 93.4%

Table 7: Performance of SATenstein-LS and the 11 challengers. Every algorithm was run 25
times on each instance with a cutoff of 600 CPU seconds per run. Each cell 〈i, j〉 summarizes
the test-set performance of algorithm i on distribution j as a/b/c, where a (top) is the the
penalized average runtime; b (middle) is the median of the median runtime over all instances
(where the outer median is taken over the instances in the given test set and the inner median
over the runs on each instance; this is undefined if fewer than half of the median runs failed
to find a solution within the cutoff time); c (bottom) is the percentage of instances solved
(i.e., those with median runtime < cutoff). The best-scoring algorithm(s) in each column are
indicated in bold, and the best-scoring challenger(s) are underlined.

23

led us to believe that the strong performance of SATenstein-LS was partly
due to the fact that the past seven years of SLS SAT solver development
have not taken these types of distributions into account and have not yielded
across-the-board improvements in SLS solver performance.

We also evaluated the performance of SATenstein-LS solvers using two
other performance metrics: median-of-median runtime and percentage of
solved instances. If a solver finishes most of the runs on most instances, the
capped runs will not affect its median-of-median performance, and hence the
metric does not need a way of accounting for the cost of capped runs. (When
the median of medians is a capped run, we say that the metric is undefined.)
Table 7 shows that, although the SATenstein-LS solvers were obtained by
optimizing for PAR-10, they still outperformed every challenger in every dis-
tribution except for R3SAT, in which the challengers achieved slightly better
performance than SATenstein-LS. Finally, we measured the percentage of
instances on which the median runtime was below the cutoff used for cap-
ping runs. According to this measure, SATenstein-LS either equalled or
beat every challenger, since it solved 100% of the instances in every bench-
mark set. In contrast, only 4 challengers managed to solve more than 50%
of instances in every test set. Overall, SATenstein-LS solvers scored well on
these measures for which its performance had not been explicitly optimized.

The relative performance of the challengers varied significantly across
different distributions. For example, the three dynamic local search solvers
(SAPS, PAWS, and RSAPS) performed substantially better than the other chal-
lengers on factoring instances (FAC). However, on SW-GCP, their relative per-
formance was weak. Similarly, GNOV (the 2007 SAT Competition winner in
the random satisfiable category) performed very poorly on our two industrial
benchmark distributions, CBMC(SE) and FAC, but solved SW-GCP and HGEN in-
stances quite efficiently.4 This suggests that different distributions are most
efficiently solved by rather different solvers. We are thus encouraged that
our automatic algorithm construction process was able to find good configu-
rations for each distribution.

So far, we have discussed performance metrics that describe aggregate
performance over the entire test set. One might wonder if SATenstein-LS’s
strong performance is due its ability to solve relatively few instances very

4Interestingly, on both types of random instances we considered, GNOV failed to outper-
form some of the older solvers, in particular, PAWS and RSAPS.

24

efficiently, while performing poorly on others. We found that this is typically
not the case and barring one distribution, R3SAT (detailed analysis can be
found in Appendix C), although even in R3SAT SATenstein-LS[R3SAT]

solved the harder instance more efficiently than PAWS, the best challenger.

5.2. Comparison with Automatically Configured Versions of Challengers

The fact that SATenstein-LS solvers achieved significantly better per-
formance than all 11 challengers with default parameter configurations (i.e.,
those selected by their designers) admits two possible explanations. First, it
could be due to the fact that SATenstein-LS’s (vast) design space includes
useful new configurations that combine solver components in novel ways.
Second, the performance gains may have been achieved simply by better
configuring existing SLS algorithms within their existing, and quite small,
design spaces. To determine which of these two hypotheses holds, we com-
pared SATenstein-LS solvers against challengers configured for optimized
performance on our benchmark sets, using the same automated configura-
tion procedure and protocol.

Table 8 summarizes the performance of our SATenstein-LS solvers, the
best default challengers, and the best automatically configured challengers
(for further details on individual challenger’s performance, see, D.15), and
shows that our first hypothesis, the performance gain of SATenstein-LS is
indeed a result of its significantly richer design space than that of the chal-
lengers, is true. For QCP, HGEN and CBMC(SE), the SATenstein-LS solvers still
significantly outperformed the best configured challengers. For R3SAT and
SWGCP, the performance difference was small, but still above 10%. The only
benchmark where the best configured challenger outperformed SATenstein-LS

was FAC. On closely examining the SATenstein-LS[FAC] configuration, we
found that SATenstein-LS[FAC] was very similar to the best configured
challenger, SAPS[FAC]. Overall, these experimental results provide evidence
in favour of our first hypothesis: the good performance of SATenstein-LS

solvers is due to combining components gleaned from existing high-performance
algorithms in novel ways.

5.3. Comparison with Complete Solvers

Table 9 compares the performance of SATenstein-LS solvers and four
prominent complete SAT solvers (two for each distribution). For four out
of our six benchmark distributions, SATenstein-LS solvers comprehensively

25

Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

Best Challenger(default) ANOV RANOV PAWS RSAPS SAPS VW
25.42 0.15 1.77 33.28 16.41 385.12

Performance 0.02 0.12 0.08 2.33 10.56 0.23
99.6% 100% 100% 99.7% 100% 93.4%

Best Challenger(tuned) VW[D] G2[D] VW[D] SAPS[D] SAPS[D] VW[D]
0.33 0.05 1.26 31.77 10.68 16.45

Performance 0.02 0.05 0.15 0.75 7.00 0.02
100% 100% 100% 99.6% 100% 100%

0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
Performance 100% 100% 100% 100% 100% 100%

Table 8: Performance of SATenstein-LS solvers, the best challengers with default configu-
rations and the best automatically configured challengers. Every algorithm was run 25 times
on each instance with a cutoff of 600 CPU seconds per run. Each table entry 〈i, j〉 indicates
the test-set performance of algorithm i on distribution j as a/b/c, where a (top) is the the
penalized average runtime; b (middle) is the median of the median runtimes over all instances;
c (bottom) is the percentage of instances solved (i.e., those with median runtime < cutoff).

outperformed the complete solvers. For the other two industrial distribu-
tions (FAC and CBMC(SE)), the performance of the selected complete solvers
was much better than that of either the SATenstein-LS solvers and any of
our other local search solvers. The success of DPLL-based complete solvers
on industrial instances is not surprising; it is widely believed to be due their
ability to take advantage of instance structure (by means of unit propagation
and clause learning). Our results confirm that state-of-the-art local search
solvers cannot compete with state-of-the-art DPLL solvers on industrial in-
stances. However, SATenstein-LS solvers have made significant progress in
closing the gap. For example, for CBMC(SE), state-of-the-art complete solvers
were five orders of magnitude better than the next-best SLS challenger, VW.
SATenstein-LS reduced the performance gap to three orders of magnitude.
We also obtained some modest improvements (a factor of 1.51) for FAC.

5.4. Configurations Found

To better understand the automatically-constructed SATenstein-LS solvers,
we compared their automatically selected design choices to the design of the
existing SLS solvers for SAT (the full active parameter configurations of the
six SATenstein-LS solvers can be found in Table E.16.). SATenstein-LS[QCP]
uses building blocks 1, 2, and 5. Recall that block 1 is used for performing
search diversification, and block 5 is used to update data structures, tabu

26

Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

Complete Solver Minisat2.0 Minisat2.0 Kcnf 04 Kcnf 04 Minisat2.0 Minisat2.0
35.05 2.17 4905.6 3108.77 0.03 0.23

Performance 0.02 0.9 N/A N/A 0.02 0.03
99.5% 100% 18.8% 49.5% 100% 100%

Complete Solver March pl March pl March pl March pl Picosat Picosat
120.29 253.99 3543.01 2763.41 0.02 0.03

Performance 0.2 1.12 N/A 400.78 0.02 0.01
98.1% 95.8% 42.0% 55.2% 100% 100%

0.08 0.03 1.11 0.02 10.89 4.75
SATenstein-LS[D] 0.01 0.02 0.14 0.01 7.90 0.02
Performance 100% 100% 100% 100% 100% 100%

Table 9: Performance summary of SATenstein-LS and the complete solvers. Every complete
solver was run once (SATenstein-LS was run 25 times) on each instance with a per-run cutoff
of 600 CPU seconds. Each cell 〈i, j〉 summarizes the test-set performance of algorithm i on
distribution j as a/b/c, where a (top) is the the penalized average runtime; b (middle) is the
median of the median runtimes over all instances (for SATenstein-LS, it is the median of the
median runtimes over all instances. the median runtimes are not defined if fewer than half of
the median runs failed to find a solution within the cutoff time); c (bottom) is the percentage
of instances solved (i.e., having median runtime < cutoff). The best-scoring algorithm(s) in
each column are indicated in bold.

attributes and clause penalties. In block 2, which is used to instantiate
a solver belonging to the WalkSAT architecture, the heuristic is based on
Novelty++′ , and in block 1, diversification flips the least-frequently-flipped
variable from an UNSAT clause. SATenstein-LS[SW-GCP] is similar to
SATenstein-LS[QCP] but does not use block 1. In block 2, the heuristic is
based on Novelty++ as used within G2. SATenstein-LS[R3SAT] uses blocks
1, 3 and 5; it is closest to SAPS, but performs search diversification. A tabu
list with length 3 is used to exclude some variables from the search neigh-
borhood. Recall that block 3 is used to instantiate dynamic local search
algorithms. SATenstein-LS[HGEN] uses blocks 1, 2, and 5. It is similar to
SATenstein-LS[QCP] but uses a heuristic based on VW1 as well as a tabu
list of length 3. SATenstein-LS[FAC] uses blocks 3 and 5; its instantiation
closely resembles that of SAPS, but differs in the way in which variable scores
are computed. SATenstein-LS[CBMC(SE)] uses blocks 1, 3, and 5; it com-
putes variable scores using -BreakCount and employs a search diversification
strategy similar to that of VW.

Interestingly, none of the six SATenstein-LS configurations we found uses
a promising list (block 4), a technique integrated into many recent SAT Com-

27

petition winners. This indicates that many interesting designs that could
compete with existing high-performance solvers still remain unexplored in
SLS design space. In addition, we found that all SATenstein-LS configu-
rations differ from existing SLS algorithms (except for SATenstein[FAC],
whose configuration and performance is similar to SAPS). This underscores
the importance of an automated approach, since manually finding such good
configurations from a huge design space is very difficult.

5.5. Augmenting SATenstein-LS

We now demonstrate that SATenstein-LS can be extended with strate-
gies found in newer SLS-based SAT solvers and present results for an aug-
mented version of SATenstein-LS (dubbed SATenstein-LS2.0), in which
we integrated a Novelty variant found in the recent high-performance SAT
algorithm, Sattime (Li and Li, 2012). In addition to Sattime, we con-
sidered two additional solvers, Sparrow (Balint and Fröhlich, 2010) and
Captain Jack (Tompkins et al., 2011), for performance comparisons. We
chose Sparrow, because we were curious to explore how SATenstein-LS com-
pares with a more recent high-performance SLS-based SAT solver some of
whose components are not present in SATenstein-LS’s design space. Captain
Jack is another high-performance SLS-based SAT solver with several com-
ponents not included in SATenstein-LS. Furthermore, like SATenstein-LS,
Captain Jack was conceived as a highly parameterized SAT solver that
draws inspiration from multiple algorithms; however, its design space is
smaller and more limited conceptually than that of SATenstein-LS, which
unifies a broader range of local search techniques and mechanisms.

Tompkins et al. (2011) described nine configurations of Captain Jack,
optimised for different sets of SAT instances. In light of limited computa-
tional resources, since it was unclear which of these would perform best on
any of our instance distributions, we first performed a single run of each of
these configurations for all instances in each of our benchmark sets. Next, we
performed 24 additional runs per instance using the configuration with the
best PAR-10 score (ties were broken randomly), resulting in 25 independent
runs per instance for that configuration. The implementations of Sparrow

and Sattime used in our experiments were those submitted to the 2011 SAT
Competition 2011.

Table 10 compares the performance of SATenstein-LS2.0 on our six
benchmark distributions. (Detailed descriptions of the six SATenstein-LS2.0

solvers can be found in Appendix E.) We use the same notation as Tompkins

28

Distribution QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

Captain Jack CJ[3Sat1k] CJ[CBMC] CJ[3Sat1k] CJ[SWV] CJ[7Sat90] CJ[SWV]
7.39 5929.3 7.30 15.01 4540.40 4.36

Performance 0.02 N/A 0.33 0.02 N/A 0.09
99.9% 0.3% 100% 99.9% 17.7% 100%

Sattime 178.55 20.81 2.97 136.87 650.48 2101.1
Performance 0.02 2.59 0.17 0.70 95.84 3.93

96.8% 100% 100% 98.3% 100% 65.23%

Sparrow 2.31 5936.8 11.32 67.79 4313.50 1544.20
Performance 0.01 N/A 0.21 1.46 N/A 3.51

100% 0.80% 100% 99.4% 11.60% 79.80%

0.10 0.03 1.42 0.03 15.22 15.94
SATenstein-LS2.0[D] 0.01 0.02 0.13 0.01 9.87 0.04
Performance 100% 100% 100% 100% 100% 100%

Table 10: Performance summary of SATenstein-LS2.0 and new set of challengers. Every
solver was run 25 times on each instance with a per-run cutoff of 600 CPU seconds. Each cell
〈i, j〉 summarizes the test-set performance of algorithm i on distribution j as a/b/c, where a
(top) is the the penalized average runtime; b (middle) is the median of the median runtimes
over all instances (the median runtimes are not defined if fewer than half of the median runs
failed to find a solution within the cutoff time); c (bottom) is the percentage of instances
solved (i.e., having median runtime < cutoff). The best-scoring algorithm(s) in each column
are indicated in bold.

et al. (2011) for the Captain Jack configuration optimised for each distri-
bution. On all distributions, in terms of PAR-10 score, SATenstein-LS2.0
outperformed both Sparrow and Sattime. However, although slightly in-
ferior in terms of median-of-median runtime, Captain Jack outperformed
SATenstein-LS2.0 on CBMC(SE) in terms of PAR-10 score. This result is not
too surprising, since Captain Jack draws components from VE-Sampler (Tomp-
kins and Hoos, 2010), which, at the time it was introduced, represented a
substantial improvement in the state of the art for local search techniques on
these kinds of instances. In future work, SATenstein-LS2.0 could be further
augmented with these components, and thus very likely achieve even better
performance.

Overall, our results clearly indicate that SATenstein-LS can be aug-
mented with components from more recent SLS-based SAT solvers, and do-
ing so achieves performance comparing favourably even with newer high-
performance algorithms.

29

6. Conclusions and Future Work

We have proposed a new approach for designing heuristic algorithms
based on (1) a framework that can flexibly combine components drawn from
existing high-performance solvers, and (2) a powerful algorithm configura-
tion procedure for finding instantiations that perform well on given sets of
instances. We have demonstrated the effectiveness of our approach by au-
tomatically constructing high-performance stochastic local search solvers for
SAT. We have shown that these automatically constructed SAT solvers out-
perform existing state-of-the-art solvers with manually and automatically
optimized configurations on a range of widely studied distributions of SAT
instances.

Our original inspiration comes from Mary Shelley’s classic novel, Franken-
stein. One important methodological difference is that we use automated
methods for selecting components for our monster instead of picking them
by hand. The outcomes are quite different. Unlike the tragic figure of Dr.
Frankenstein, whose monstrous creature haunted him enough to quench for-
ever his ambitions to create a ‘perfect’ human, we feel encouraged to un-
leash not only our new solvers, but also the full power of our automated
solver-building process onto other classes of SAT benchmarks. Like Dr.
Frankenstein, we find our creations somewhat monstrous, recognizing that
the SATenstein solvers do not always represent the most elegant designs.
Thus, desirable lines of future work include techniques for understanding
the importance of different parameters to achieving strong performance on
a given benchmark; the extension of our solver framework with prepro-
cessors; and the investigation of algorithm configuration procedures other
than ParamILS in the context of our approach. Encouraged by the results
achieved on SLS algorithms for SAT, we believe that the general approach
behind SATenstein-LS is equally applicable to non-SLS-based solvers and
to other combinatorial problems. Finally, we encourage members of the
SAT community to apply SATenstein-LS to their own instance distribu-
tions, and to extend SATenstein-LS with their own heuristics. Source code
and documentation for our SATenstein-LS framework are freely available at
http://www.cs.ubc.ca/labs/beta/Projects/SATenstein.

References

Ansotegui, C., Sellmann, M., Tierney, K., 2009. A gender-based genetic algorithm for the
automatic configuration of solvers. In: Proceedings of the 15th International Conference

30

http://www.cs.ubc.ca/labs/beta/Projects/SATenstein

on Principles and Practice of Constraint Programming (CP’09). pp. 142–157.

Audemard, G., Simon, L., 2009. Predicting learnt clauses quality in modern sat solvers. In:
Proceedings of the 21st international jont conference on Artifical intelligence (IJCAI’09).
pp. 399–404.

Bacchus, F., Winter, J., 2003. Effective preprocessing with hyper-resolution and equal-
ity reduction. In: Proceedings of the Sixth International Conference on Theory and
Applications of Satisfiability Testing (SAT’03). pp. 341–355.

Balaprakash, P., Birattari, M., Stützle, T., 2007. Improvement strategies for the f-race
algorithm: Sampling design and iterative refinement. In: Proceedings of the fourth
International Workshop on Hybrid Metaheuristics (MH’07). pp. 108–122.

Balint, A., Fröhlich, A., 2010. Improving stochastic local search for sat with a new prob-
ability distribution. In: Theory and Applications of Satisfiability Testing–SAT 2010.
Springer, pp. 10–15.

Biere, A., 2007. Picosat version 535, solver description, SAT competition 2007. http:
//www.satcompetition.org/2007/picosat.pdf. Last accessed on Sept. 16, 2013.

Biere, A., 2008. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation (JSAT) 4, 75–97.

Biere, A., Heule, M. J. H., van Maaren, H., Walsh, T. (Eds.), 2009. Handbook of Satisfi-
ability. IOS Press.

Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K., 2002. A racing algorithm for con-
figuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2002). pp. 11–18.

Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T., 2010. Empirical Methods for the
Analysis of Optimization Algorithms. Springer-Verlag, Ch. F-race and iterated F-race:
An overview, pp. 311–336.

Cai, S., Su, K., 2012. Configuration checking with aspiration in local search for sat. In: Pro-
ceedings of the Twenty-Sixth National Conference on Artificial Intelligence (AAAI’12).
pp. 434–440.

Carchrae, T., Beck, J. C., 2005. Applying machine learning to low knowledge control of
optimization algorithms. Computational Intelligence 21 (4), 373–387.

Chiarandini, M., Fawcett, C., Hoos, H. H., 2008. A modular multiphase heuristic solver
for post enrollment course timetabling (extended abstract). In: Proceedings of the Sev-
enth International Conference for the Practice and Theory of Automated Timetabling
(PATAT’2008).

Clarke, E., Kroening, D., Lerda, F., 2004. A tool for checking ANSI-C programs. In:
Proceedings of the Tenth International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’2004). pp. 168–176.

Dechter, R., Rish, I., 1994. Directional resolution: The Davis-Putnam procedure, revisited.
In: Proceedings of the Fourth International Conference on Principles of Knowledge
Representation and Reasoning (KR’94). pp. 134–145.

31

http://www.satcompetition.org/2007/picosat.pdf
http://www.satcompetition.org/2007/picosat.pdf

Dubois, O., Dequen, G., 2001. A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In: Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI’01). pp. 248–253, last accessed on September 16, 2013.
URL http://www.laria.u-picardie.fr/~dequen/sat/cnfs_ijcai01.ps.gz

Eén, N., Biere, A., 2005. Effective preprocessing in SAT through variable and clause
elimination. In: Proceedings of the Eighth International Conference on Theory and
Applications of Satisfiability Testing (SAT’05). pp. 61–75.

Fukunaga, A. S., 2002. Automated discovery of composite SAT variable-selection heuris-
tics. In: Proceedings of the Eighteenth National Conference on Artificial Intelli-
gence (AAAI’02). pp. 641–648.

Fukunaga, A. S., 2004. Evolving local search heuristics for SAT using genetic programming.
In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2004). pp. 483–494.

Gagliolo, M., Schmidhuber, J., 2006. Learning dynamic algorithm portfolios. Annals of
Mathematics and Artificial Intelligence 47 (3-4), 295–328.

Gaspero, L. D., Schaerf, A., 2007. Easysyn++: A tool for automatic synthesis of stochastic
local search algorithms. In: Proceedings of the International Workshop on Engineering
Stochastic Local Search Algorithms (SLS 2007). pp. 177–181.

Gent, I. P., Hoos, H. H., Prosser, P., Walsh, T., 1999. Morphing: Combining structure
and randomness. In: Proceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI’99). pp. 654–660.

Gomes, C. P., Selman, B., 1997. Problem structure in the presence of perturbations. In:
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI’97).
pp. 221–226.

Gomes, C. P., Selman, B., 2001. Algorithm portfolios. Artificial Intelligence 126(1-2), 43–
62.

Gratch, J., Dejong, G., 1992. COMPOSER: A probabilistic solution to the utility problem
in speed-up learning. In: Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI’92). pp. 235–240.

Guerri, A., Milano, M., 2004. Learning techniques for automatic algorithm portfolio se-
lection. In: Proceedings of the Sixteenth European Conference on Artificial Intelligence
(ECAI-04). pp. 475–479.

Hamadi, Y., Monfroy, E., Saubion, F., 2012. An introduction to autonomous search. In:
Autonomous Search. Springer, pp. 1–11.

Heule, M., Maaren, H. V., 2007a. Improved version of march ks, http://www.st.ewi.
tudelft.nl/sat/Sources/stable/march_pl. Last accessed on Sept. 16, 2013.

Heule, M., Maaren, H. V., 2007b. march ks, solver description, SAT competition 2007.
http://www.satcompetition.org/2007/march_ks.pdf. Last accessed on Sept. 16,
2013.

Heule, M. J., Kullmann, O., Wieringa, S., Biere, A., 2012. Cube and conquer: Guiding

32

http://www.laria.u-picardie.fr/~dequen/sat/cnfs_ijcai01.ps.gz
http://www.st.ewi.tudelft.nl/sat/Sources/stable/march_pl
http://www.st.ewi.tudelft.nl/sat/Sources/stable/march_pl
http://www.satcompetition.org/2007/march_ks.pdf

cdcl sat solvers by lookaheads. In: Hardware and Software: Verification and Testing.
Vol. 7261 of Lecture Notes in Computer Science. Springer, pp. 50–65.

Hirsch, E. A., 2002. Random generator hgen2 of satisfiable formulas in 3-CNF, http:
//logic.pdmi.ras.ru/~hirsch/benchmarks/hgen2-1.01.tar.gz. Last accessed on
Sept. 16, 2013.

Hoos, H. H., 1999. On the run-time behaviour of stochastic local search algorithms
for SAT. In: Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence (AAAI’99). pp. 661–666.

Hoos, H. H., 2002. An adaptive noise mechanism for WalkSAT. In: Proceedings of the
Eighteenth National Conference on Artificial Intelligence (AAAI’02). pp. 655–660.

Hoos, H. H., 2008. Computer-aided design of high-performance algorithms. Tech. rep.,
University of British Columbia, Department of Computer Science, last accessed on
Sept. 16, 2013.
URL http://people.cs.ubc.ca/~hoos/tmp/tn-alg-design.pdf

Hoos, H. H., 2012. Programming by optimization. Communications of the ACM 55 (2),
70–80.

Hutter, F., Babić, D., Hoos, H. H., Hu, A. J., 2007a. Boosting verification by automatic
tuning of decision procedures. In: Proceedings of the Seventh Internation Conference
on Formal Methods in Computer Aided Design (FMCAD’07). pp. 27–34.

Hutter, F., Hoos, H., Leyton-Brown, K., 2011. Sequential model-based optimization for
general algorithm configuration. In: Proceedings of the 5th Learning and Intelligent
Optimization Conference (LION’11). pp. 507–523.

Hutter, F., Hoos, H. H., Leyton-Brown, K., 2010. Automated configuration of mixed
integer programming solvers. In: Proc. of CPAIOR-10. pp. 186–202.

Hutter, F., Hoos, H. H., Leyton-Brown, K., Stützle, T., 2009. ParamILS: An auto-
matic algorithm configuration framework. Joural of Artificial Intelligence Research
(JAIR)Accepted for publication.

Hutter, F., Hoos, H. H., Stützle, T., 2007b. Automatic algorithm configuration based on
local search. In: Proceedings of the Twentysecond National Conference on Artificial
Intelligence (AAAI’07). pp. 1152–1157.

Hutter, F., Hoos, H. H., Stützle, T., Leyton-Brown, K., 2008. ParamILS version 2.3,
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS. Last accessed on Sept. 16,
2013.

Hutter, F., Tompkins, D. A. D., Hoos, H. H., 2002. Scaling and probabilistic smooth-
ing: Efficient dynamic local search for SAT. In: Eighth International Conference on
Principles and Practice of Constraint Programming (CP’02). pp. 233–248.

Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M., 2011. Algo-
rithm selection and scheduling. In: Proceedings of the 17th International Conference
on Principles and Practice of Constraint Programming (CP’11). No. 6876 in LNCS. pp.
454–469.

33

http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen2-1.01.tar.gz
http://logic.pdmi.ras.ru/~hirsch/benchmarks/hgen2-1.01.tar.gz
http://people.cs.ubc.ca/~hoos/tmp/tn-alg-design.pdf
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K., 2010. ISAC - instance specific
algorithm configuration. In: Proceedings of the 19th European Conference on Artificial
Intelligence (ECAI’10). pp. 751–756.

KhudaBukhsh, A. R., Xu, L., Hoos, H. H., Leyton-Brown, K., 2009. SATenstein: Auto-
matically building local search SAT solvers from components. In: Proceedings of the
Twenty-first International Joint Conference on Artificial Intelligence (IJCAI’09). pp.
517–524.

Kroc, L., Sabharwal, A., Gomes, C. P., Selman, B., 2009. Integrating systematic and local
search paradigms: A new strategy for maxSAT. In: Proceedings of the Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI’09). pp. 544–551.

Lardeux, F., Saubion, F., Hao, J.-K., 2006. Gasat: a genetic local search algorithm for the
satisfiability problem. Evolutionary Computation 14 (2), 223–253.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y., 2003. A port-
folio approach to algorithm selection. In: International Joint Conferences on Artificial
Intelligence (IJCAI). pp. 1542–1543.

Leyton-Brown, K., Nudelman, E., Shoham, Y., 2002. Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. In: Eighth International
Conference on Principles and Practice of Constraint Programming (CP’02). pp. 556–
572.

Li, C. M., Huang, W., 2005. Diversification and determinism in local search for satisfiabil-
ity. In: Proceedings of the Eighth International Conference on Theory and Applications
of Satisfiability Testing (SAT’05). pp. 158–172.

Li, C. M., Li, Y., 2012. Satisfying versus falsifying in local search for satisfiability. In:
Theory and Applications of Satisfiability Testing–SAT 2012. Springer, pp. 477–478.

Li, C. M., Wei, W., Zhang, H., 2007a. Combining adaptive noise and promising decreasing
variables in local search for SAT, solver description, SAT competition 2007.

Li, C. M., Wei, W. X., Zhang, H., 2007b. Combining adaptive noise and look-ahead in
local search for SAT. In: Proceedings of the Tenth International Conference on Theory
and Applications of Satisfiability Testing (SAT’07). pp. 121–133.

Maturana, J., Lardeux, F., Saubion, F., 2010. Autonomous operator management for
evolutionary algorithms. Journal of Heuristics 16 (6), 881–909.

McAllester, D., Selman, B., Kautz, H., 1997. Evidence for invariants in local search. In:
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI’97).
pp. 321–326.

Minton, S., 1993. An analytic learning system for specializing heuristics. In: Proceedings
of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI’93).
pp. 922–929.

Monette, J., Deville, Y., Van Hentenryck, P., 2009. Aeon: Synthesizing scheduling algo-
rithms from high-level models. In: Proceedings of the Eleventh INFORMS Computing
Society Conference. pp. 43–59.

34

Montes de Oca, M. A., Stützle, T., Birattari, M., Dorigo, M., 2009. Frankenstein’s PSO:
An engineered composite particle swarm optimization algorithm. IEEE Transactions on
Evolutionary Computation 13 (5), 1120–1132.

Nudelman, E., Leyton-Brown, K., Andrew, G., Gomes, C., McFadden, J., Selman, B.,
Shoham, Y., 2003. Satzilla 0.9, solver description, 2003 SAT Competition.

Oltean, M., 2005. Evolving evolutionary algorithms using linear genetic programming.
Evolutionary Computation 13 (3), 387–410.

Pham, D. N., Anbulagan, 2007. Resolution enhanced SLS solver: R+AdaptNovelty+,
solver description, SAT competition 2007.

Pham, D. N., Thornton, J., Gretton, C., Sattar, A., 2008. Combining adaptive and dy-
namic local search for satisfiability. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT) 4, 149–172.

Pop, P. C., Iordache, S., 2011. A hybrid heuristic approach for solving the generalized
traveling salesman problem. In: Proceedings of the 13th annual conference on Genetic
and evolutionary computation. pp. 481–488.

Prestwich, S., 2005. Random walk with continuously smoothed variable weights. In: Pro-
ceedings of the Eighth International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’05). pp. 203–215.

Rice, J. R., 1976. The algorithm selection problem. Advances in Computers 15, 65–118.

Selman, B., Kautz, H. A., Cohen, B., 1994. Noise strategies for improving local search. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI’94).
pp. 337–343.

Selman, B., Levesque, H., Mitchell, D., 1992. A new method for solving hard satisfiabil-
ity problems. In: Proceedings of the Tenth National Conference on Artificial Intelli-
gence (AAAI’92). pp. 440–446.

Simon, L., 2002. SAT competition random 3CNF generator, www.satcompetition.org/
2003/TOOLBOX/genAlea.c. Last accessed on Sept. 16, 2013.

Sörensson, N., Eén, N., 2007. Minisat2007, http://www.cs.chalmers.se/Cs/Research/
FormalMethods/MiniSat. Last accessed on Sept. 16, 2013.

Subbarayan, S., Pradhan, D., 2005. NiVER: Non-increasing variable elimination resolu-
tion for preprocessing SAT instances. Lecture Notes in Computer Science, Springer
3542/2005, 276–291.

Thornton, J., Pham, D. N., Bain, S., Ferreira, V., 2004. Additive versus multiplicative
clause weighting for SAT. In: Proceedings of the Nineteenth National Conference on
Artificial Intelligence (AAAI’04). pp. 191–196.

Tompkins, D. A., Balint, A., Hoos, H. H., 2011. Captain jack – new variable selection
heuristics in local search for SAT. In: Proceedings of the 14th International Conference
on Theory and Applications of Satisfiability Testing. pp. 302–316.

Tompkins, D. A., Hoos, H. H., 2010. Dynamic scoring functions with variable expressions:

35

www.satcompetition.org/2003/TOOLBOX/genAlea.c
www.satcompetition.org/2003/TOOLBOX/genAlea.c
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

New sls methods for solving sat. In: Theory and Applications of Satisfiability Testing–
SAT 2010. Springer, pp. 278–292.

Tompkins, D. A. D., Hoos, H. H., 2004. UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT & MAX-SAT. In: Proceedings of the Seventh
International Conference on Theory and Applications of Satisfiability Testing (SAT’04).
pp. 37–46.

Uchida, T., Watanabe, O., 1999. Hard SAT instance generation based on the factorization
problem, http://www.is.titech.ac.jp/~watanabe/gensat/a2/GenAll.tar.gz.

Wah, B., Wu, Z., 2005. Penalty formulations and trap-avoidance strategies for solving
hard satisfiability problems. Journal of Computer Science and Technology 20 (1), 3–17.

Westfold, S. J., Smith, D. R., 2001. Synthesis of efficient constraint-satisfaction programs.
The Knowledge Engineering Review 16 (1), 69–84.

Xu, L., Hoos, H. H., Leyton-Brown, K., 2010. Hydra: Automatically configuring algo-
rithms for portfolio-based selection. In: AAAI. pp. 210–216.

Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K., 2008. SATzilla: portfolio-based algo-
rithm selection for SAT. Journal of Artificial Intelligence Research (JAIR) 32, 565–606.

Xu, L., Hutter, F., Hoos, H. H., Leyton-Brown, K., 2009. SATzilla2009: An automatic
algorithm portfolio for SAT, solver description, 2009 SAT Competition.

36

http://www.is.titech.ac.jp/~watanabe/gensat/a2/GenAll.tar.gz

Appendix A. Definitions

Definition 1. Promising Decreasing Variable: A variable x is said to be
decreasing with respect to an assignment A if its GSAT-score is positive,
i.e., if flipping it causes a net decrease in the number of unsatisfied clauses.
A promising decreasing variable is defined as follows:

1. For the initial random assignment A, all decreasing variables with re-
spect to A are promising.

2. Let x and y be two different variables where x is not decreasing with
respect to A. If, after y is flipped, x becomes decreasing with respect to
the new assignment A’, then x is a promising decreasing variable with
respect to A’.

3. As long as a promising decreasing variable is decreasing, it remains
promising with respect to subsequent assignments in local search.

Appendix B. SATenstein-LS Parameters

This section lists all SATenstein-LS parameters along with a short de-
scription on each parameter’s function, when it is active, and the values we
considered for our tuning experiments. Table B.11, B.12, B.13 lists the inte-
ger, categorical and continuous parameters of SATenstein-LS, respectively.

Parameter Active When Description Values considered

tabuLength performTabuSearch = 1 Specifies tabu step-length 1, 3, 5, 7, 10, 15, 20
phi useAdaptiveMechanism = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

singleClauseAsNeighbor = 1
theta useAdaptiveMechanism = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

singleClauseAsNeighbor = 1
promPhi usePromisingList = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10

adaptiveProm = 1
selectPromVariable ∈ {7,8,9,10,11}

promTheta usePromisingList = 1 Parameter for adaptively setting noise 3, 4, 5, 6, 7, 8, 9, 10
adaptiveProm = {1}
selectPromVariable ∈ {7,8,9,10,11}

maxinc singleClauseAsNeighbor = 0 PAWS (Thornton et al., 2004) parameter for 5, 10, 15, 20
useClausePenalty = 1 additive clause weighting
smoothingScheme = 2

Table B.11: Integer parameters of SATenstein-LS and the values considered during
ParamILS tuning. Multiple “active when” parameters are combined together using AND.
Existing defaults are highlighted in bold. For parameters first introduced in SATenstein-LS,
default values are underlined.

37

Parameter Active When Domain Description

performSearchDiversification Base level parameter {0,1} If true, block B1 is performed

usePromisingList Base level parameter {0,1} If true, block B2 is performed

singleClauseAsNeighbor Base level parameter {0,1} If true, block B3 is performed
else, block B4 is performed

selectPromVariable usePromisingList = 1 {1, 11} See Table 1

heuristic singleClauseAsNeighbor = 1 {1, 13} See Table 3
performAlternateNovelty singleClauseAsNeighbor = 1 {0,1} If true, performs Novelty

variant with “flat move”.
useAdaptiveMechanism Base level parameter {0,1} If true, uses adaptive mechanisms.

adaptivenoisescheme useAdaptiveMechanism = 1 {1,2} Specifies adaptive noise mechanisms.
usePromisingList = 1

adaptWalkProb useAdaptiveMechanism = 1 {0,1} If true, walk probability or diversification
probability of a heuristic is adaptively
tuned.

performTabuSearch Base level parameter {0,1} If true, tabu variables are
not considered for flipping.

useClausePenalty Base level parameter {0,1} If true, clause penalties are computed.

selectClause singleClauseAsNeighbor = 1 {1,2} 1 selects an UNSAT clause uniformly
at random.
2 selects an UNSAT clause with a
probability proportional to its
clause penalty.

searchDiversificationStrategy performSearchDiversification = 1 {1,2,3,4} 1 randomly selects a variable from an
UNSAT clause.
2 selects the least-recently-flipped
-variable from an UNSAT clause.
3 selects the least-frequently-flipped
variable from an UNSAT clause.
4 selects the variable with least
VW2 weight from an UNSAT clause.

adaptiveProm usePromisingList = 1 {0,1} If true, performs adaptive versions of
Novelty variants to select variable
from promising list.

adaptpromwalkprob usePromisingList = 1 {0,1} If true, walk probability or diversification
adaptiveProm = 1 probability of Novelty variants used

on promising list is adaptively tuned.
scoringMeasure usePromisingList = 0 {1,2,3} Specifies the scoring measure.

singleClauseAsNeighbor = 0 1 uses MakeCount - BreakCount
2 uses MakeCount
3 uses -BreakCount

tieBreaking usePromisingList = 1 {1,2,3,4} 1 breaks ties randomly.
selectPromVariable ∈ { 1,4,5 } 2 breaks ties in favor of the
or singleClauseAsNeighbor = 0 least-recently-flipped variable.

3 breaks tie in favor of the
least-frequently-flipped variable.
4 breaks tie in favor of the
variable with least VW2 score.

updateSchemePromList usePromisingList = 1 {1,2,3} 1 and 2 follow G2WSAT .
3 follows gNovelty+.

smoothingScheme useClausePenalty = 1 {1,2} When singleClauseAsNeighbor = 1 :
1 performs smoothing for only random
3-SAT instances with 0.4 fixed
smoothing probability.
2 performs smoothing for all instances.
When singleClauseAsNeighbor = 0 :
1 performs SAPS-like smoothing.
2 performs PAWS-like smoothing.

Table B.12: Categorical parameters of SATenstein-LS. Unless otherwise mentioned, multiple
“active when” parameters are combined together using AND.

Appendix C. Per-instance performance comparison with challengers

Table C.14 summarizes the performance of each SATenstein-LS solver
compared to each challenger on a per-instance basis and shows that SATenstein-LS’s
superior aggregate performance over challengers is not a result of better per-
formance on few harder instances and worse or equal performance on the

38

Parameter Active When Description Discrete Values Considered

wp singleClauseAsNeighbor = 1 Randomwalk probability for Novelty+ 0, 0.01, 0.03, 0.04, 0.05, 0.06, 0.07,
heuristic ∈ {2,6,11} 0.1, 0.15, 0.20
useAdaptiveMechanism = 0
or smoothingScheme = 1
singleClauseAsNeighbor = 0
useClausePenalty = 0

dp singleClauseAsNeighbor = 1 Diversification probability for Novelty++ 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
heuristic ∈ {3,4,12,13} and Novelty++′

useAdaptiveMechanism = 0
promDp usePromisingList = 1 Diversification probability for Novelty 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20

selectPromVariable ∈ {8,10} variants used to select variable from
adaptiveProm = 0 promising list

novNoise singleClauseAsNeighbor = 1 Noise parameter for all Novelty variants 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
heuristic ∈ {1,2,3,4,5,6,10,11,12,13}
useAdaptiveMechanism = 0

wpWalk singleClauseAsNeighbor = 1 Noise parameter for WalkSAT and VW1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 , 0.8
heuristic ∈ {7,8,9}
useAdaptiveMechanism = 0

promWp usePromisingList = 1 Randomwalk probability for Novelty 0.01, 0.03, 0.05, 0.07, 0.1, 0.15, 0.20
selectPromVariable ∈ {9,11} variants used to select variable

from promising list
promNovNoise usePromisingList = 1 Noise parameter for all Novelty 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 , 0.8

selectPromVariable ∈ 7,8,9,10,11 variants used to select variable
from promising list

alpha singleClauseAsNeighbor = 0 Parameter for SAPS 1.01, 1.066, 1.126, 1.189, 1.3, 1.256,
useClausePenalty = 1 1.326, 1.4
smoothingScheme = 1

rho singleClauseAsNeighbor = 0 Parameter for SAPS 0, 0.17, 0.333, 0.5, 0.666, 0.8, 0.83, 1
useClausePenalty = 1
smoothingScheme = 1

sapsthresh singleClauseAsNeighbor = 0 Parameter for SAPS -0.1, -0.2, -0.3, -0.4
useClausePenalty = 1
smoothingScheme = 1

ps useClausePenalty = 1 Smoothing parameter for SAPS, RSAPS, 0, 0.033, 0.05, 0.066, 0.1, 0.133, 0.166,

singleClauseAsNeighbor = 1 and gNovelty+ 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
or singleClauseAsNeighbor = 0
useClausePenalty = 1
useAdaptiveMechanism = 0
smoothingScheme = 1

s singleClauseAsNeighbor = 1 VW parameter for smoothing 0.1, 0.01, 0.001
useAdaptiveMechanism = 0
or singleClauseAsNeighbor = 0
tieBreaking = 4
useAdaptiveMechanism = 0

c singleClauseAsNeighbor = 1 VW parameter for smoothing 0.1, 0.01, 0.001, 0.0001, 0.00001,
useAdaptiveMechanism = 0 0.000001
or singleClauseAsNeighbor = 0
tieBreaking = 4
useAdaptiveMechanism = 0

rdp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy ∈ {2,3}

rfp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy = 4

rwp performSearchDiversification = 1 Parameter for search diversification 0.01, 0.03, 0.05, 0.07, 0.1, 0.15
searchDiversificationStrategy = 1

pflat singleClauseAsNeighbor = 0 Parameter for PAWS that controls 0.05, 0.10, 0.15, 0.20
useClausePenalty = 1 “flat-moves”
smoothingScheme = 2

Table B.13: Continuous parameters of SATenstein-LS and values considered during
ParamILS tuning. Unless otherwise mentioned, multiple “active when” parameters are com-
bined together using AND. Existing defaults are highlighted in bold. For parameters first
introduced in SATenstein-LS, default values are underlined.

rest. Except for R3SAT, SATenstein-LS solvers outperformed the respec-
tive best challengers for each distribution on a per-instance basis. R3SAT

was an exception: PAWS outperformed SATenstein-LS[R3SAT] most fre-
quently (77.2%), but still achieved a lower PAR-10 score, indicating that
SATenstein-LS[R3SAT] achieved dramatically better performance than PAWS

39

Challengers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

AG20 76.1 (23.3) 95.8 (4.2) 45.6 (17.6) 98.0 (1.5) 100.0 (0.0) 100.0 (0.0)
AG2p 70.6 (28.6) 88.9 (10.7) 47.6 (15.2) 98.2 (1.1) 100.0 (0.0) 100.0 (0.0)
AG2+ 75.4 (24.1) 94.3 (5.7) 61.6(12.4) 98.5 (1.1) 100.0 (0.0) 100.0 (0.0)
ANOV 57.7 (40.4) 68.5 (27.2) 57.2 (8.0) 97.6 (1.3) 99.9 (0.0) 100.0 (0.0)
G2 81.4 (18.6) 100.0 (0.0) 34.0 (15.2) 98.0 (1.4) 100.0 (0.0) 100.0 (0.0)
GNOV 97.5 (2.4) 99.6 (0.4) 48.8 (16.4) 99.4 (0.4) 100.0 (0.0) 100.0 (0.0)
PAWS 69.0 (30.1) 100.0 (0.0) 19.6 (3.2) 100.0 (0.0) 68.8 (0.0) 100.0 (0.0)
RANOV 100.0 (0.0) 100.0 (0.0) 99.2 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
RSAPS 71.5 (28.0) 99.8 (0.2) 96.8 (3.2) 100.0 (0.0) 81.1 (0.0) 42.2 (54.5)
SAPS 70.9 (28.5) 100.0 (0.0) 96.8 (2.4) 100.0 (0.0) 73.7 (0.2) 48.8 (48.5)
VW 85.3 (14.7) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Table C.14: Percentage of instances on which SATenstein-LS achieved better (equal) median
runtime than each of the 11 challengers. Medians were taken over 25 runs on each instance
with a cutoff time of 600 CPU seconds per run.

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

SATenstein[R3SAT] median runtime (CPU sec)

P
A

W
S

 m
ed

ia
n

ru
nt

im
e

(C
P

U
 s

ec
)

R3SAT

10
−2

10
0

10
2

10
−2

10
−1

10
0

10
1

10
2

SATenstein[FAC] median runtime (CPU sec)

S
A

P
S

 m
ed

ia
n

ru
nt

im
e

(C
P

U
 s

ec
)

FAC

Figure C.1: Performance comparison of SATenstein-LS and the best challenger. Left:
R3SAT; Right: FAC. Medians were taken over 25 runs on each instance with a cutoff time
of 600 CPU seconds per run.

on a relatively small number of hard instances.

Appendix D. Performance comparison with configured challengers

Table D.15 summarizes the performance of configured challengers, and
Figure D.2 shows the PAR-10 ratios of SATenstein-LS solvers over the de-
fault and configured challengers. Compared to challengers with default con-
figurations (see Table 7), the specifically optimized versions of the challenger
solvers often achieved significantly better performance, reducing their perfor-
mance gaps to SATenstein-LS solvers. For example, automatic configuration
of G2 led to a speedup of 5 orders of magnitude in terms of PAR-10 on SWGCP

and solved 100% of the instances in that benchmark set within a 600 sec-

40

Solvers QCP SW-GCP R3SAT HGEN FAC CBMC(SE)

26.13 0.06 2.68 119.75 1731.16 994.94
ANOV[D] 0.02 0.04 0.12 0.54 296.84 0.50
(Hoos, 2002) 99.6% 100% 100% 98.2% 90.1% 83.4%

514.29 0.05 3.64 98.70 617.83 1084.60
G2[D] 0.03 0.05 0.15 0.75 110.42 0.58
(Li and Huang, 2005) 91.4% 100% 100% 99.1% 97.8% 81.4%

417.33 0.22 8.87 68.24 5478.75 2195.76
GNOV[D] 0.03 0.09 0.17 0.62 N/A 0.19
(Pham et al., 2008) 92.9% 100% 100% 99.4% 0.3% 61.8%

68.06 0.70 1.91 64.48 22.01 1925.56
PAWS[D] 0.02 0.35 0.09 0.83 10.39 0.50
(Thornton et al., 2004) 99.2% 100% 100% 99.4% 100% 67.7%

75.06 0.15 13.85 141.61 336.27 1223.83
RANOV[D] 0.1 0.12 0.24 0.77 95.53 0.47
(Pham and Anbulagan, 2007) 98.9% 100% 100% 98.1% 100% 80.4%

868.37 0.19 1.32 42.99 12.17 67.59
RSAPS[D] 0.04 0.15 0.11 0.64 7.86 0.02
(Hutter et al., 2002) 85.2% 100% 100% 99.5% 100% 99.0%

27.69 0.31 1.54 31.77 10.68 62.63
SAPS[D] 0.06 0.21 0.16 0.75 7.00 0.02
(Hutter et al., 2002) 99.8% 100% 100% 99.6% 100% 99.0%

0.33 417.71 1.26 57.44 32.38 16.45
VW[D] 0.02 8.43 0.15 1.00 17.60 0.02
(Prestwich, 2005) 100% 94.8% 100% 99.6% 100% 100%

Table D.15: Performance summary of the automatically configured versions of 8 challengers
(three challengers have no parameters). Every algorithm was run 25 times on each problem
instance with a cutoff of 600 CPU seconds per run. Each cell 〈i, j〉 summarizes the test-set
performance of algorithm i on distribution j as a/b/c, where a (top) is the the penalized
average runtime; b (middle) is the median of the median runtimes over all instances (not
defined if fewer than half of the median runs failed to find a solution within the cutoff time);
c (bottom) is the percentage of instances solved (i.e., having median runtime < cutoff). The
best-scoring algorithm(s) in each column are indicated in bold.

ond cutoff (vs. 31% for G2 default). However, it is worth noting that the
configured challengers sometimes also exhibited worse performance than the
default configurations (in the worst case, VW[SWGCP] was 2.58 times slower
than VW default in terms of PAR-10 with a cutoff of 600 CPU seconds). This
was caused by the short cutoff time used during the configuration process, as
motivated in Section 5.2; had we used the same 5 CPU second cutoff time for
computing PAR-10 (recall that we used a cutoff time of 5 CPU seconds for
every ParamILS tuning experiment, and we always computed the PAR-10 of

41

ANOV G2 GNOV PAWS RANOV RSAPS SAPS VW
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Lo

g(
S

A
T

en
st

ei
n

P
A

R
/C

ha
lle

ng
er

 P
A

R
)

Default Tuned for QCP

ANOV G2 GNOV PAWS RANOV RSAPS SAPS VW
−6

−5

−4

−3

−2

−1

0

Lo
g(

S
A

T
en

st
ei

n
P

A
R

/C
ha

lle
ng

er
 P

A
R

)

Default Tuned for SWGCP

ANOV G2 GNOV PAWS RANOV RSAPS SAPS VW
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Lo
g(

S
A

T
en

st
ei

n
P

A
R

/C
ha

lle
ng

er
 P

A
R

)

Default Tuned for R3SAT

ANOV G2 GNOV PAWS RANOV RSAPS SAPS VW
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Lo
g(

S
A

T
en

st
ei

n
P

A
R

/C
ha

lle
ng

er
 P

A
R

)

Default Tuned for HGEN

ANOV G2 GNOV PAWS RANOV RSAPS SAPS VW
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Lo
g(

S
A

T
en

st
ei

n
P

A
R

/C
ha

lle
ng

er
 P

A
R

)

Default Tuned for FAC

ANOV G2 GNOV PAWS RANOV RSAPS SAPS VW
−3

−2.5

−2

−1.5

−1

−0.5

0

Lo
g(

S
A

T
en

st
ei

n
P

A
R

/C
ha

lle
ng

er
 P

A
R

)

Default Tuned for CBMC(SE)

Figure D.2: Performance of SATenstein-LS solvers vs challengers with default and
optimized configurations. For every benchmark distribution D, the base-10 logarithm of
the ratio between SATenstein[D] and one challenger (default and optimized) is shown on
the y-axis, based on data from Tables 7 and D.15. Top-left: QCP; Top-right: SWGCP;
Middle-left:R3SAT; Middle-right:HGEN; Bottom-left: FAC; Bottom-right: CBMC(SE)

the test performance based on a cutoff of 600 CPU seconds), the configured
challengers would have always outperformed the default versions.

Examining benchmark distributions individually and ranging over our
8 challengers, we observed average and median speedups over default con-
figurations of 396 and 3.58 (for QCP), 15,900 and 3,240 (for SWGCP), 5.84
and 2.74 (for R3SAT), 1.23 and 1.01 (HGEN), 15.4 and 1.61 (FAC), 6.61 and
2.00(CBMC(SE)). We were surprised to observe only small speedups for all

42

Distribution Parameter Configuration

-useAdaptiveMechanism 0 -performSearchDiversification 1 -usePromisingList 0
QCP -singleClauseAsNeighbor 1 -adaptWalkProb 0 -selectClause 1 -useClausePenalty 0

-performTabuSearch 0 -heuristic 4 -performAlternateNovelty 0 -searchDiversificationStrategy 3
-dp 0.07 -c 0.0001 -novNoise 0.5 -rfp 0.1 -s 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -usePromisingList 0
-singleClauseAsNeighbor 1 -adaptWalkProb 0 -selectClause 1 -useClausePenalty 0

SW-GCP -performTabuSearch 0 -heuristic 3 -performAlternateNovelty 0
-dp 0.01 -c 0.01 -novNoise 0.1 -s 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 0
R3SAT -scoringMeasure 3 -tieBreaking 2 -useClausePenalty 1 -searchDiversificationStrategy 1

-smoothingScheme 1 -tabuLength 3 -performTabuSearch 1
-alpha 1.189 -ps 0.1 -rho 0.8 -sapsthresh -0.1 -rwp 0.05 -wp 0.01

-useAdaptiveMechanism 0 -performSearchDiversification 1 -usePromisingList 0
-singleClauseAsNeighbor 1 -tabuLength 3 -performTabuSearch 1

HGEN -useClausePenalty 0 -searchDiversificationStrategy 4
-adaptWalkProb 0 -selectClause 1 -heuristic 7
-c 0.001 -rfp 0.15 -s 0.1 -wpWalk 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -singleClauseAsNeighbor 0
FAC -scoringMeasure 3 -tieBreaking 1 -useClausePenalty 1 -smoothingScheme 1 -tabuSearch 0

-alpha 1.189 -ps 0.066 -rho 0.83 -sapsthresh -0.3 -wp 0.03

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 0
-useClausePenalty 1 -smoothingScheme 1 -performTabuSearch 0 -searchDiversificationStrategy 4

CBMC(SE) -scoringMeasure 3 -tieBreaking 2 -alpha 1.066 -ps 0 -rho 0.83 -sapsthresh -0.3 -wp 0.01 -rfp 0.1

Table E.16: SATenstein-LS parameter configuration found for each distribution.

challengers on HGEN. Considering challengers individually and ranging over
our 6 benchmark distributions, average and median PAR-10 improvement
was 15.0 and 1.85 (for ANOV), 13,200 and 3.84 (for G2), 1.74 and 1.05 (for
GNOV), 1,070 and 0.98 (for PAWS), 1.33 and 1.03 (for RANOV), 4,870 and 6.85
(for RSAPS), 2,080 and 12.3 (for SAPS), 539 and 16.6 (for VW). RANOV showed
the smallest performance improvement as a result of automated configuration
across all benchmarks; this is likely due to RANOV’s small parameter space (it
has only one parameter).

Appendix E. SATenstein-LS parameter configurations found

Tables E.16 and E.17 present the SATenstein-LS and SATenstein-LS2.0

parameter configurations found for each distribution considered in this paper;
we omit inactive parameters. In what follows, we describe these parameter
configurations in detail.

SATenstein-LS2.0[QCP] uses building blocks 1, 2, and 5. Recall that
block 1 is used for performing search diversification, and block 5 is used to up-
date data structures, tabu attributes and clause penalties. In block 2, which
is used to instantiate a solver belonging to the WalkSAT architecture, the

43

Distribution Parameter Configuration

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 1 -usePromisingList 0
QCP -selectClause 1 -useClausePenalty 0 -searchDiversificationStrategy 3 -performTabuSearch 0

-heuristic 5 -novNoise 0.3 -rfp 0.07

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 1 -usePromisingList 0
SW-GCP -searchDiversificationStrategy 2 -selectClause 1 -useClausePenalty 0 -performTabuSearch 0

-heuristic 1 -performAlternateNovelty 0 -rdp 0.01 -novNoise 0.1

-useAdaptiveMechanism 1 -performSearchDiversification 0 -singleClauseAsNeighbor 0 usePromisingList 0
R3SAT -scoringMeasure 3 -tieBreaking 1 -useClausePenalty 1 -smoothingScheme 1 -performTabuSearch 0

-alpha 1.126 -rho 0.17 -sapsthresh -0.1 -wp 0.03

-useAdaptiveMechanism 0 -performSearchDiversification 1 -singleClauseAsNeighbor 1 -usePromisingList 0
HGEN -performTabuSearch 1 -tabuLength 3 -useClausePenalty 0 -searchDiversificationStrategy 2

-selectClause 1 -heuristic 7 -rdp 0.07 -wpWalk 0.1

-useAdaptiveMechanism 0 -performSearchDiversification 0 -singleClauseAsNeighbor 0 -usePromisingList 0
FAC -scoringMeasure 3 -tieBreaking 3 -useClausePenalty 1 -smoothingScheme 1 performTabuSearch 0

-alpha 1.126 -ps 0.033 -rho 0.8 -sapsthresh -0.1 -wp 0.04

-useAdaptiveMechanism 0 -performSearchDiversification 0 -singleClauseAsNeighbor 1 usePromisingList 0
CBMC(SE) -useClausePenalty 0 -performTabuSearch 0 -selectClause 1

-heuristic 8 -c 0.0001 s -0.001 -wpwalk 0.1

Table E.17: SATenstein-LS2.0 parameter configuration found for each distribution.

heuristic is based on R-Novelty, and in block 1, diversification flips the least-
frequently-flipped variable from an UNSAT clause. This configuration is the
same as SATenstein-LS[QCP] at the block level but differs in the employed
heuristic and search diversification strategy. SATenstein-LS2.0[SW-GCP] is
similar to SATenstein-LS2.0[QCP], but flips the least-recently-flipped vari-
able in block 1 and uses a different heuristic (Novelty). Among the chal-
lengers, SATenstein-LS2.0[SW-GCP] is closest to RANOV. The main difference
to SATenstein-LS[SW-GCP] is that SATenstein-LS[SW-GCP] did not use
block 1. Unlike SATenstein-LS[R3SAT], SATenstein-LS2.0[R3SAT] does
not use any search diversification and only uses blocks 3 (used to instantiate
dynamic local search algorithms) and 5, but both configurations are closest
to SAPS. SATenstein-LS2.0[HGEN] uses blocks 1, 2, and 5. It is similar to
SATenstein-LS2.0[QCP] but uses a heuristic based on VW1 as well as a tabu
list of length 3 and mainly differs from SATenstein-LS[HGEN] in the search
diversification strategy. SATenstein-LS2.0[FAC] is also very similar to
SATenstein-LS[FAC] with a different tie-breaking scheme. SATenstein-LS2.0[CBMC(SE)]
uses blocks 2, and 5 and is closest to VW, a WalkSAT algorithm. This config-
uration is very different from what we found in SATenstein-LS[CBMC(SE)],
which is a dynamic local search algorithm.

To summarize, we found that in most cases, the augmented solver found
configurations that were similar but not identical to their SATenstein-LS

44

counterparts. This indicates that the distributions we studied give rise to
local search design spaces having “good regions” in which multiple, related
configurations can perform well. The key exception was the case of CBMC(SE):
here, we observed a substantial difference between the augmented solver con-
figuration and SATenstein-LS[CBMC(SE)], underscoring the richness of the
design space.

45

	Introduction
	Related Work
	Local-Search SAT Solvers
	UBCSAT
	Automated Algorithm Design
	Automated Construction of Algorithms
	Automated Algorithm Configuration
	Programming by Optimization
	Algorithm Selection and SATzilla
	Further Related Work

	SATenstein-LS
	Design
	Block B1
	Block B2 (WalkSAT-based Algorithms)
	Block B3 (Dynamic Local Search Algorithms)
	Block B4 (G2WSAT Variants)
	Block B5

	Implementation and Validation

	Experimental Setup
	Instance Distributions
	Configuration Protocol
	Solvers Used for Performance Comparison
	Execution Environment

	Results
	Comparison with Challengers
	Comparison with Automatically Configured Versions of Challengers
	Comparison with Complete Solvers
	Configurations Found
	Augmenting SATenstein-LS

	Conclusions and Future Work
	Definitions
	SATenstein-LS Parameters
	Per-instance performance comparison with challengers
	Performance comparison with configured challengers
	SATenstein-LS parameter configurations found

