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We study two-sided matching markets in which participants are initially endowed with partial preference

orderings, lacking precise information about their true, strictly ordered list of preferences. We wish to reason
about matchings that are stable with respect to agents’ true preferences, and which are furthermore optimal

for one given side of the market. We present three main results. First, one can decide in polynomial time
whether there exists a matching that is stable and optimal under all strict preference orders that refine the

given partial orders, and can construct this matching in polynomial time if it does exist. We show, however,

that deciding whether a given pair of agents are matched in all or no such optimal stable matchings is
co-NP-complete, even under quite severe restrictions on preferences. Finally, we describe a polynomial-time

algorithm that decides, given a matching that is stable under the partial preference orderings, whether that

matching is stable and optimal for one side of the market under some refinement of the partial orders.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics
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1. INTRODUCTION
Two-sided matching markets model many practical settings, such as corporate hiring, marriage, and
university admission. In such markets, participants are partitioned into two disjoint sets, such as
employers and applicants in a job market. Each participant wishes to be matched to a candidate from
the other side of the market, and has preferences over potential matches. Stability is perhaps the
most desirable and widely studied solution concept in two-sided matching markets. A matching is
called stable if no pair of participants would prefer to leave their assigned partners to pair with each
other. A stable matching is optimal for one side of the market if there is no stable matching that is
preferred by at least one agent on that side of the market. In their seminal work, Gale and Shapley [?]
introduced an efficient algorithm for identifying such optimal stable matchings. A rich literature has
developed since. See the books by Knuth [?], Gusfield and Irving [?], Roth and Sotomayor [?], and
Manlove [?] for excellent introductions and surveys.

A key assumption in much of this literature is that all market participants know their full (and, it is
often assumed, strict) preference orderings. This assumption is reasonable in some settings; however,
as markets grow large it quickly becomes impractical for participants to assess their precise preference
rankings. In this work we focus on two-sided matching markets in which agents are endowed with
known, partially ordered preferences which are consistent with unknown, strict preferences [?]. For
example, a recent Ph.D. graduate applying to different schools for a faculty position cannot know his
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or her true preferences over all possible available positions. Instead s/he may know which schools
are his or her top-tier choices, which are his or her second-tier choices, and so on.

We seek a stable matching that is optimal for one side of the market, say the employers (schools),
with respect to the agents’ underlying true, albeit unknown, strict preferences. Finding such a
matching is important for two reasons. Firstly, a social planner may want to optimize the solution
for one side of the market. For example in the hospitals-residents problem, where junior doctors are
assigned to hospitals, a central matching program is usually instructed to pick the stable matching
most preferred by the junior doctors. This is precisely what NRMP in US (see, e.g., ?) and SFAS in
Scotland (see, e.g., ?) do. Secondly, picking an optimal stable matching implies dominant-strategy
truthfulness for one side of the market. Note that no mechanism exists that is dominant-strategy
truthful for both sides of the market [?].

In some contexts, interviews can help us determine the underlying preferences. Hence, one could
simply conduct all pairwise interviews, determine agents’ underlying strict preferences, and apply
the algorithm of Gale and Shapely [?]. Interviews, however, can be expensive and so one may wish
to minimize their number. In this work we investigate the extent to which we can learn about the
employer-optimal stable matching of a given market, with partially ordered preferences, without
performing any interviews.

We show that we can decide in polynomial time whether there exists a pervasive employer-
optimal matching, i.e., a matching that is employer-optimal stable under all strict total orders that
are consistent with the partial preference orderings. We provide a polynomial time algorithm to
identify a pervasive employer-optimal matching, if it exists, or to report that none exists. Note that if
a setting admits a pervasive employer-optimal matching, then no additional preference information
need be elicited. A computationally tractable method for identifying such matchings is therefore
useful in practice as a stopping condition for a procedure that repeatedly conducts interviews until
the employer-optimal matching has been determined.

What if a setting does not admit a pervasive employer-optimal matching? In this case, it is still
interesting to identify identical “components” among the matchings that are employer-optimal stable
with respect to some underlying strict preferences. We show however that, even under quite severe
restrictions on partial preference orderings, it is co-NP-complete to decide whether a given pair
of agents constitute a necessary match; i.e., if they are matched in the employer-optimal stable
matching of all underlying strict total preference ordering profiles. Similarly, we also show that it is
co-NP-complete to decide whether it is impossible for a given pair of agents to be matched in the
employer-optimal stable matchings of any underlying strict total preference ordering profile.

Lastly, we seek a better understanding of the relationship between matchings that are stable with
respect to a given partial preference ordering and those that are employer-optimal with respect to
some strict total order that refines partial preferences. We supply a polynomial-time algorithm for
determining whether a given stable matching is also optimal for some such refinement.

Our partial information setting is relevant to the literature in which agents may declare indifference
between candidates (see, e.g., ????). This literature does not directly apply to our setting, as it
assumes that an agent is truly indifferent between two or more candidates. However, it provides
techniques that we build on to prove some of our results. Our setting is also relevant more broadly
to preference reasoning and aggregation, where agents cast votes by providing their preferences
over alternatives. In cases where it may be impractical for an agent to give a linear order over all
alternatives, agents may be permitted to submit partial orders instead. ? and ? study such a setting;
they ask whether an alternative c is a winner regardless of how partial orders are extended to linear
orders, and, if not, whether c wins under some extension of the partial orders to linear orders.

The paper is organized as follows. We formally define our setting in Section 2. We present our
polynomial-time algorithm for identifying whether a setting admits a pervasive employer-optimal
matching in Section 3. Our hardness results regarding necessary and impossible matches are presented
in Section 4. We present our polynomial-time algorithm for determining whether a given matching,
stable with respect to a given partial preference ordering, is also optimal for some such refinement in
Section 5. We discuss possible further extensions of our work in Section 6.



2. OUR MODEL
In a two-sided matching market, participants are partitioned into two disjoint sets, and each participant
wishes to be matched to one or more participants from the other side of the market. Let A =
{a1, . . . , an} be a set of applicants and let E = {e1, . . . , em} be a set of employers. We use the term
agents when making statements that apply to both applicants and employers, and the term candidates
to refer to agents on the side of the market opposite to that of an agent being considered. We assume
that each employer can hire at most one applicant, and that each applicant can be hired by at most
one employer, hence focusing on one-to-one matching markets. Following the model introduced
in our own past work [?], we assume that agents start out only partially aware of their preferences.
Formally, each agent is initially aware of a strict partial preference ordering over (a subset of) the
candidates. We denote by pei and paj the strict partial preference ordering of ei and aj , respectively.
We let pE,A = (pe1 , . . . , pem , pa1 , . . . , pan) and call pE,A a partial preference ordering profile. For
example, agents might start out by assigning candidates to equivalence classes, and having a strict
preference ordering over these equivalence classes. This equivalence class ordering is a natural
model for scenarios in which each agent knows that some candidates are her top-tier candidates, that
others are her second-tier candidates, and so on. Figure 1 of Example 2.4 depicts such a setting, with
each agent’s partial preference ordering partitioning the candidates into strictly ranked equivalence
classes.

Agents’ true preferences are strict total orders: each applicant a has a strict preference ordering �a
over E ∪{∅}, where ∅ represents remaining unmatched, and each employer e has a strict preference
ordering �e over A ∪ {∅}. If an agent i prefers ∅ to candidate j, we say j is unacceptable to i;
all other candidates are acceptable to i.1 We let �E,A = (�e1 ,�e2 , . . . ,�em ,�a1 ,�a2 , . . . ,�an)
and call �E,A a strict total preference ordering profile, or just strict preference profile. The strict
preference profiles �E,A are consistent with the partial preference ordering profile. That is to say,
for each agent i and for every pair of candidates j and k: (i) if i prefers j to k according to the partial
preference ordering profile then i strictly prefers j to k under �; and (ii) candidate j appears in i’s
partial preference ordering if and only if j is acceptable to i under �.

We denote by I = (E,A, pE,A) an instance of a two-sided matching market. We say that an
instance I ′ = (E,A, p′E,A) refines another instance I = (E,A, pE,A), which we write as I ′ � I ,
if all strict preference profiles � that are consistent with p′E,A are also consistent with pE,A. We
say that a strict preference profile � refines an instance I = (E,A, pE,A), and write � � I , if �
is consistent with pE,A. We say that an agent x strictly prefers (or prefers) a candidate y to another
candidate z, w.r.t. a given instance I = (E,A, pE,A) or w.r.t. a given partial preference ordering
profile pE,A, if and only if x prefers y to z under all strict preference profiles that are consistent with
pE,A. In this case, we also say that agent z is a successor to agent y in x’s preference ordering. We
say that x weakly prefers y to z, and denote this by y�xz, if and only if there exists a strict preference
profile � � I under which x prefers y to z.

Throughout this paper we often refine an instance by promoting an agent y above another agent z
in an agent x’s preference ordering. That is, we refine the instance by ensuring that y�xz. Promotions
may be redundant: x may already (strictly) prefer y to z. For convenience and clarity, we adopt the
convention that employers are male and applicants are female.

2.1. Optimal stable matchings
Our main interest is in matchings that are stable with respect to agents’ underlying preferences and
furthermore optimal for one side of the market. We now define these notions formally.

Definition 2.1 (Matching). A matching µ : A∪E 7→ A∪E∪{∅} is an assignment of applicants
to employers such that each applicant is assigned to at most one employer and vice versa. More
formally, (i) µ(aj) = ei if and only if µ(ei) = aj , (ii) for all aj ∈ A either there exists ei ∈ E such

1We assume that agents have strict preferences over unacceptable candidates only to simplify notation.
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Fig. 1. A setting with 2 employers and 2
applicants. Applicants have full knowledge
of their preferences; employers do not.
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Fig. 2. The four possible underlying preference profiles for the employers
in the setting of Table 1.

that µ(aj) = ei or µ(aj) = ∅ (the applicant is unmatched), and likewise (iii) for all ei ∈ E either
there exists aj ∈ A such that µ(ei) = aj or µ(ei) = ∅.

An agent x strictly prefers (or prefers) a matching µ to another matching µ′ if and only if
µ(x)�xµ′(x). We say that x weakly prefers µ to µ′ if µ(x)�xµ′(x). A maximum cardinality (maxi-
mum) matching is a matching that matches the greatest number of agents.

Definition 2.2 (Blocking pair). A pair (aj , ei) is a blocking pair with respect to matching µ if
aj and ei are not matched together in µ and they prefer each other to their assigned partners.

Definition 2.3 (Stable matching). A matching µ is stable with respect to a given instance I if it
has no blocking pair and no agent is matched to an unacceptable partner.

Example 2.4. Consider the setting with 2 employers and 2 applicants depicted in Figure 1. The
column corresponding to each agent i describes that agent’s strict partial preference ordering, which
is an equivalence class ordering; the most preferred equivalence class is at the top. In this example
applicants have full knowledge of their preferences, while employers have no knowledge of their
preferences. Figure 2 illustrates all four possible strict preference orderings for the employers. In
every case, matching µ1, µ1(e1) = a1 and µ1(e2) = a2, is stable. Matching µ2, µ2(e1) = a2 and
µ2(e2) = a1, is also stable under (c). Matching µ2 is not stable in the other cases: (e1, a1) blocks µ2

under (a) and (b), while (e2, a2) blocks µ2 under (d).

Employer-optimal and applicant-optimal matchings are particularly interesting: these are the
stable matchings most preferred by all employers (resp., applicants), as compared to all other stable
matchings. When agents have strict preferences, as in our model, such matchings always exist and
are unique [?]. However, an employer-optimal matching and/or an applicant-optimal matching may
not exist if the true preferences of the agents are partially ordered. Employer-optimal matchings can
be used to build mechanisms in which truthtelling is a dominant strategy for the employers [?]. Of
course, this claim and all of our technical results can be made to apply instead to applicant-optimal
matchings by swapping every use of the terms “employer” and “applicant”.

Definition 2.5 (Employer-optimal matching). A matching is employer-optimal if it is stable and
every employer weakly prefers it to every other stable matching.

Example 2.6. Continuing Example 2.4, µ1 is the employer-optimal matching in cases (a), (b),
and (d), and µ2 is the employer-optimal matching in case (c).

In a similar vein, we can define the applicant-pessimal stable matching. A matching is employer-
optimal if and only if it is applicant-pessimal [??].

Definition 2.7 (Applicant-pessimal matching). A matching µ is applicant-pessimal if it is stable
and all applicants weakly prefer every other stable matching to µ.

3. PERVASIVE EMPLOYER-OPTIMAL MATCHINGS
We are interested in the following question. Given an instance I = (E,A, pE,A), do all strict
preference profiles that refine I have the same employer-optimal matching µ?



Definition 3.1 (Pervasive employer-optimal (PEO) matching). We say that matching µ is a per-
vasive employer-optimal (PEO) matching w.r.t. instance I = (E,A, pE,A) if and only if µ is the
employer-optimal matching w.r.t. all strict preference profiles that refine I .

We call I an employer-optimal-unique instance of the stable matching problem with partial informa-
tion if and only if I admits a PEO matching.

We are going to show that we can find, in polynomial time, a PEO matching for I , or prove
that none exists. In the proofs of our main claims, we build on results from the literature on stable
matchings under preferences that include indifference. In this literature (see, e.g., ??), the stable
matching problem with ties, with incomplete lists (i.e. the agents are allowed to declare some
candidates unacceptable), and with both ties and incomplete lists are referred to by SMT, SMI, and
SMTI, respectively. For notational consistency, from now on we denote by SMP the stable matching
problem with partial information, and by SMEC the stable matching problem with partial information
structured as equivalence class orderings.

The remainder of this section is organized as follows. We first introduce the extensively studied
notion of super-stability (see, e.g., ?), that is closely related to our notion of pervasive employer-
optimal matchings. We argue that if a given instance I of SMP admits a PEO matching µ, then µmust
be the employer-optimal super-stable matching in I . Our polynomial-time algorithm IS-EMP-OPT-
UNIQUE (outlined in Algorithm 1) is hence composed of two algorithms, SUPER-SMP (described in
Section 3.2) and IS-PERVASIVE (described in Section 3.3). SUPER-SMP finds the employer-optimal
super-stable matching Z of I , if I admits any super-stable matching. IS-PERVASIVE checks whether
or not Z is a PEO matching for I .

Algorithm 1: IS-EMP-OPT-UNIQUE
Input: I = (E,A, pE,A)
Output: Matching µ that is PEO w.r.t. I , or ‘false’ if no such matching exists

Z = SUPER-SMP(I) ;
if Z =‘false’ then

return ‘false’;
else if IS-PERVASIVE(I , Z) then

return Z ;
else

return ‘false’;

3.1. Super-stable matchings
When indifference is allowed in the preference lists, it is not clear how one should define stability.
Three versions of stability have been defined in the literature (see, e.g., ?), including super-stability.
Loosely speaking, super-stable matchings are stable no matter how indifferences in the preferences
are resolved. Polynomial-time algorithms have been identified for finding such matchings if they
exist or for reporting that none exists in various models of two-sided matching markets [????].

Definition 3.2 (Super-stability). A matching µ is super-stable if no agent is matched to an
unacceptable partner and there is no unmatched pair (ei, aj) where each of them either strictly
prefers the other to his/her partner in µ or is indifferent between them.

The notion of super-stable matchings can be extended to our partial information setting by
interpreting incomparability as indifference. Therefore, we say that an agent x is indifferent between
agents y and z, y 6= z, under a given partial preference ordering profile pE,A if x finds y and z
incomparable. Observe that a matching is super-stable w.r.t. I if and only if it is stable w.r.t. all strict



preference profiles that can be derived from pE,A by resolving indifferences (see, e.g. [?]). Hence, if
a matching µ is to be the employer-optimal matching for every refinement of I , then µ must be a
super-stable matching for I . It is worth noting that in the literature (see, e.g., ?) indifference is not
necessarily considered to be a transitive relation. In other words, it is permitted to say that an agent
x is indifferent between agents y and z and also indifferent between agents z and q while strictly
preferring y to q. Observe that a partial preference ordering in which indifference is transitive is an
equivalence class ordering. Employer-optimal super-stable matchings can be defined analogously to
employer-optimal stable matchings.

Definition 3.3 (Employer-optimal super-stable matching). A matching is employer-optimal
super-stable if it is super-stable and it is weakly preferred by all employers to every other super-stable
matching.

Super-stable matchings are not always guaranteed to exist. However, it is known that an employer-
optimal super-stable matching exists whenever a super-stable matching exists [?].

PROPOSITION 3.4. If an instance I admits a pervasive employer-optimal matching µ, then µ
must be the employer-optimal super-stable matching in I .

This claim, however, does not hold in the other direction. That is, the employer-optimal super-stable
matching of I , if it exists, need not be a pervasive employer-optimal matching—in which case I does
not admit a pervasive employer-optimal matching.

Example 3.5. Continuing Example 2.6, µ1 is the one and only super-stable matching for the
setting depicted in Figure 1, and hence is the employer-optimal super-stable matching for this setting.
The employer-optimal matching for the strict preference profile in case (c) is µ2. Therefore, µ1 is not
a PEO matching and hence the problem instance is not employer-optimal unique.

3.2. An Algorithm to find a super-stable matching in SMP
We now present SUPER-SMP, an algorithm that, given an instance I = (E,A, pE,A) of SMP,
identifies a super-stable matching for I if such a matching exists. It is an extension of the algorithms
SUPER and SUPER2 by ? and ? for finding super-stable matchings in SMT and SMTI, which in turn
are extensions of the deferred acceptance algorithm, proposed by Gale and Shapley [?], that finds the
employer-optimal matching in SMI. SUPER-SMP finds the employer-optimal super-stable matching,
if the set of super-stable matchings for I is not empty; otherwise, it reports that no super-stable
matching exists.

SUPER-SMP is formally defined as Algorithm 2. Informally, the algorithm conducts a sequence
of proposals by employers to applicants. After receiving one or more proposals, each applicant a
(i) tentatively accepts a proposal she likes the best and becomes “engaged” to the corresponding
employer, e, and (ii) rejects the rest of the proposals and declares all the employers she likes less than
e to be unacceptable. An applicant a may receive two or more proposals that she likes the best and
hence becomes multiply engaged. In this case, a rejects all the proposals and declares unacceptable
(1) all the employers she likes less than one or more of her best proposals, as well as (2) those she
cannot compare with at least one of her best proposals. An employer e proposes to an applicant
a if (i) e and a are not already engaged, (ii) they are acceptable to each other, and (iii) there is no
applicant a′ that finds e acceptable whom e strictly prefers to a.

The algorithm halts when no more proposals can be made. Let G be the engagement relation at
the time when the algorithm halts. Let µ be a maximum cardinality matching in G. If there is some
applicant a who has received a proposal (during the execution of the algorithm) but is not matched in
µ, then no super-stable matching exists. Otherwise, µ is the employer-optimal super-stable matching.

When we say delete the pair (e, a), we mean that e should be deleted from the preference ordering
of a and that a should be deleted from the preference ordering of e. For any agent x, we refer to x’s
preference ordering at the termination of SUPER-SMP as x’s reduced preference ordering.



At any stage of the algorithm, we say that an applicant a is at the head of an employer e’s
preference ordering if there is no other applicant in e’s remaining preference ordering whom e strictly
prefers to a. Note that more than one applicant can be at the head of e’s preference ordering.

Algorithm 2: SUPER-SMP
Input: I = (E,A, pE,A)
Output: Matching µ that is the employer-optimal super-stable matching of I , or ‘false’
Initialize

proposed(a)← false,∀a ∈ A ;
repeat

Main loop while some employer e has an applicant at the head of his preference ordering to whom he is
not engaged do

foreach applicant a at the head of e’s preference ordering do
e proposes, and becomes engaged, to a ;
proposed(a)← true ;
foreach strict successor e′ of e on a’s preference ordering do

if e′ is engaged to a then
break the engagement ;

delete the pair (e′, a);

foreach applicant a who is multiply engaged do
foreach employer e that a likes less than, or cannot compare with, at least one of her
fiancées do

delete the pair (e, a);
break all engagements involving a ;

until each employer is either engaged to all applicants at the head of his preference ordering, or
has an empty preference ordering;
let µ be a maximum cardinality matching in the engagement relation ;

Last check if some applicant a is unmatched in µ and proposed(a) then
return ‘false’;

else
return µ ;

To prove the correctness of SUPER-SMP, we follow an approach similar to that taken in ? and
?. The following lemmas are useful in proving the main claim of this section, that SUPER-SMP
is sound and complete, and are also interesting in their own right. The proofs, except for those of
Lemma 3.8 and Corollary 3.10, are quite similar to the proofs of similar claims in ? and ? and hence
removed.

Informally, our first claim states that for a given instance of SMP, the set of agents may be
partitioned into two subsets, those matched in all super-stable matchings, and those matched in none.

LEMMA 3.6. For a given instance of SMP, let µ and µ′ be two super-stable matchings. Then for
any agent x in the instance, x is matched in µ if and only if x is matched in µ′.

LEMMA 3.7. If the pair (e, a) is deleted during an execution of SUPER-SMP, then that pair
cannot block any matching output by SUPER-SMP.

LEMMA 3.8. A matching output by SUPER-SMP is super-stable.



PROOF. Suppose, for a contradiction, that some execution of SUPER-SMP outputs a matching µ
that is blocked by some pair (e, a). Thus e and a are acceptable to each other. By Lemma 3.7, the
pair (e, a) has not been deleted, hence each is on the reduced preference ordering of the other.

Let G be the engagement relation at the termination of the algorithm. Let EG and AG denote
the sets of employers and applicants engaged under G, respectively. Note that each applicant has
degree at most one in G; therefore each employer e ∈ EG is matched in µ (or µ is not maximum).
Also, each applicant a ∈ AG is matched in µ, as otherwise the algorithm reports that no super-stable
matching exists, a contradiction. Since all agents engaged under G are matched, it must be the case
that |EG| = |AG|. Furthermore, since each applicant has degree at most one in G, it must also be the
case that each employer has degree at most one in G. Thus G is a one-to-one relation.

Since a is on the reduced preference ordering of e, it follows that e’s reduced preference ordering
is nonempty and hence e must be engaged in G; let us call his fiancée a′. By the argument just given,
e must be matched to a′ in µ. Since (e, a) blocks µ, it follows that a 6= a′. If e strictly prefers a to a′,
then the pair (e, a) has been deleted, since a′ is at the head of the reduced preference ordering of e, a
contradiction. Thus e cannot compare a and a′.

If a is at the head of the reduced preference ordering of e, then e must have proposed to a and
hence must be engaged to her in G, as otherwise (e, a) must have been deleted, a contradiction. Since
a is engaged to e, and only to e, in G and has a partner in µ, thus she must be matched in µ to e.
Therefore (e, a) is in µ and cannot block µ, a contradiction.

Thus a is not at the head of the reduced preference ordering of e and therefore there is an applicant
whom e strictly prefers to a. Since I is a strict partial order and there is no cycle in the preference
relation, there must be an applicant at the head of e’s reduced preference ordering, say a∗, whom e
strictly prefers to a. We have already established that e cannot compare a and a′, therefore a∗ 6= a′.
Since a∗ is at the head of the reduced preference ordering of e, e must have proposed to a∗ and
consequently must be engaged to her in G, as otherwise (e, a∗) must have been deleted and a∗
cannot be in e’s reduced preference ordering, a contradiction. Therefore e is engaged to at least two
applicants, a and a∗, contradicting the previously established fact that G is a one-to-one relation.

We say that a pair (e, a) is super-stable if e and a are matched in a super-stable matching.

LEMMA 3.9. No super-stable pair is ever deleted during an execution of SUPER-SMP.

COROLLARY 3.10. The matching that SUPER-SMP outputs is the employer-optimal super-
stable matching.

PROOF. By Lemma 3.8 SUPER-SMP outputs a super-stable matching. Let µ be the super-stable
matching output by SUPER-SMP. Assume for contradiction that µ is not the employer-optimal
super-stable matching Z. Thus there must be an employer, say e, who is matched in Z and strictly
prefers Z(e) to his match in µ. Thus, (e, Z(e)) must have been deleted during the execution of
SUPER-SMP for e to propose to µ(e). (Note that, by Lemma 3.6, since e is matched in Z he must
also be matched in µ.) However, by Lemma 3.9, no super-stable pair is deleted during the execution
of SUPER-SMP, a contradiction.

Our next claim shows that the last check at the end of SUPER-SMP correctly identifies the cases
where no super-stable matching exists. Theorem 3.12 then shows that SUPER-SMP is sound and
complete.

LEMMA 3.11. If some applicant receives a proposal and is unmatched in the maximum matching
µ , then no super-stable matching exists for the given instance.

THEOREM 3.12. For a given instance I of SMP, SUPER-SMP determines, in polynomial time,
whether or not a super-stable matching exists. If such a matching does exist, all possible executions
of the algorithm find the employer-optimal super-stable matching of I .



3.3. An algorithm to check for a pervasive employer-optimal matching
In this section we present IS-PERVASIVE, an algorithm that, given an instance I of SMP that
admits super-stable matchings, and Z, the employer-optimal super-stable matching of I , decides in
polynomial time whether Z is the employer-optimal matching for every refinement of I .

Recall that, for an instance of SMI, a matching is employer-optimal if and only if it is applicant-
pessimal. ? showed that a matching µ is applicant-pessimal if there is no rotation exposed in µ
(Lemma 2.5.3 in [?]).2 We are going to use this notion in the main proof of this section, so we provide
a brief definition of an exposed rotation here.

Definition 3.13 (Exposed rotation). Let µ be a stable matching for an instance I of SMI. For
each applicant a, we define the next-best employer for a relative to µ. Let ηµ(a) denote the first
employer e on a’s preference ordering after µ(a) such that e prefers a to µ(e). If a is not matched
to µ(a) in µe, the employer-optimal matching of I , then ηµ(a) must exist, since µe(a) quali-
fies. Otherwise, ηµ(a) may be undefined. A rotation exposed in µ is a cyclic sequence of pairs
(ai0 , ei0), ..., (air−1

, eir−1
) such that µ(aij ) = eij and ηµ(aij ) = eij+1

, ∀ j, j + 1 taken modulo r.

IS-PERVASIVE (outlined in Algorithm 3) first constructs a directed graph G(I) that facilitates
the search for potential rotations in Z. A vertex in G is created for each applicant in the instance,
and an edge (a, Z(e)) is created for each employer e ∈ M(a), where e is inM(a) if and only if
(1) Z(a)�ae, and (2) a�eZ(e), and (3) there is no employer e′ such that Z(a)�ae′, e′�ae and
a�e′Z(e′). In other words, e ∈ M(a) if and only if (1) e is a successor to Z(a) in a’s preference
ordering, and (2) e either strictly prefers a to Z(e) or is indifferent between them, and (3) there is no
other employer e′ whom a strictly ranks between Z(a) and e, such that e′ strictly prefers a to Z(e′).

Algorithm 3: IS-PERVASIVE
Input: I = (E,A, pE,A) and matching Z such that Z is the employer-optimal super-stable

matching of I
Output: ‘true’ if Z is pervasive employer-optimal w.r.t. I , and ‘false’ otherwise

Create G(I);
if G(I) is acyclic then

return ‘true’;
else

return ‘false’;

THEOREM 3.14. For a given instance I of SMP that admits a super-stable matching, the
employer-optimal super-stable matching Z is pervasive if and only if the graph G(I) is acyclic.

PROOF. We first show that if G(I) contains a cycle then there is an SMI instance I ′ that is a
refinement of I for which Z is not the employer-optimal matching. Suppose that (ai0 , ai1 , . . . , air−1

)
is a cycle in G(I), and let eij = Z(aij ) for 0 ≤ j ≤ r − 1. We break indifference in I to construct
I ′ in the following way. (Here and elsewhere, subscripts are taken modulo r.)

— In aij ’s preference ordering, promote eij+1 ahead of any employer with whom he is incomparable;
— in eij+1 ’s preference ordering, promote aij ahead of any applicant with whom she is incomparable;
— in the preference ordering of any other employer e, promote Z(e) ahead of any applicant with

whom she is incomparable;
— resolve all other indifferences arbitrarily.

2Lemma 2.5.3 in [?] is stated for SM, but the result extends easily to SMI.



Define the matching µ so that µ(aij ) = eij+1 for 0 ≤ j ≤ r − 1 and µ(a) = Z(a) for all other
applicants a. It follows from the precedence given to aij in indifference-breaking eij+1 ’s preference
ordering that, in I ′, no employer is worse off in µ as compared to Z. We claim that µ is stable in I ′,
and thus Z cannot be the employer-optimal matching for I ′.

Suppose that (e, a) blocks µ in I ′. If µ(a) = Z(a), then (e, a) blocks Z in I ′, contradicting the
super-stability of Z. So a = aij for some j. But µ(aij ) = eij+1

, so aij prefers e to eij+1
in I ′, and e

prefers aij to µ(e) in both I and I ′, and hence also to Z(e) in I ′. If, in I ′, aij prefers e to eij , then
(aij , e) blocks Z, contradicting the super-stability of Z. Otherwise, because of the precedence given
to eij+1

in refining aij ’s preference ordering, aij must prefer e to eij+1
in I , but this contradicts

condition 3 used in definingM(a) for the construction of G(I).
Now suppose that there is a refinement I ′ of I for which Z is not the employer-optimal matching,

and hence not the applicant-pessimal matching. It follows that, w.r.t. Z in I ′ there is an exposed
rotation (ai0 , ei0), . . . , (air−1 , eir−1). We claim that (ai0 , . . . , air−1) forms a cycle in G(I) .

According to the definition of a rotation, eij+1
is the first successor e of eij on aij ’s preference

ordering in I ′ such that e prefers aij to Z(e) in I ′— and thus in I either e strictly prefers aij to Z(e)
or is indifferent between them. It follows that eij+1

∈ M(aij ). If this were not the case, then, in
I , aij prefers eij+1

to eij = Z(aij ) or is indifferent between them. But, in I ′, eij+1
prefers aij to

aij+1
= Z(eij+1

) and so, in I, eij+1
prefers aij to aij+1

= Z(eij+1
) or is indifferent between them.

It follows that the pair (aij , eij+1
) blocks Z as a super-stable matching, a contradiction. Therefore,

(aij , aij+1
) is an edge of G(I). Hence the rotation yields a cycle in G(I).

THEOREM 3.15. Given an instance I of SMP, IS-EMP-OPT-UNIQUE determines, in polynomial
time, whether I is an employer-optimal-unique instance and, if it is, returns the pervasive employer-
optimal matching.

PROOF. IS-EMP-OPT-UNIQUE (Algorithm 1) first calls SUPER-SMP. If SUPER-SMP returns
‘false’—i.e. no super-stable matching exists, then IS-EMP-OPT-UNIQUE returns ‘false’—i.e. no
PEO matching exists. Otherwise, SUPER-SMP returns the employer-optimal super-stable matching
Z of I . IS-PERVASIVE is called next which constructsG(I), as described above, and checks whether
G(I) is acyclic. If so, IS-EMP-OPT-UNIQUE returns Z; otherwise, it returns ‘false’.

We first verify the correctness of IS-EMP-OPT-UNIQUE. Note that, by Theorem 3.12, SUPER-
SMP returns the employer-optimal super-stable matching of I , Z, if I admits super-stable matchings.
Following Proposition 3.4, I cannot admit a pervasive employer-optimal matching if it does not
admit one or more super-stable matchings. Furthermore, by Theorem 3.14, Z is pervasive if and
only if G(I) is acyclic. It remains to show that the above steps can be performed in polynomial time.
By Theorem 3.12, SUPER-SMP halts in polynomial time. It is straightforward to verify that the
construction of the directed graph G(I) takes O(n ·m) time, as does testing whether G(I) contains
a cycle. Hence the overall algorithm terminates in polynomial time.

4. NECESSARY AND IMPOSSIBLE MATCHES
In the previous section, we showed how to efficiently decide whether a given instance I is employer-
optimal unique. What if I does not admit a pervasive employer-optimal matching? Can we still
determine whether there exist identical “components” among the matchings that are employer-
optimal w.r.t. some refinement of I? Here we tackle this question by studying the following two
closely related problems. First, we investigate the problem of identifying pairs that are never matched
in the employer-optimal matching for any of the strict preference profiles that refine I . Next, we
study the problem of identifying pairs that are always matched in the employer-optimal matching for
all of the strict preference profiles that refine I .

Definition 4.1 (Impossible matches). Given I , a pair (e, a) is an impossible match if for all �
that refine I , e and a are not matched in the employer-optimal matching of �.

Definition 4.2 (Necessary matches). Given I , a pair (e, a) is a necessary match if for all � that
refine I , e and a are matched in the employer-optimal matching of �.



4.1. Hardness of identifying impossible matches
The proof of our next claim, on the hardness of identifying impossible matches, uses the same
construction as in a hardness proof (Theorem 5.1) of ? for a related problem. We first define some
useful terms from ?.

A master list of employers consists of a single list containing all of the employers, which may or
may not contain ties. We will consider settings in which each applicant’s preference ordering contains
her acceptable partners ranked precisely according to such a master list—as if each applicant takes
the master list of employers and removes those she finds unacceptable. A master list of applicants and
resulting employers’ preferences are defined analogously. Extensions SMTI-2ML and SMTI-1ML
denote problem variants involving master lists on both sides and on one side of the market respectively.
For example, SMTI-2ML represents the Stable Matching problem with Ties and Incomplete Lists,
with a Master List on both sides.

? show that COMPLETE SMTI-2ML, the problem of deciding whether a given instance of SMTI-
2ML admits a complete stable matching, is NP-complete even if ties occur only in the master list of
applicants. We prove that identifying impossible matches is hard by reducing from this problem.

THEOREM 4.3. For a given instance of SMEC, and a given (employer, applicant) pair (e, a), it
is co-NP-complete to decide whether (e, a) is an impossible match, even if all applicants have the
same equivalence classes and all agents are acceptable to the agents on the other side of the market.

PROOF. The problem is in co-NP because the following nondeterministic polynomial-time algo-
rithm determines that (e, a) is not an impossible match. Simply guess a strict preference profile �,
verify that � is consistent with the given SMEC instance and, by using the Gale-Shapley algorithm,
that e and a are matched in the employer-optimal matching of �.

To prove co-NP-hardness, we show that the complement of the problem is NP-hard by reducing
from the variant of COMPLETE SMTI-2ML in which ties occur only in the master list of applicants,
which is NP-complete by Theorem 3.1 in ?. Let J be an instance of this problem, where Le and La
are the master lists of employers and applicants respectively. Let E = {e1, . . . , en} be the set of
employers and A = {a1, . . . , an} be the set of applicants in J . Let Qei be the preference ordering
of each employer ei under J . (Note that Qei may include ties.) We construct an instance I of our
problem. Let the set of employers in I be E ∪{e0} and the set of applicants be A∪{a0}. The partial
preference ordering for each agent in I is as follows.

e0 : −− a0 a0 : Le e0

ei : Qei a0 −− ai : Le e0

In a given agent’s partial preference ordering, we use the symbol −− to denote all remaining agents
on the opposite side of the market in arbitrary strict order. (Note that an agent may not find all
candidates acceptable under J .) Clearly all applicants have the same equivalence classes with e0
being the only member of the lowest ranked equivalence class. We show that J admits a complete
stable matching if and only if (e0, a0) is not an impossible match in I .

Suppose that µ is a complete stable matching for J . Let µ′ = µ ∪ {(e0, a0)}. We prove that µ′
is stable w.r.t. some strict preference profile � that refines I . Then we show that (e0, a0) belongs
to the employer-optimal matching of �, which proves that (e0, a0) is not an impossible match. Let
� be a strict preference profile where each agent ranks his partner under µ′ at the top of his/her
corresponding class. To see that µ′ is stable w.r.t. �, note that neither (e0, ai) nor (ei, a0) can block
µ′. It remains to show that (ei, aj), 1 ≤ i, j ≤ n, cannot block µ′. To see this, note that for (ei, aj) to
be a blocking pair (1) aj must be in Qei , since µ′(ei) is, (2) ei must rank aj in a higher equivalence
class than µ′(ei), and (3) aj must rank ai in a higher equivalence class than µ′(aj). However this
means that under J both ei and aj strictly prefer each other to their partners under µ, thus they block
µ, a contradiction. Let µ′e denote the employer-optimal matching of �. By definition, every employer
must like his partner under µ′e at least as well as his partner under µ′. Assume for a contradiction that
(e0, a0) /∈ µ′e. Since µ′e is a complete matching (which it must be as the preference orderings are



complete), then (ei, a0) ∈ µ′e for some ei, 1 ≤ i ≤ n. However ei strictly prefers µ′(ei) to a0—his
match under the employer-optimal matching, a contradiction.

Conversely, assume that there exists a strict preference profile � that refines I such that (e0, a0)
belongs to �’s employer-optimal matching, µ′. Clearly µ′ is a complete matching for I and so is
µ for J . It remains to show that µ is stable under J . Note that µ matches every employer ei to an
acceptable partner under J (and thus every applicant aj to an acceptable partner as well). For if
not, then ei strictly prefers a0 to µ′(ei). Since a0 strictly prefers ei to e0—who is her partner under
µ′—then (ei, a0) blocks µ′, a contradiction. Clearly µ is stable in J , as otherwise any pair that blocks
µ in J would also block µ′ in I .

4.2. Hardness of identifying necessary matches
In this section we show that the problem of deciding whether a given pair is a necessary match is
co-NP-complete. The next theorem will come in handy in proving the aforementioned hardness result.
Let ANY-STABLE SMTI-1ML denote the problem of deciding, given an instance of SMTI-1ML
and an applicant a, whether there is a stable matching in which a is matched.

THEOREM 4.4. The ANY-STABLE SMTI-1ML problem is NP-complete.

PROOF. The structure of the proof is similar to that of Theorem 5.1 in ?. To see that the problem is
in NP, we describe a nondeterministic polynomial-time algorithm to determine that a given applicant
a is matched in a stable matching of a given instance of SMTI-1ML. The algorithm simply guesses
a matching µ and verifies its stability by examining all potential blocking pairs and furthermore
checking that each agent is matched to an acceptable partner. To show NP-hardness, we transform
from COMPLETE SMTI-2ML which is shown to be NP-complete by Theorem 3.1 in ?. Let J be an
instance of this problem where Le denotes the master list of employers. Let E = {e1, . . . , en} be the
set of employers and A = {a1, . . . , an} be the set of applicants in J . Let Qei and Qaj denote the
preference ordering of ei and aj under J , respectively. We construct an instance J ′ of our problem
as follows. Let the set of employers in J ′ be E ∪ {e0}, the set of applicants be A ∪ {a0}, and the
preference ordering for each agent be as follows.

e0 : −− a0 a0 : e0

ei : Qei ai : Qai e0

We obtain a master list L′e of employers in J ′ by appending e0 to Le. We show that J has a complete
stable matching if and only if there is a stable matching for J ′ in which a0 is matched.

Suppose that µ is a complete stable matching for J . Let µ′ = µ∪ {(e0, a0)}. We claim that µ′ is a
stable matching in J ′. To see this, first note that (ei, a0) cannot block µ′, as e0 is the only employer
acceptable to a0. Furthermore, (ei, aj), 1 ≤ i, j ≤ n, cannot block µ′ as otherwise the pair would
also block µ under J . It remains to show that (e0, aj), 1 ≤ j ≤ n cannot block µ′. To see this, note
that all applicants in A are matched in µ, and hence µ′, and they all prefer their partners to e0.

Conversely, assume that J ′ has a stable matching µ′ such that (e0, a0) ∈ µ′. We prove that
µ = µ′ \ {(e0, a0)} is a complete stable matching for J . Clearly µ is stable under J , otherwise any
pair that blocks µ would also block µ′. It remains to show that µ is a complete matching. Assume for
contradiction that it is not. Then there exists an applicant aj , 1 ≤ j ≤ n, who is unmatched under
both µ and µ′. However, e0 is acceptable to all applicants, and so to aj , and prefers all applicants in
A to a0. Therefore, (e0, aj) blocks µ′, contradicting the assumption that µ′ is stable.

We can now show that identifying necessary matches is hard. To prove this claim, we reduce from
ANY-STABLE SMTI-1ML, which we just proved is NP-complete.

THEOREM 4.5. For a given instance of SMEC, and a given (employer, applicant) pair (e, a), it
is co-NP-complete to decide whether (e, a) is a necessary match, even if all applicants have the same
equivalence classes and all agents are acceptable to the agents on the other side of the market.



PROOF. To see that the problem is in co-NP, we describe a nondeterministic polynomial-time
algorithm for determining that (e, a) is not a necessary match. The algorithm simply guesses a
strict preference profile �, verifies that � is consistent with the given SMEC instance and, by using
the Gale-Shapley algorithm, that e and a are not matched in the employer-optimal matching of �.
To prove co-NP-hardness, we show that the complement of the problem is NP-hard by reducing
from ANY-STABLE SMTI-1ML, which is NP-complete by Theorem 4.4. Let J be an instance
of this problem, with Le denoting the master list of employers. Let E = {e1, . . . , en} be the set
of employers and A = {a1, . . . , an} be the set of applicants in J . Let Qei denote the preference
ordering of ei and Qaj denote the preference ordering of aj under J . Without loss of generality, we
can assume that Qei does not contain an applicant who finds ei unacceptable, and similarly that
Qaj does not contain an employer who finds aj unacceptable. Let a∗ ∈ A be any given applicant in
this setting. We construct an instance I of our problem as follows. Let the set of employers in I be
E ∪ {e∗} and the set of applicants be A. The preference ordering for each agent in J ′ is as follows.

e∗ : a∗

ei : Qei ∀ei ∈ E, ei 6= e∗

ai : Lee
∗ ∀ai ∈ A

We obtain the identical equivalence classes for the applicants by appending e∗ to the end of Le.
Note that Qei does not contain applicants who find ei unacceptable (in addition to not containing

applicants whom ei finds unacceptable). Furthermore, e∗ finds all applicants except a∗ unacceptable.
Hence the preference ordering of each applicant ai ∈ A, ai 6= a∗, under I essentially reduces to Qai ,
and the preference ordering of a∗ reduces to Qa∗e∗.

It is then straightforward to verify that e∗ and a∗ are matched in all stable matchings for I , and
hence in the employer-optimal matching for all refinements of I , if and only if a∗ is unmatched
in all stable matchings for J . Hence (e∗, a∗) is not a necessary match if and only if the answer to
ANY-STABLE SMTI-1ML given J and a∗ is yes. So the co-NP-hardness of our problem follows
from the NP-completeness of ANY-STABLE SMTI-1ML.

5. WHEN CAN A STABLE MATCHING BE EMPLOYER-OPTIMAL?
Let I be an instance of SMP and let µ be a matching that is stable w.r.t. I . We are interested in
determining whether there exists a strict preference profile � � I such that µ is employer-optimal
w.r.t. �. We present a polynomial-time algorithm, IS-EMP-OPT, that finds such a strict preference
profile if it exists and reports that none exists otherwise. Before proceeding with the description of
our algorithm, we present the following lemma, which will come in handy.

LEMMA 5.1. Assume that µ is employer-optimal w.r.t. some strict preference profile that refines
I . Then there exists a strict preference profile � � I such that µ is employer-optimal w.r.t. � and
each applicant a who is matched in µ ranks µ(a) ahead of all employers who are incomparable with
µ(a) in a’s partial preference ordering in I .

PROOF. Assume that µ is employer-optimal w.r.t.�′ � I . Let� � I be a strict preference profile
similar to �′ except that for each applicant a, µ(a) is moved up in a’s total order to be ranked ahead
of all employers who are incomparable with him in a’s partial preference ordering in I . We show
that µ is employer-optimal w.r.t. �.

Assume for contradiction that this is not the case. It is easy to see that µ must be stable under � or
it cannot be stable under �′. Hence, since we assumed that µ is not employer-optimal w.r.t. �, there
must be a rotation exposed in µ (see Section 3.3). Let (ai0 , ei0), ..., (air−1 , eir−1) be such a rotation.
Following the definition of an exposed rotation, eik prefers aik−1

to µ(eik) under� (and hence under
�′), and aik prefers µ(aik) to eik+1

, ∀k, k + 1 taken modulo r. However, as there is no rotation
exposed in µ under�′, aik−1

must prefer eik to µ(aik−1
) under�′, for some k−1, k taken modulo r.

Therefore, under �′, eik prefers aik−1
to µ(eik) and aik−1

prefers eik to µ(aik−1
). Thus (eik , aik−1

)
blocks µ under �′, and hence µ cannot be employer-optimal w.r.t. �′, a contradiction.



Algorithm 4 formally defines IS-EMP-OPT. As stated earlier in Section 3.3, µ is employer-optimal
for a strict preference profile � if there is no rotation exposed in µ. IS-EMP-OPT gradually refines I
in order to rule out the existence of possible rotations, while ensuring that µ is stable for the refined
instance. It terminates either by reaching an SMP instance I ′ such that for all � � I ′ there is no
rotation exposed in µ, or by identifying that a rotation is exposed in µ for all � � I . Agents are
labeled throughout the algorithm. As we will prove later (Lemma 5.7), an agent x is labeled good
whenever it is established that, no matter how indifferences are resolved in the current SMP instance,
x cannot belong to any exposed rotation.

IS-EMP-OPT proceeds in seven steps. An intuitive description of the steps follows.
Step 1: Label agents who are unmatched in µ good and label those who are matched bad. Note that
unmatched agents cannot be in an exposed rotation.
Step 2: Perform refinements that are essential if µ is to be stable.

Step 3: For each applicant a matched under µ, promote µ(a) ahead of all employers e who are
incomparable with µ(a) in a’s preference ordering. Lemma 5.1 justifies this step, which in turn
simplifies the overall proof.

The goal of the next three steps is to refine the current SMP instance so as to avoid exposed
rotations, if possible.
Step 4: For each applicant a matched under µ, let S(a) be the set of employers e who prefer a to
µ(e). If S(a) is empty, (i) for each employer e who is matched under µ and such that a prefers µ(a)
to e, promote µ(e) ahead of a in the preference ordering of e, and (ii) label a and µ(a) good. If
no employer strictly prefers a to his partner under µ, then it is possible to refine the current SMP
instance such that under all remaining strict preference profiles all employers e prefer µ(e) to a. As a
result, ηµ(a) is undefined under all remaining strict preference profiles and hence a, and therefore
µ(a), cannot contribute to an exposed rotation.
Step 5: For each applicant a who is labeled bad, identify those employers e such that there exists a
strict preference profile � that refines the current SMP instance and under which e is ηµ(a). The
set of such employers is denoted by T (a). No employer e whom a ranks inferior to one or more
employers in S(a) can be ηµ(a) under any strict preference profile that refines the current SMP.
Step 6: While there is at least one bad applicant, attempt to identify a bad applicant a who has a
good employer in T (a). If there does not exist at least one such bad applicant, an exposed rotation
is inevitable and the algorithm returns “false’. Otherwise, let a be a bad applicant with a good
employer e in T (a). Refine the preference orderings of a, e and the rest of the employers in T (a)
such that e is ηµ(a) under all strict preference profiles that refine the newly reached SMP. Label a
and µ(a) good.

Step 7: Resolve the remaining indifferences arbitrarily and return the resulting strict preference
profile �.

We need to prove that IS-EMP-OPT is sound and complete. Let Ii denote the SMP instance at the
end of step i. Recall, from Definition 3.13, that for a strict preference profile �, ηµ(a) denotes the
first employer e on applicant a’s preference ordering who prefers a to his match under µ. We first
claim that if our algorithm returns a strict preference profile �, then µ is guaranteed to be stable w.r.t.
�. (The proof is straightforward and hence removed to save space.)

LEMMA 5.2. Let µ be a matching stable w.r.t. I . Then µ is stable w.r.t. all strict preference
profiles � � I3. Furthermore, ∀� � I such that µ is stable w.r.t. �, it must be the case that � � I2.

We next show that our definitions of S(a) and T (a) (in Steps 4 and 5 of Algorithm 4) accord with
the intuition provided earlier.

LEMMA 5.3. Let � be a strict preference profile that refines I3. For all applicants a and for all
e ∈ S(a), a strictly prefers µ(a) to e.



Algorithm 4: IS-EMP-OPT
Input: I = (E,A, pE,A) and matching µ stable w.r.t. I
Output: Strict total preference ordering profile � � I such that µ is employer-optimal w.r.t. �,

or ‘false’

Step 1 Label unmatched agents good and matched agents bad;
Step 2 /* make promotions in preferences to ensure that µ is stable */

foreach agent x who is matched in µ do
foreach candidate y ranked above µ(x) by x do

promote µ(y) ahead of x in y’s preferences;

foreach agent x who is unmatched in µ do
foreach candidate y ranked by x do

promote µ(y) ahead of x in y’s preferences;

Step 3 foreach applicant a who is matched in µ do
promote µ(a), in a’s preferences, ahead of all e such that a is indifferent between e and µ(a);

Step 4 foreach applicant a who is matched in µ do
S(a) = set of employers e who strictly prefer a to µ(e);
if S(a) is empty then

Label a and µ(a) good;
foreach matched employer e such that a prefers µ(a) to e do

promote µ(e) ahead of a in e’s preferences;

Step 5 /* identify employers e who are ηµ(a) under some � */

foreach applicant a who is labeled bad do
T (a) = set of employers e such that e weakly prefers a to µ(e) and a strictly prefers µ(a) to
e and there is no employer e′ ∈ S(a) such that a strictly prefers e′ to e.

Step 6 while there is at least one bad applicant do
if there is a bad applicant a who has a good employer e in T (a) then

promote e ahead of all employers e′ such that a is indifferent between e′ and e;
if e is indifferent between a and µ(e) then

promote a ahead of µ(e) in e’s preferences;
foreach employer e′ ∈ T (a) such that a prefers e′ to e do

promote µ(e′) ahead of a in the preferences of e′;
Label a and µ(a) good;

else /* cannot avoid a rotation ==> a stable matching that dominates µ */

return ‘false’;

Step 7 resolve remaining indifferences arbitrarily ;

return ‘true’ together with the fully refined preference lists �;

PROOF. The result follows directly from Lemma 5.2 and the definition of S(a).

LEMMA 5.4. Let � be a strict preference profile that refines I3. For each applicant a, if ηµ(a)
is undefined under �, then S(a) is empty. Otherwise, if ηµ(a) exists under �, then ηµ(a) ∈ T (a).

PROOF. We first show that if S(a) is not empty then ηµ(a) exists under all � � I3. Assume that
S(a) is not empty. Therefore there exists an employer e who, under I3, strictly prefers a to µ(e) and
whom a ranks inferior to µ(a) under I4. Hence e qualifies to be ηµ(a), even if no other employer
does, for any strict preference profiles � � I3.



We now show that if ηµ(a) exists under � � I3, then ηµ(a) ∈ T (a). Assume for contradiction
that there exists a strict preference profile � � I3 under which ηµ(a) exists and is not in T (a).
Let e denote ηµ(a) under �. As ηµ(a) exists, S(a) is not empty. As e /∈ T (a), there must exist an
employer e∗ ∈ S(a) whom a prefers to e under I3 and hence under �. Also, from the definition of
S(a), it follows that a�e∗µ(e∗). Hence, following the definition of an exposed rotation and the fact
that µ(a)�ae∗ (see Lemma 5.3), e cannot be ηµ(a) under �, a contradiction.

We next identify conditions under which an agent is labeled good.

LEMMA 5.5. An applicant a is labeled good in the algorithm if and only if one of the following
holds for all strict preference profiles � � I6: (1) a is unmatched, (2) ηµ(a) is not defined, or (3)
ηµ(a) is [already] labeled good.

PROOF. We first prove that if a is labeled good then at least one of the three conditions must hold.
Note that an applicant is labeled good only in Steps 1, 4, and 6. (1) If a is labeled good in Step 1,
then she must be unmatched. (2) If a is labeled good in Step 4, the refinements that take place in
Step 4 ensure that for all � � I5—and hence for all � � I7, there is no employer whom a prefers to
µ(a) and who prefers a to his partner. Hence ηµ(a) is not defined. (3) If a is labeled good in Step
6, then it is because there is a good employer e in T (a). The refinements that take place in Step 6
ensure that under �, (i) e prefers a to µ(e), and (ii) all employers e′ who are ranked between µ(a)
and e prefer µ(e′) to a. To see this, note that as e ∈ T (a), there is no employer e∗ ∈ S(a)—i.e.
no employer e∗ who strictly prefers a to µ(e∗) under I4, such that a strictly prefers e∗ to e under
I4—and consequently that the same holds under I5 and I6, as no refinement involving a takes place
in Steps 5 and 6. Hence, by promoting e ahead of all employers e′ such that a is indifferent between
e′ and e (in Step 6), we ensure that all employers e′ who are ranked between µ(a) and e under �
weakly prefer µ(e) to a under I4 (and hence under I5 and I6) and then by promoting a ahead of
µ(e′) for such employers e′(in Step 6) it is established that e must be the first employer, after µ(a),
who prefers a to his own partner. Therefore e is ηµ(a) and he is [already] labeled good.

We conclude by showing that if one of the aforementioned conditions holds for an applicant a,
then a will be labeled good. (1) If a is unmatched, she is labeled good in Step 1. (2) If ηµ(a) is not
defined then S(a) = ∅ (by Lemma 5.4). Hence a is labeled good in Step 4. (3) If ηµ(a) is labeled
good then, as ηµ(a) ∈ T (a) (by Lemma 5.4), there exists a good employer in T (a). Thus a is labeled
good in Step 6.

LEMMA 5.6. An employer e is labeled good in the algorithm if and only if one of the following
holds: either e is unmatched or µ(e) is labeled good.

PROOF. An unmatched employer is labeled good in Step 1. A matched employer is only labeled
good in Step 4 or Step 6 along with his partner.

We are now ready to back up the intuition that good agents do not contribute to exposed rotations.

LEMMA 5.7. Let Ia denote the SMP instance when applicant a is labeled good. Then a does
not contribute to an exposed rotation w.r.t. any strict preference profile � � Ia.

PROOF. Assume for contradiction that the claim does not hold. Let a∗ be the first applicant who
is labeled good in the algorithm for whom the claim does not hold; that is, ∃� � Ia∗ such that a∗
belongs to an exposed rotation in µ. As a∗ belongs to an exposed rotation, she cannot be unmatched
and ηµ(a) exists. Therefore, following Lemma 5.5, ηµ(a) is also labeled good and he must have
been labeled good before a∗. Furthermore, following Lemma 5.6, µ(ηµ(a)) was labeled good before
a∗. Continuing with this argument we end up with either (i) a path of agents each of whom was
labeled good before its successor on the path and the last agent on the path is an applicant a′ for
whom ηµ(a

′) is not defined, or (ii) a cycle, not including a∗, where each agent was labeled good
before its predecessor on the cycle, or (iii) a cycle ending at a∗ where each agent was labeled good
before its predecessor on the cycle. Note that case (i) implies that a∗ does not belong to an exposed
rotation (a contradiction); case (ii) implies that a∗ is not the first good applicant who belongs to an



exposed rotation (a contradiction); and case (iii) implies that µ(a∗) was labeled good before a∗. The
algorithm labels a matched employer good only when his partner is also labeled good at the same
time, hence µ(a∗) cannot have been labeled good earlier, a contradiction.

Next we show that if the algorithm returns ‘false’, then µ admits an exposed rotation under all
strict preference profiles that refine the current SMP instance.

LEMMA 5.8. Assume that Algorithm 4 returns ‘false’. Then for all strict preference profiles
� � I6, there exists a rotation exposed in µ where all agents in the rotation are labeled bad.

PROOF. The proof follows from the definition of an exposed rotation, Definition 3.13, Lemma 5.5
and Lemma 5.6. Let � � I6. Let a be an applicant labeled bad. By Lemma 5.5, ηµ(a) must exist
and must be labeled bad. By Lemma 5.6, ηµ(a) is matched under µ and µ(ηµ(a)) is also labeled
bad. Continuing with this argument, and as there is a finite number of agents, we have to reach an
employer e who is labeled bad and who is matched to a: an exposed rotation where all agents in the
rotation are labeled bad.

We can now prove that IS-EMP-OPT is sound and complete, and terminates in polynomial time.

THEOREM 5.9. Given an instance I of SMP and a matching µ that is stable w.r.t. I , we can
decide in polynomial time whether there exists a strict preference profile � � I such that µ is
employer-optimal w.r.t. �.

PROOF. We first prove that if IS-EMP-OPT returns �, then µ is the employer-optimal matching
of �. The stability of µ follows from Lemma 5.2. It remains to show that there is no rotation exposed
in µ. Note that as the algorithm returns � rather than “false”, all agents must be labeled good. It then
follows from Lemma 5.7 that no applicant contributes to an exposed rotation.

We now prove that if IS-EMP-OPT returns “false”, then there is no strict preference profile � that
refines I where µ is employer-optimal w.r.t. �. It is enough to show that for all � � I such that
µ is stable under �, there exists an exposed rotation in µ. Assume that this is not the case. Hence,
there exists a strict preference profile � � I under which (i) µ is stable, and hence by Lemma 5.2
� � I2, (ii) there is no rotation exposed in µ, and (iii) each applicant a matched in µ ranks µ(a)
ahead of all employers who are incomparable with µ(a) in a’s preference ordering (by Lemma 5.1),
and hence � � I3. But, by Lemma 5.8, � cannot refine I6. Take an applicant a who is labeled
bad when the algorithm stops and returns “false”. Note that a must be matched. We first show that
ηµ(a) exists under �. Assume, for a contradiction, that ηµ(a) is undefined. Since � � I3, it follows
from Lemma 5.4 that S(a) is empty. Hence, by Lemma 5.5, a must be labeled good, and so must be
µ(a) (by Lemma 5.6), a contradiction. So ηµ(a′) is defined for all applicants a′ who are matched
under µ and labeled bad when the algorithm stops. Furthermore, again by Lemma 5.5, ηµ(a′) is
labeled bad as well. Let ai0 be a bad applicant, hence ηµ(ai0) is defined and is labeled bad. Let ei1
denote ηµ(ai0). As ei1 is labeled bad, so must be µ(ei1), which we denote by ai1 . Continuing with
this argument, as there is a finite number of bad agents, we have to reach an employer eir−1

whose
partner is a0. Hence (ai0 , ei0), ..., (air−1 , eir−1) constitute an exposed rotation, a contradiction.

To see that Algorithm 4 runs in time polynomial in the input size, we first note that, under any
reasonable assumption on the way the input is represented, the fundamental operations such as
deletion, reinstatement, and promotion of an entry in the preference structures, and the identification
of the sets S(a) and T (a), can all be carried out in polynomial time. Furthermore, the number of
executions of every loop is bounded by a polynomial—in particular, the main loop in Step 6 is
executed at most n times.

6. CONCLUSION
We investigated the problem of reasoning about employer-optimal matchings in settings with partial
information. By symmetry, our results also apply to applicant-optimal matchings. A number of open
problems remain. (1) In the context of Algorithm IS-EMP-OPT, can we can succinctly characterize
and/or efficiently generate the set of all SMI instances that refine the given SMP instance and for



which the given stable matching µ is employer-optimal? (2) To what extent can our algorithmic
results be generalized to apply to many-to-one matching markets? (3) What can be said (e.g., via
empirical studies) about the likelihood that a given partial preference profile admits a pervasive
employer-optimal matching?
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