
Understanding the Empirical Hardness of
NP-Complete Problems

Kevin Leyton-Brown Holger H. Hoos Frank Hutter Lin Xu
Department of Computer Science

University of British Columbia
201-2366 Main Mall, BC V6T 1Z4, CANADA

Problems are intractable when they “can be solved, but not fast
enough for the solution to be usable” [13]. NP-complete problems
are commonly said to be intractable; however, the reality is more
complex. All known algorithms for solving NP-complete prob-
lems require exponential time in the worst case; however, these
algorithms nevertheless solve many problems of practical impor-
tance astoundingly quickly, and are hence relied upon in a broad
range of applications. The propositional satisfiability problem (SAT)
serves as a good example. One of the most popular approaches for
the formal verification of hardware and software relies on general-
purpose SAT solvers and SAT encodings, typically with hundreds
of thousands of variables. These instances can often be solved
in seconds [34], even though the same solvers can be stymied by
hand-crafted instances involving only hundreds of variables.
Clearly, we could benefit from a more nuanced understanding of
algorithm behaviour than is offered by asymptotic, worst-case analy-
sis. Our work asks the question most relevant to an end user: “How
hard is it to solve a given family of problem instances, using the best
available methods?” Formal, complexity-theoretic analysis of this
question seems hopeless: the best available algorithms are highly
complex (and, in some cases, only available in compiled form), and
instance distributions representative of practical applications are
heterogeneous and richly structured. For this reason, we turn to
statistical, rather than combinatorial, analysis.
The main claim of this article is that rigorous statistical methods can
characterize algorithm runtime with high levels of confidence. More
specifically, this article surveys over a decade of research1 showing
how to build empirical hardness models (EHMs) that, given a new
problem instance, estimate the runtime of an algorithm in low-order
polynomial time [28, 27, 26, 32, 33, 16, 38, 40, 29, 14, 18, 19,
39, 21]. We have shown that it is possible to build quite accurate
models for different NP-complete problems (we have studied SAT,
combinatorial auction winner determination, mixed integer program-
ming, and the traveling salesman problem), distributions of problem
instances (we have considered dozens), solvers (again, dozens).
We have robustly found that even very succinct EHMs can achieve
high accuracies, meaning that they describe simple relationships
between instance characteristics and algorithm runtime. This makes
our approach important even for theoretically inclined computer
scientists who prefer proofs to experimental findings: EHMs can
uncover new, simple relationships between instance characteristics
and runtime, and thereby catalyze new theoretical work.
The focus of this paper is on ways that EHMs contribute to our
understanding of NP-complete problems; however, they are also

1Some work described in this article was performed with additional coauthors: Eu-
gene Nudelman and Yoav Shoham made particularly sustained contributions, and
Galen Andrew, Alex Devkar, and Jim McFadden also deserve mention. We do not
survey the literature on algorithm performance prediction here; instead, we focus on
our own work. For extensive discussions of related work, please see [29, 21].

useful in a variety of practical applications. Most straightforwardly,
they can aid the distribution of problem instances across a cluster,
or predict how long a run will take to complete. More interestingly,
they can (1) be used to combine a set of high-variance algorithms
into an “algorithm portfolio” that outperforms its constituents; (2)
be leveraged to automatically make benchmark distributions more
challenging; and (3) aid in the configuration (or “tuning”) of highly
parameterized algorithms for good performance on given instance
distributions. More detailed explanations of these applications ap-
pear in sidebars throughout this article.

Phase Transitions in Uniform-Random 3-SAT
We begin by describing the most widely known relationship between
a characteristic of fixed-size random SAT instances and solver run-
time. (After this, we consider more realistic instances of SAT and
other NP-hard problems.) Let p(c, v) denote the probability that a
satisfiable 3-SAT formula2 will be generated by uniformly sampling
c clauses of 3 variables each from a set of v variables, negating each
with probability 0.5. In the early 1990s, researchers discovered that
when v is held constant, p(c, v) exhibits a “phase transition” as c/v
crosses a critical value of about 4.26 [8, 31]. Intuitively, instances
with few clauses are underconstrained and thus almost always satis-
fiable, while those with many clauses are overconstrained and thus
almost always unsatisfiable. The interesting fact is that, for all fixed
values of v so far tested, the phase transition point at which p(c, v)
is exactly 0.5, appears to coincide with a runtime peak even for the
SAT solvers that perform best on these instances. This finding thus
links an algorithm-independent property of an instance (c/v) with
algorithm-specific runtime in a way that has proven robust across
solvers.

Figure 1 (Left) shows this relationship using real data. The dotted
line shows p(c, v) for uniform-random 3-SAT instances with v =
400, while the solid line shows the mean runtime of march_hi [11],
one of the best SAT solvers for uniform-random 3-SAT, on the
same instances. We do indeed observe both a phase transition and a
hardness spike at the phase transition point. However, there is more
to the story. Figure 1 (Right) plots raw runtime data (on a log scale)
for march_hi, with each point corresponding to a single (random)
3-SAT formula. We can now see that the c/v ratio does not suffice
to fully explain march_hi’s empirical behaviour on these instances:
there is still substantial variation at each point along the x axis,
with over two orders of magnitude at the “hard” phase transition
2A SAT formula F is solved by deciding whether there exists an assignment of its
variables under which F evaluates to true. A subclass of particular importance is 3-
SAT. A 3-SAT instance is a conjunction of clauses, each of which is a disjunction of 3
variables or their negations. For example, (v1 ∨¬v2 ∨ v4)∧ (¬v1 ∨¬v3 ∨ v4) is
a simple formula with v = 4 variables and c = 2 clauses that has several satisfying
assignments (e.g., [v1, v2, v3, v4] = [true, true, false, false]).

3.26 3.76 4.26 4.76 5.26

10
−2

10
0

10
2

Clauses to variables ratio

m
a

rc
h

_
h

i m
e

a
n

 r
u

n
tim

e
 [

C
P

U
 s

e
c]

3.26 3.76 4.26 4.76 5.26
−1

−0.5

0

0.5

1

p
(c

,v
)

3.26 3.76 4.26 4.76 5.26

10
−2

10
0

10
2

Clauses to variables ratio

m
a

rc
h

_
h

i m
e

a
n

 r
u

n
tim

e
 [
C

P
U

 s
e

c]

Satisfiable
Unsatisfiable

Figure 1: Runtime of march_hi on uniform-random 3-SAT in-
stances with v = 400 and variable c/v ratio. Left: mean run-
time, along with p(c, v); Right: per-instance runtimes, coloured
by satisfiability status. Runtimes were measured with an accu-
racy of 0.01s, leading to the discretization effects visible near
the bottom of the figure. Every point represents one SAT in-
stance.

point. The runtime pattern also depends on satisfiability status:
hard instances are scarcer and runtime variation is greater among
satisfiable instances than among unsatisfiable instances. One reason
for this is that on satisfiable instances the solver can stop as soon
as it encounters a satisfying assignment, whereas for unsatisfiable
instances a solver must prove that no satisfying assignment exists
anywhere in the search tree.

A Case Study on Uniform-Random 3-SAT
We now ask whether we can better understand the relationship be-
tween instance structure and solver runtime by considering instance
features beyond just c/v. We will then use a machine learning
technique to infer a relationship between these features and runtime.
Formally, we start with a set I of instances, a vector xi of feature
values for each i ∈ I , and a runtime observation yi for each i ∈ I ,
obtained by running a given algorithm on i. Our goal will be to
identify a mapping f : x 7→ y that predicts yi as accurately as
possible, given xi. We call such a mapping an empirical hardness
model.3 Observe that we have just described a supervised learning
problem, and more specifically a regression problem. There are
many different regression algorithms that one could use to solve
this problem, and indeed, over the years we have considered about a
dozen alternatives. Later in this article we will advocate for a rela-
tively sophisticated learning paradigm (random forests of regression
trees), but we begin by discussing a very simple approach: quadratic
ridge regression [5]. This method performs linear regression based
on the given features and their pairwise products, and penalizes
increases in feature coefficients (the “ridge”). We elaborate this
method in two ways. First, we transform the response variable by
taking its logarithm; this better allows runtimes, which vary by or-
ders of magnitude, to be described by a linear model. Second, we
reduce the set of features by performing forward selection: we start
with an empty set and iteratively add the feature that (myopically)
most improves prediction. The result is simpler, more robust models
that are less prone to numerical problems. Overall, we have found
that even simple learning algorithms like this one usually suffice
to build strong EHMs; more important is identifying a good set of
instance features.

Instance features
It can be difficult to identify features that correlate as strongly with
instance hardness as c/v. We therefore advocate including all fea-
3It is sometimes useful to build EHMs that predict a probability distribution over
runtimes rather than a single runtime; see [21]. For simplicity, here we discuss only
the prediction of mean runtime.

10
−2

10
0

10
2

10
−2

10
0

10
2

Actual runtime [CPU sec]

P
re

di
ct

ed
 r

un
tim

e
[C

P
U

 s
ec

]

Satisfiable
Unsatisfiable

10
−2

10
0

10
2

10
−2

10
0

10
2

Actual runtime [CPU sec]

P
re

di
ct

ed
 r

un
tim

e
[C

P
U

 s
ec

]

Satisfiable
Unsatisfiable

Figure 2: Actual vs predicted runtimes for march_hi on
uniform-random 3-SAT. Each dot represents a test instance not
used to train the model; perfect predictions would fall along the
diagonal. Left: c/v ∈ [3.26, 5.26]; Right: c/v = 4.26.

tures that show some promise of being predictive, and relying on the
machine learning algorithm to identify the most useful ones. Our
only requirement is that the features be computable in low-order
polynomial time; in some applications, we sometimes restrict our-
selves to features that are quadratic time or faster. For the SAT
domain, we defined 138 features, summarized as follows:

• Problem size measures c and v, plus nonlinear combinations
we expected to be important, like c/v and c/v − 4.26;
• Syntactic properties of the instance (proximity to Horn clauses;

balance of positive and negative literals; etc.);
• Constraint graph statistics. We considered three graphs:

nodes for variables and edges representing shared constraints
(clauses); nodes for clauses and edges representing shared
variables with opposite polarity; nodes for both clauses and
variables, and edges representing the occurrence of a variable
in a given clause. For each graph, we computed various
statistics based on node degrees, path lengths, clustering, etc.;
• A measure of the integrality of the optimal solution to the

linear programming relaxation of the given SAT instance—
specifically, the distance between this solution and the nearest
(feasible or infeasible) integral point;
• Knuth’s estimate of search tree size [25];
• Probing features computed by running bounded-length tra-

jectories of local search and tree search algorithms and ex-
tracting statistics from these probes (e.g., number of steps
before reaching a local minimum in local search or amount
of unit propagation performed in tree search).

Model Performance
Let us now investigate the models we can build using these tech-
niques for uniform-random 3-SAT. We consider two sets of in-
stances: one in which the c/v ratio varies around the phase transi-
tion point, and another in which it is fixed at c/v = 4.26. The first
set of instances is less challenging, as we already know that the c/v
ratio suffices to explain much of the runtime variation. However,
this set is still useful as a sanity check to ensure that our methods do
discover the importance of the c/v feature, and to investigate what
additional features turn out to be useful. The second set contains
fixed-size instances in the hard c/v = 4.26 region: any patterns we
can find here are interesting since we cannot distinguish instances
based on their c/v ratio. In both cases (as with all other empirical
results we show in this paper) we randomly partitioned our data into
a “training set” that we used to build the EHM and a disjoint “test
set” that we used solely to evaluate the performance of the EHM,
thereby assessing the accuracy of a model’s predictions beyond the
data used for constructing it.

Figure 2 shows the results of our investigation, giving true vs pre-
dicted runtimes of march_hi, with every point in the figure cor-
responding to a different test-set problem instance. Overall, the
points cluster around the diagonal in both plots, meaning that the
predictions are reasonably accurate. (Indeed, these results are better
than they appear to the eye, as a greater density of points falls closer
to the diagonal.) Observe that prediction accuracy was considerably
better for unsatisfiable instances than for satisfiable instances. Root
mean squared error (RMSE) is a numerical measure of a model’s
accuracy; the two models achieved RMSEs of 0.31 and 0.56, respec-
tively. A model that consistently mispredicted runtimes by a factor
of 10 would have achieved an RMSE of 1.0.

We used the variable ratio instance set to verify that the model rec-
ognizes the importance of the c/v feature; similarly, we would like
to identify other informative features. We cannot do this simply by
examining a scatterplot, nor by looking at the coefficients of the
model itself: because many of our features are strongly correlated,
important features can have small coefficients and unimportant fea-
tures can have big coefficients. Instead, we identify new models that
use only a small number of uncorrelated features by applying the
same forward selection method described previously, but terminat-
ing much earlier, when the benefit from adding new features begins
to taper off. Then (following [10]) we quantify the importance of
each feature in these new models by measuring the loss in RMSE
incurred by omitting it, and scaling these values so that the most
important feature receives a score of 100. Table 1 demonstrates that
the model indeed identified c/v (and the variant |c/v− 4.26|) as an
important feature; recall that our quadratic regression has access to
all pairwise products of features. Other features were also important,
in particular, SAPS_BestSolution_Mean, the average number of
satisfied clauses achieved by short runs of the local search procedure
SAPS [20]. This is interesting, as one might not have expected the
performance of a local search algorithm to be informative about the
performance of a tree search algorithm.

For the fixed-ratio data, c/v was constant, and we therefore see a
different picture among important features (Table 2). Again, local
search probing features figured prominently (GSAT_BestSolution_Mean
gives the average number of satisfied clauses achieved by short runs
of GSAT [36]). Another important feature is CG_entropy. It gives
the entropy across node degrees in the “constraint graph” in which
nodes correspond to clauses and edges indicate that a pair of clauses
share one or more variables of opposite sign. We have repeated this
analysis for other SAT solvers (e.g., kcnfs, satz) and obtained the
same qualitative results: runtime is predictable with high accuracy,
small models suffice for good performance, and local-search and
constraint-graph features are important [33].

We have already observed that satisfiable and unsatisfiable instances
exhibit very different distributions of algorithm runtimes. We thus
considered the problem of building EHMs only for satisfiable or
for unsatisfiable instances. (We call these “conditional models” as
they depend on knowing the satisfiability of a given instance.) We
found that conditional EHMs were more accurate than unconditional
EHMs; more interestingly, single-feature conditional models turned
out to be sufficient for predicting runtime with high accuracy. For
satisfiable instances, this feature was GSAT_BestSolution_Mean,
whereas for unsatisfiable instances, it was Knuth_Mean. We can
explain these findings as follows. Since local search algorithms
apply heuristics to find a solution as quickly as possible, the reliabil-
ity with which such an algorithm is able to make quick progress is
informative about the speed at which a complete algorithm will be

Feature Score

|c/v − 4.26|× SAPS_BestSolution_Mean 100
c/v× SAPS_BestSolution_Mean 19
GSAT_BestSolution_CoeffVar
× SAPS_BestStep_CoeffVar

19

SAPS_BestStep_CoeffVar × CG_entropy 18

Table 1: Feature importance, c/v ∈ [3.26, 5.26].

Feature Score

GSAT_BestSolution_Mean2 100
GSAT_BestSolution_Mean 88
SAPS_BestSolution_CoeffVar

× SAPS_AvgImprove_Mean
33

SAPS_BestStep_CoeffVar × CG_Entropy 22

Table 2: Feature importance, c/v = 4.26.

able to find a solution. Tree search algorithms must rule out every
node in the tree to prove unsatisfiability; thus, an estimate of this
tree size is the most important feature in the unsatisfiable case.

Predicting Satisfiability Status
These observations led us to a new idea: building a classifier that
directly predicts satisfiability status, and then leveraging conditional
EHMs based on this prediction. There are two reasons to be skepti-
cal about this approach. First, conditional EHMs could make very
inaccurate predictions on instances with the “wrong” satisfiability
status, so it is not clear that we would obtain improved accuracy
overall. Second, and more fundamentally, it may seem doubtful
that we could accurately predict satisfiability status—that would
correspond to guessing whether an instance is solvable without actu-
ally solving it! Despite this reservation, and applying sophisticated
statistical techniques to mitigate the potential cost of mispredictions
(see [38]), we did build hierarchical hardness models for uniform
random 3-SAT instances. These models achieved (relatively mod-
est) improvements in predictive accuracy on both the fixed-ratio and
variable-ratio instance sets. Clearly, hierarchical hardness models
can only outperform regular EHMs if our classifier is able to accu-
rately predict satisfiability status. In the variable-ratio case, a natural
baseline is a classifier that predicts satisfiability for instances with
c/v < 4.26, and unsatisfiability otherwise. This classifier achieved
an accuracy of 96%, underlining the predictive power of the c/v fea-
ture. Our classifier further increased this accuracy to 98% (halving
the error rate). Unlike the baseline, our classifier also applies in the
fixed-ratio case, where it achieved accuracy of 86%.

We found this result surprising enough that we investigated it in
more depth [39]. We considered instances of varying size, from 100
variables (solvable in milliseconds) to 600 variables (solvable in
a day; about the largest instances we could solve practically). We
focused on instances generated at the phase transition point, because
they pose the hardest prediction problem: the probability of gener-
ating satisfiable instances at this point is 50%, and in practice, our
data sets were indeed very evenly balanced between satisfiable and
unsatisfiable instances. Our aims were to investigate whether pre-
diction accuracy appeared fall to that of random guessing on larger
problems, and if not, to give an easily comprehensible model that
could serve as a starting point for theoretical analysis. In doing so

100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

Instance size

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

LPSLACK_coeff_variation
>=0.00466585

Yes No

SAT [A] POSNEG_ratio_var_mean
>= 0.164963

UNSAT [C]SAT [B]

Yes No

Figure 3: Left: Classification accuracies for our simple decision
tree on uniform-random 3-SAT instances at the phase transi-
tion with varying numbers of variables. The tree was trained
only on 100-variable data. Right: The decision tree. Predictive
accuracies for instances falling into the 3 regions were between
60% and 70% (region A); about 50% (region B); and between
70% and 80% (region C).

we restricted our models in three ways that each reduced predictive
accuracy, but allowed us to better answer these questions. First, we
permitted ourselves to train our classifier only on the 100-variable
instances. Second, we considered only decision trees [7] having
at most two decision nodes. (We obtained these models by a stan-
dard decision tree learning procedure: greedily choosing a feature
that best partitioned the training data into satisfiable and unsatis-
fiable instances, and recursively splitting the resulting partitions.)
Finally, we omitted all probing features. Although probing (e.g.,
local-search) features were very useful for prediction, they were
disproportionately effective on small instances and hence would
have complicated our study of scaling behaviour. Also, because we
aimed to obtain easily comprehensible models, we were disinclined
to use features based on complex, heuristic algorithms.

Given all of these restrictions, we were astonished to observe pre-
dictive accuracies consistently above 65%, and apparently indepen-
dent of problem size (see Figure 3 (Left); statistical testing showed
no evidence that accuracy falls with problem size). Indeed, our
first two restrictions appear to have come at low cost, decreasing
accuracies by only about 5%. (Furthermore, after lifting these re-
strictions, we still found no evidence that accuracy was affected
by problem size.) Hence, the reader may be interested in under-
standing our two-feature model in more detail; we hope that it
will serve as a starting point for new theoretical analysis of SAT
finite-size instances at the phase transition. The model is given in
Figure 3 (Right). LPSLACK_coeff_variation is based on solving
a linear programming relaxation of an integer program representa-
tion of SAT instances. For each variable i with LP solution value
Si ∈ [0, 1], LPSLACKi is defined as min{1 − Si, Si}: the devia-
tion of Si from integrality. LPSLACK_coeff_variation is then the
coefficient of variation (the standard deviation divided by the mean)
of the vector LPSLACK. POSNEG_ratio_var_mean is the average
ratio of positive and negative occurrences of each variable. For
each variable i with Pi positive occurrences and Ni negative occur-
rences, POSNEG_ratio_vari is defined as |0.5 − Pi/(Pi + Ni)|.
POSNEG_ratio_var_mean is then the average over elements of
the vector POSNEG_ratio_var. Finally, recall that our model
was trained on constant-size instances; we normalized the LP-
SLACK_coeff_variation and POSNEG_ratio_var_mean features
to have mean 0 and standard deviation 1 on this training set. To
evaluate the model on a given instance of a different size, we ran-
domly sampled many new instances of that size to compute new
normalization factors, which we then applied to the given instance.

Application: Algorithm Selection (SATzilla)
There currently exists no “best” SAT solver; different solvers
perform well on different families of instances, and performance
differences between them are typically very large. The effective-
ness of EHMs suggests a straightforward solution to the algorithm
selection problem [35]: given a new problem instance, predict the
runtime of several SAT solvers, and then run the one predicted to
be fastest. This approach [27] forms the core of SATzilla [32, 33,
40], a portfolio-based algorithm selector for SAT.
SATzilla first participated in the 2003 SAT Competition (http:
//www.satcompetition.org), and placed second and third in several
categories. We have since extensively improved the approach,
allowing randomized and local search algorithms as component
solvers; introducing the idea of pre-solvers that are run for a
short, fixed time before the selected solver; adding the ability
to optimize for complex scoring functions; and automating the
construction of the selector (e.g., pre-solver selection; component
solver selection) given data. Leveraging these improvements, and
benefiting from the continued improvement of the component
solvers upon which it draws, SATzilla led the field in the 2007
and 2009 SAT Competitions, winning 5 medals each time.
More recently, our design of SATzilla evolved from selection
based on runtime predictions (EHMs) to a cost-sensitive classifi-
cation approach that directly selects the best-performing solver
without predicting runtime [41]. In the 2012 SAT Challenge
(http://baldur.iti.kit.edu/SAT-Challenge-2012), SATzilla was eligi-
ble to enter four categories; it placed first in three of these
and second in the fourth. Overall, SATzilla’s success demon-
strates the effectiveness of automated, statistical methods for
combining existing solvers—including “uncompetitive” solvers
with poor average performance. Except for the instance fea-
tures used by our models, our approach is entirely general,
and is likely to work well for other problems with high run-
time variation. All of our software is publicly available; see
http://www.cs.ubc.ca/labs/beta/Projects/SATzilla.

Beyond Uniform-Random 3-SAT
Our original motivation involved studying real problems faced by
a practitioner, problems that are very unlikely to have uniform ran-
dom structure. Thus, it is important to demonstrate that EHMs work
reliably for a wide range of more realistic instance distributions,
and that they are not limited to SAT. In short, they do, and they
aren’t. By now, we have built EHMs for four different NP-complete
problems: SAT [33, 16, 38, 14, 40, 21], the combinatorial auc-
tion winner determination problem (WDP) [28, 29], mixed integer
programming (MIP, a standard encoding for problems with both
discrete and continuous variables) [14, 19, 21], and the traveling
salesman problem (TSP) [21]. Observe that we have considered
both optimization and decision problems, and that these problems
involve discrete variables, continuous variables, and combinations
of the two. For each problem, we derived a new set of instance
features. This was not trivial, but not terribly difficult either; in
all cases we used problem size measures, syntactic properties, and
probing features. Extending what we know now to a new domain
would probably entail a few days of work. In our publications and
other technical work (e.g., submissions to SAT competitions) we
have considered more than 30 instance distributions.

These include sophisticated random generators (e.g., SAT reductions
from graph coloring and factoring; combinatorial auction bench-
marks based on economic models); instance sets from public bench-

Minisat 2.0-COMPETITON Concorde-RUE CPLEX-BIGMIX CPLEX-RCW

R
id

ge
re

gr
es

si
on

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

RMSE=0.95 RMSE=0.41 RMSE=1.1 RMSE=0.20

R
an

do
m

Fo
re

st

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
1

10
2

10
3

RMSE=0.55 RMSE=0.45 RMSE=0.72 RMSE=0.03

Figure 4: Visual comparison of models for runtime predictions on unseen instances. In each plot, the x-axis denotes true runtime
and the y-axis runtime as predicted by the respective model. Predictions above 3 000 or below 0.001 are denoted by a blue x.

marks and competitions (e.g., MIPLIB; the SAT competition); and
sets of instances derived from practical applications (e.g., SAT-
encoded instances from software verification and bounded model
checking; industrial MIP instances ranging from machine job allo-
cation to wildlife conservation planning; TSP instances representing
drilling circuit boards and traveling between real cities). We have
also studied more than 50 state-of-the-art solvers, both open-source
projects and proprietary tools developed by industry. Our solvers
were both deterministic and randomized, and both complete (i.e.,
guaranteed to find a solution if one exists) and incomplete. In many
cases, we only had access to an executable of the solver, and in no
case did we make use of knowledge about a solver’s inner workings.

As mentioned earlier, we have also gone beyond quadratic basis
function regression to study more than a dozen other statistical mod-
eling techniques, including lasso regression, multivariate adaptive
regression splines, support vector machine regression, neural net-
works, Gaussian processes, regression trees and random forests (see
[29, 21]). We omit the details here, but state the conclusion: we
now prefer random forests of regression trees [6], particularly when
the instance distribution is heterogeneous. We briefly describe this
model class for completeness, but refer readers to the literature for
details [7, 6]. Regression trees are very similar to decision trees
(which we used above for predicting satisfiability status). However,
as a classification method, decision trees associate categorical labels
with each leaf (e.g., “satisfiable”; “unsatisfiable”), while regression
trees associate a real-valued prediction with each leaf. Random
forests report an average over the predictions made by each of an
ensemble of regression trees; these trees are made to differ by ran-
domizing the training process.

Figure 4 illustrates the results of our broader experience with EHMs
by highlighting three different solvers, each from a different domain.
In each case we give plots for both quadratic ridge regression and
random forests to show the impact of the learning algorithm. First
(column 1), we considered the prominent SAT solver Minisat 2.0 [9]

running on a very heterogeneous mix of instances from the inter-
national SAT competition. Whereas the competition subdivides in-
stances into categories (“industrial/application,” “handmade/crafted,”
and “random”), we merged all instances together. Likely because
of the heterogeneity of the resulting set, quadratic regression per-
formed relatively poorly here. Random forests yielded much more
reliable estimates; notably, they can partition the feature space into
qualitatively different parts, and they never predict runtimes larger
or smaller than the extrema observed in the training data. However,
observe that even the less accurate quadratic regression models were
usually accurate enough to differentiate between fast and slow runs
in this domain; see the sidebar on SATzilla. Second (column 2), we
studied the performance of the leading complete TSP solver, Con-
corde [2], on a widely used suite of rather homogeneous, randomly
generated TSP instances [23]. We again see good performance, now
for both quadratic regression and random forests. Third (columns
3 and 4), to show the effect of changing only the instance distribu-
tion, we consider one solver on two different distributions. IBM
ILOG CPLEX [22] is the most widely used commercial MIP solver.
BIGMIX is a highly heterogenous mix of publicly available mixed
integer programming problems. As with the mix of SAT instances
in our first benchmark, linear regression struggled with predictions
for some types of instances and occasionally made catastrophic mis-
predictions. Again, random forests performed much more robustly.
RCW models the dispersal and territory establishment of the red-
cockaded woodpecker conditional on decisions about which parcels
of land to protect [1]. The runtime of CPLEX for this domain was
surprisingly predictable; random forests yielded among the best
EHM performance we have ever observed.

Beyond Single Algorithms
Unlike average-case complexity results that characterize the inherent
complexity of a computational problem, EHMs always describe the
performance of a given algorithm. In some sense this is an inherent
limitation: a statistical approach cannot summarize the performance
of algorithms that have not yet been invented. However, there is a

CPLEX-BIGMIX CPLEX-RCW SPEAR-IBM SPEAR-SWV

Tr
ue

vs
Pr

ed
R

un
tim

es

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

RMSE = 0.54 RMSE = 0.49 RMSE = 0.42 RMSE = 0.45

Tr
ue

R
un

tim
es

c
o
n
fi
g

u
ra

ti
o
n
s

instances

easy hard

good

bad
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

c
o
n
fi
g

u
ra

ti
o
n
s

instances

easy hard

good

bad
0.5

1

1.5

2

c
o
n
fi
g

u
ra

ti
o
n
s

instances

easy hard

good

bad
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

c
o
n
fi
g

u
ra

ti
o
n
s

instances

easy hard

good

bad
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Pr
ed

ic
te

d
R

un
tim

es
c
o
n

fi
g

u
ra

ti
o

n
s

instances

easy hard

good

bad
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

c
o
n

fi
g

u
ra

ti
o

n
s

instances

easy hard

good

bad
0.5

1

1.5

2

c
o
n

fi
g

u
ra

ti
o

n
s

instances

easy hard

good

bad
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

c
o
n

fi
g

u
ra

ti
o

n
s

instances

easy hard

good

bad
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Visual comparison of models for runtime predictions on pairs of previously unseen test configurations and instances. Row 1:
In each plot, the x-axis denotes true runtime and the y-axis denotes runtime as predicted by the respective model. Each dot represents
one combination of an instance and parameter configuration, both previously unseen during model training. Rows 2 and 3: Actual
and predicted runtimes for each application domain. Each dot in the heat map represents the run of one parameter configuration on
one instance; the grayscale value represents runtime on a log10 scale (darker means faster).

useful way in which we can relax the single-algorithm restriction:
we can build a model that describes a space of existing algorithms.

More specifically, most state-of-the-art algorithms for hard combi-
natorial problems offer a range of algorithm parameters in order to
enable users to customize or tune the algorithm’s behaviour. We
define “parameters” very broadly, as encompassing any argument
passed to a solver that changes its behaviour (and, thus, its run-
time) but not the nature of the solution it returns. Parameters can
thus be continuous, categorical, ordinal, or Boolean, and can even
be conditional on values taken by other parameters. Importantly,
categorical and Boolean parameters can be used to represent very
abstract decisions—effectively selecting among unrelated blocks of
code—and can thereby open up vast algorithm design spaces. For
example, IBM ILOG CPLEX exposes 76 parameters (45 categorical,
6 Boolean, 18 integer, and 7 real-valued) [17]; a fairly coarse dis-
cretization of these parameters yields over 1047 different algorithm
instantiations with vastly different performance profiles. We call
such an instantiation of all parameters of a given algorithm to spe-
cific values a configuration. The second example of a parameterized
solver we use here is the SAT solver SPEAR [4], which exposes 26
parameters (7 categorical, 3 Boolean, 4 integer, and 12 real-valued),
giving rise to over 1017 different algorithm instantiations.

We now consider generalizing EHMs to describe such parameterized
algorithms. In principle, this is not much of a change: we consider
models that map from a joint space of configurations and instance

features to runtime predictions. The question is how well such an
approach can work. Before we can give an answer, we need to
decide how to evaluate our methods. We could test on the same
configurations that we used to train the EHM but on new problem
instances, on new configurations but on previously seen instances, or
on combinations of previously unseen configurations and instances.
The third case is the hardest; it is the only setting for which we
show results here. Figure 5 illustrates some representative results in
this setting, focusing on random forest models. The first row shows
scatterplots like those presented earlier, with each point representing
a run of a randomly selected, previously unseen configuration on
a previously unseen instance.We also provide a different way of
looking at the joint space of parameter configurations and instance
feature vectors. The second row shows the true runtimes for each
(configuration, instance) pair, sorting configurations by their average
performance and sorting instances by their average hardness. Thus,
the picture gives a snapshot of the runtime variation across both
instances and configurations, and makes it possible to gauge how
much of this variation is due only to differences between configura-
tions vs differences between instances. Finally, the third row shows
the predictions obtained from the EHM in the same format as the
second row. This gives a way of visually comparing model perfor-
mance to ground truth; ideally, the second and third rows would
look identical. (Indeed, when the two figures closely resemble each
other, the EHM can serve as a surrogate for the original algorithm,
meaning that the EHM can be substituted for the algorithm in an
empirical analysis of the algorithm’s performance; see [18].)

Application: Generating Hard Benchmarks
Realistic, hard benchmark distributions are important because
they are used as an objective measure of success in algorithm
development. However, it can sometimes be just as difficult
to find new, hard benchmarks as it is to find new strategies for
solving previously hard benchmarks. To fill this gap, EHMs
can be used to automatically adjust existing instance generators
so that they produce instances that are harder for a given set of
algorithms [26, 29].
We start with an instance generator that has parameters p. Such
generators are often simply used with default parameter settings;
however, to search for harder instances we instead sample each
parameter’s value uniformly from a fixed range. Call the resulting
distribution over instances D. Our goal is to sample from a new
distribution D′ over the same instances that weights instances by
their hardness for a given algorithm A. (Think of A as having
the best average runtime among all algorithms in a given set, or
as being a SATzilla-style selector among such algorithms.) We
can do this via a form of importance sampling. We construct an
EHM for A on D using our standard instance features f ; for an
instance x, call this model’s prediction Hf (x). We would like to
generate a large set of instances from D, weight each instance x
in proportion to Hf (x), and then sample a single instance from
the set in proportion to the weights. This approach works, but
requires a very large number of samples when hard instances are
rare in D. To improve performance, we learn a quadratic EHM
Hp that uses only the generator parameters p as features. We
can then sample instances x in proportion toD(x) ·Hp(x) rather
than sampling from D (by sampling directly from polynomial
function Hp, and then running the instance generator with the
resulting parameters), and then weight each sampled instance
x by Hf (x)/Hp(x). Hp thus guides our search towards harder
instances without biasing the weights. In experiments with the
Combinatorial Auction Test Suite [30] this approach increased
the mean hardness of generated instances by up to a factor of
100 [26, 29], and often created instances much harder than we
had ever observed using the generators’ default parameters.

The main takeaway from our experiments is that our models were
able to achieve high accuracies (RMSEs around 0.5; qualitative
similarity between the second and third rows) even on algorithm
configurations that were never examined during training. The first
column of Figure 5 concerns runtime predictions for CPLEX on
our heterogeneous mix of MIP instances. The instances in this
benchmark differ greatly in hardness, much more than the different
CPLEX configurations differ in performance (see Row 2). As a
result, instance hardness dominated runtimes and the model focused
on the (more important) feature space, at the expense of failing
to capture some of the performance difference between configura-
tions. Second, on RCW most of the (randomly sampled) CPLEX
configurations solved very few instances; we recorded such fail-
ures as very long runtimes. The model was nevertheless able to
identify which configurations were good and which instances were
easy. Finally, we consider predicting the runtime of SPEAR on two
sets of formal verification instances: IBMis a set of bounded model
checking instances [42], while SWVis a set of software verification
instances generated with the Calysto static checker [3]. For both of
these instance distributions, the runtime of SPEAR with different
configurations was predicted with a high degree of accuracy. Our
random forest models accurately predicted the empirical hardness
of instances, the empirical performance of configurations, and even
captured ways in which the two interact.

Application: Algorithm Configuration
Imagine that each time the designer of a heuristic algorithm faced
a choice about a given design element, she simply encoded it as
a free parameter of a single solver. In the end, her problem of
designing a good algorithm for a given problem domain would
be reduced to the stochastic optimization problem of finding
a configuration that achieved good performance [24, 14, 12].
We have applied automated methods for solving this problem to
identify novel algorithm configurations that have yielded orders of
magnitude speedups in a broad range of domains, including SAT-
based formal verification [15], MIP solving [17], and automated
planning [37]. One state-of-the-art method for solving this
problem is based on EHMs: sequential model-based algorithm
configuration (SMAC) [19] iterates between (1) using an EHM to
select promising configurations to explore next, (2) executing the
algorithm with these configurations, and (3) updating the model
with the resulting information. EHMs can also be used to select
configurations on a per-instance basis [16].

Take-Away Messages
Statistical methods can characterize the difficulty of solving in-
stances from a given distribution using the best available algorithms—
even when those algorithms are extremely complex and traditional
theoretical analysis is infeasible. Such empirical hardness models
are surprisingly effective in practice, across different hard combina-
torial problems, real-world instance distributions, and state-of-the-
art solvers. An analysis of these models can serve as a starting point
for new theoretical investigations into complexity beyond the worst
case, by identifying problem features that are predictive of hardness
or that suffice to predict an objective function (e.g., satisfiability
status) directly. In the context of highly parameterized algorithms
that span a large space of possible algorithm designs, we have found
that it is even possible to predict the runtime of previously untested
algorithm designs on previously unseen instances. Empirical hard-
ness models have proven useful in a variety of practical applications,
including the automatic design of algorithm portfolios, the auto-
matic synthesis of hard benchmark distributions, and the automatic
search for a performance-optimizing design in a large algorithm
design space. We have written open-source software for building
EHMs, analyzing them, constructing algorithm portfolios, automat-
ically configuring parameterized algorithms, and more: see http:
//www.cs.ubc.ca/labs/beta/Projects/Empirical-Hardness-Models/.

1. REFERENCES
[1] K. Ahmadizadeh, B. Dilkina, C.P. Gomes, and A. Sabharwal.

An empirical study of optimization for maximizing diffusion
in networks. In Principles and Practice of Constraint
Programming (CP’10), pages 514–521, 2010.

[2] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The
Traveling Salesman Problem: A Computational Study.
Princeton University Press, 2006.

[3] D. Babić and A. J. Hu. Structural Abstraction of Software
Verification Conditions. In Computer Aided
Verification (CAV’07), pages 366–378, 2007.

[4] D. Babić and F. Hutter. Spear theorem prover. Solver
description, 2007 SAT Competition, 2007.

[5] C. M. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

[6] L. Breiman. Random forests. Machine Learning, 45(1):5–32,
2001.

[7] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone.

Classification and Regression Trees. Wadsworth, Belmont,
California, 1984.

[8] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the
really hard problems are. In International Joint Conference on
Artificial Intelligence (IJCAI’91), pages 331–337, 1991.

[9] N. Eén and N. Sörensson. An extensible SAT-solver. In
Theory and Applications of Satisfiability Testing (SAT’04),
pages 502–518, 2004.

[10] J. Friedman. Multivariate adaptive regression splines. Annals
of Statistics, 19(1):1–141, 1991.

[11] M. Heule and H. v. Maaren. march_hi. Solver description,
SAT competition 2009, 2009.

[12] H.H. Hoos. Programming by optimisation. Communications
of the ACM, 55(2):70–80, February 2012.

[13] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to
automata theory, languages, and computation. Pearson
Education, 2007.

[14] F. Hutter. Automated Configuration of Algorithms for Solving
Hard Computational Problems. PhD thesis, University Of
British Columbia, Department of Computer Science,
Vancouver, Canada, October 2009.

[15] F. Hutter, D. Babić, H.H. Hoos, and A. J. Hu. Boosting
Verification by Automatic Tuning of Decision Procedures. In
Conference on Formal Methods in Computer-Aided
Design (FMCAD’07), pages 27–34, 2007.

[16] F. Hutter, Y. Hamadi, H.H. Hoos, and K. Leyton-Brown.
Performance prediction and automated tuning of randomized
and parametric algorithms. In Principles and Practice of
Constraint Programming (CP’06), pages 213–228, 2006.

[17] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Automated
configuration of mixed integer programming solvers. In
Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization
Problems (CPAIOR’10), pages 186–202, 2010.

[18] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Tradeoffs in the
empirical evaluation of competing algorithm designs. Annals
of Mathematics and Artificial Intelligence, 60(1):65–89, 2010.

[19] F. Hutter, H.H. Hoos, and K. Leyton-Brown. Sequential
model-based optimization for general algorithm configuration.
In Learning and Intelligent Optimization Conference
(LION’11), pages 507–523, 2011.

[20] F. Hutter, D. A. D. Tompkins, and H.H. Hoos. Scaling and
probabilistic smoothing: Efficient dynamic local search for
SAT. In Principles and Practice of Constraint
Programming (CP’02), pages 233–248, 2002.

[21] F. Hutter, L. Xu, H.H. Hoos, and K. Leyton-Brown.
Algorithm runtime prediction: the state of the art, 2013.
Accepted for publication in Artificial Intelligence; submitted
version available as arXiv:1211.0906.

[22] IBM. IBM ILOG CPLEX Optimizer – Data Sheet. Available
online: ftp://public.dhe.ibm.com/common/ssi/ecm/en/
wsd14044usen/WSD14044USEN.PDF, 2011. Version last
visited on January 26, 2012.

[23] D. S. Johnson. Random TSP generators for the DIMACS TSP
Challenge. http://www2.research.att.com/~dsj/chtsp/codes.tar,
2011. Version last visited on May 16, 2011.

[24] A. KhudaBukhsh, L. Xu, H.H. Hoos, and K. Leyton-Brown.
SATenstein: Automatically building local search SAT solvers
from components. In International Joint Conference on
Artificial Intelligence (IJCAI’09), pages 517–524, 2009.

[25] D. Knuth. Estimating the efficiency of backtrack programs.

Mathematics of Computation, 29(129):121–136, 1975.
[26] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden,

and Y. Shoham. Boosting as a metaphor for algorithm design.
In Principles and Practice of Constraint
Programming (CP’03), pages 899–903, 2003.

[27] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden,
and Y. Shoham. A portfolio approach to algorithm selection.
In International Joint Conference on Artificial
Intelligence (IJCAI’03), pages 1542–1543, 2003.

[28] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the
empirical hardness of optimization problems: The case of
combinatorial auctions. In Principles and Practice of
Constraint Programming (CP’02), pages 556–572, 2002.

[29] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical
hardness models: Methodology and a case study on
combinatorial auctions. Journal of the ACM, 56(4):1–52,
2009.

[30] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a
universal test suite for combinatorial auction algorithms. In
ACM Conference on Electronic Commerce (ACM-EC’00),
pages 66–76, 2000.

[31] D. Mitchell, B. Selman, and H. Levesque. Hard and easy
distributions of SAT problems. In Conference on Artificial
Intelligence (AAAI’92), pages 459–465, 1992.

[32] E. Nudelman, K. Leyton-Brown, G. Andrew, C. Gomes,
J. McFadden, B. Selman, and Y. Shoham. Satzilla 0.9. Solver
description, 2003 SAT Competition, 2003.

[33] E. Nudelman, K. Leyton-Brown, H.H. Hoos, A. Devkar, and
Y. Shoham. Understanding random SAT: Beyond the
clauses-to-variables ratio. In Principles and Practice of
Constraint Programming (CP’04), pages 438–452, 2004.

[34] M.R. Prasad, A. Biere, and A. Gupta. A survey of recent
advances in SAT-based formal verification. International
Journal on Software Tools for Technology Transfer,
7(2):156–173, 2005.

[35] J. R. Rice. The algorithm selection problem. Advances in
Computers, 15:65–118, 1976.

[36] B. Selman, H. J. Levesque, and D. Mitchell. A new method
for solving hard satisfiability problems. In Conference on
Artificial Intelligence (AAAI’92), pages 440–446, 1992.

[37] M. Vallati, C. Fawcett, A. E. Gerevini, H.H. Hoos, and
A. Saetti. Generating fast domain-optimized planners by
automatically configuring a generic parameterised planner. In
Automated Planning and Scheduling Workshop on Planning
and Learning (ICAPS-PAL’11), pages 21–27, 2011.

[38] L. Xu, H.H. Hoos, and K. Leyton-Brown. Hierarchical
hardness models for SAT. In Principles and Practice of
Constraint Programming (CP’07), pages 696–711, 2007.

[39] L. Xu, H.H. Hoos, and K. Leyton-Brown. Predicting
satisfiability at the phase transition. In Conference on
Artificial Intelligence (AAAI’12), pages 584 – 590, 2012.

[40] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown. SATzilla:
portfolio-based algorithm selection for SAT. Journal of
Artificial Intelligence Research, 32:565–606, June 2008.

[41] L. Xu, F. Hutter, H.H. Hoos, and K. Leyton-Brown.
Evaluating component solver contributions to portfolio-based
algorithm selectors. In Theory and Applications of
Satisfiability Testing (SAT’12), pages 228–241, 2012.

[42] E. Zarpas. Benchmarking SAT Solvers for Bounded Model
Checking. In Theory and Applications of Satisfiability
Testing (SAT’05), pages 340–354, 2005.

