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Abstract

In a landmark paper, Papadimitriou and Roughgarden described a
polynomial-time algorithm (“Ellipsoid Against Hope”) for computing
sample correlated equilibria of concisely-represented games. Recently,
Stein, Parrilo and Ozdaglar showed that this algorithm can fail to find
an exact correlated equilibrium. We present a variant of the Ellipsoid
Against Hope algorithm that guarantees the polynomial-time identification
of exact correlated equilibrium. Our algorithm differs from the original
primarily in its use of a separation oracle that produces cuts corresponding
to pure-strategy profiles. Our new separation oracle can be understood as a
derandomization of Papadimitriou and Roughgarden’s original separation
oracle via the method of conditional probabilities. We also adapt our
techniques to two related algorithms that are based on the Ellipsoid
Against Hope approach, Hart and Mansour’s communication procedure for
correlated equilibria and Huang and von Stengel’s algorithm for extensive-
form correlated equilibria, in both cases yielding efficient exact solutions.
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1 Introduction

A central topic of game theory is the study of solution concepts, which are rules
for predicting likely outcomes of the game under various models of rationality
of the players. Perhaps the best-known solution concept is Nash equilibrium, a
set of (randomized) strategies that are stable in the sense that no player could
increase her expected utility by unilaterally deviating to a different strategy.
First proposed by Aumann [1974; 1987], correlated equilibrium (CE) is another
important solution concept. Whereas in a Nash equilibrium players randomize
independently, in a correlated equilibrium players are allowed to coordinate their
behavior based on signals from an intermediary.



A fundamental task is the computation of a solution concept: given a specific
game instance, figuring out what the solution concept says about the likely
outcomes of the game. A relatively simple such problem is the identification of
a sample—for example, finding any Nash equilibrium of a given game. (Thus,
the computational problem of finding a sample equilibrium sidesteps the issue
of multiplicity of equilibria.) If the game is very small or has certain special
properties, it is possible to intuit an answer to such a question in an ad hoc
way. For all other cases, a methodical procedure (i.e., an algorithm) is required,
whether the question is to be answered by pen and paper or by a computer.
Economists and operations researchers have studied the computation of solution
concepts since the early days of game theory, from the linear programming
formulation of zero-sum games [von Neumann & Morgenstern, 1944] and Lemke
and Howson’s [1964] algorithm for computing a Nash equilibrium of bimatrix
games, to the development of algorithms for Nash equilibria in n-player games
(see, e.g., [Scarf, 1967; van der Laan et al., 1987; Govindan & Wilson, 2003] and
the survey by McKelvey and McLennan [1996]). One fundamental property of
an algorithm is the scaling behavior of its runtime as the size of its input grows.
If an algorithm runs in time polynomial in the size of its input, the algorithm is
generally considered to be efficient.

In this paper we consider the problem of computing a sample correlated
equilibrium given a finite, simultaneous-move game. It is known that correlated
equilibria of a game can be formulated as probability distributions over pure
strategy profiles satisfying certain linear constraints, and thus a CE can be found
by solving a linear program (LP) without an objective function, also known
as a linear feasibility program. If the game is represented in the normal form
representation, in which the game’s payoff function is stored as a multidimensional
table with one entry for each player’s payoff under each pure strategy profile,
then the size of this linear feasibility program is polynomial in the size of the
normal form representation of the game. Since there exist polynomial-time
algorithms for solving linear feasibility programs (e.g., the ellipsoid method), a
correlated equilibrium can be found in polynomial time. This attractive property
of the correlated equilibrium solution concept is in contrast with the case of Nash
equilibrium; recent results from the theoretical computer science community
[Goldberg & Papadimitriou, 2006; Daskalakis et al., 2009; Chen et al., 2009]
showed that the problem of finding a Nash equilibrium for games represented in
normal form is unlikely to admit a polynomial-time algorithm, even if the game
has only two players.’

The size of the normal form representation grows exponentially in the number
of players. This is problematic when games involve large numbers of players: it
is unreasonable to imagine even writing down such games in the normal form.
Fortunately, most large games of practical interest have highly structured payoff
functions, and thus it is possible to represent them compactly. Intuitively, this

1Some computer scientists have argued that such complezity results have implications on
whether it is reasonable to assume that equilibria will always be reached in practice. For
example, Kamal Jain has been widely quoted for the remark “if your laptop cannot find [an
equilibrium], neither can the market.”



helps to explain why people are able to reason about these games in the first
place: we understand the payoffs in terms of simple relationships rather than
in terms of enormous lookup tables. A line of research thus exists to look for
compact game representations that are able to succinctly describe structured
games, including work on graphical games [Kearns et al., 2001] and action-graph
games [Bhat & Leyton-Brown, 2004; Jiang et al., 2011]. Thus, it is also desirable
that an algorithm that computes a given solution concept be able to work directly
with compactly represented games. The previously mentioned algorithm for CE
no longer runs in polynomial time when the input is compactly represented, since
the size of the linear feasibility program for CE can be exponential in the input
size; furthermore, since a solution vector of such a linear feasibility program
(i.e., a CE) has an exponential number of components, specifying such a CE can
require an exponential amount of storage space.

The “Ellipsoid Against Hope” algorithm [Papadimitriou, 2005; Papadim-
itriou & Roughgarden, 2008] is a polynomial-time method for identifying a
(polynomial-size representation of a) CE, given a game representation satisfying
two properties: polynomial type, which requires that the number of players and
the number of actions for each player are bounded by polynomials in the size
of the representation, and the polynomial expectation property, which requires
access to a polynomial-time algorithm that computes the expected utility of
any player under any mixed-strategy profile. Many existing compact game
representations (including graphical games, symmetric games, congestion games,
polymatrix games and action-graph games) satisfy these properties. This im-
portant result extends CE’s attractive computational properties to the case of
compactly represented games; note in contrast that the problem of finding a Nash
equilibrium remains computationally difficult for many of the same compact
game representations [Goldberg & Papadimitriou, 2006; Jiang et al., 2011].

At a high level, the Ellipsoid Against Hope algorithm works on an unbounded
primal LP formulation (P) of CE and its infeasible dual (D). Although (D) has
an exponential number of constraints, one can apply the ellipsoid method, an
algorithm for solving LPs that terminates in polynomial time even when the
number of constraints is exponential, as long as a separation oracle is provided
[Grotschel et al., 1988]. The ellipsoid algorithm performs a polynomial number
of iterations, at each iteration maintaining an ellipsoid that is guaranteed to
contain a solution if one exists. It starts with a ball with a large enough radius
to guarantee this containment, and iteratively shrinks this ellipsoid until either
a solution is found, or the volume of the ellipsoid is small enough to certify the
infeasibility of the LP. At each iteration it queries a separation oracle, which
determines whether the queried point is feasible, and if not provides a cutting
plane, which is a hyperplane that separates the queried point and the feasible
set. It turns out that an efficiently-computable separation oracle exists for (D),
and as a result the ellipsoid method terminates in polynomial time. However,
since we already know that (D) is infeasible, what do we gain from verifying
this fact computationally? Papadimitriou and Roughgarden [2008] showed that
such a run of the ellipsoid method on this infeasible dual (D) provides enough
information to find a feasible solution of the primal (P), which yields a CE of



the game. Specifically, they argue that the polynomial-sized LP (D’) formed by
the generated cutting planes must also be infeasible. Solving the dual of (D’)
yields a CE, represented as a mixture of product distributions, with each product
distribution corresponding to a cutting plane generated by the separation oracle.

1.1 Recent Uncertainty About the Complexity of Exact
CE

In a recent paper, Stein, Parrilo and Ozdaglar [2010] raised two interrelated
concerns about the Ellipsoid Against Hope algorithm. First, they identified a
symmetric 3-player, 2-action game with rational? utilities on which the algorithm
can fail to compute an exact CE. Indeed, they showed that the same problem
arises on this game for a whole class of related algorithms. Specifically, if an
algorithm (a) outputs a rational solution, (b) outputs a convex combination
of product distributions, and (c¢) outputs a convex combination of symmetric
product distributions when the game is symmetric, then that algorithm fails
to find an exact CE on their game, because the only CE of their game that
satisfies properties (b) and (c) has irrational probabilities. This implies that any
algorithm for exact rational CE must violate (b) or (c).

Second, Stein, Parrilo and Ozdaglar also showed that the original analysis by
Papadimitriou and Roughgarden [2008] incorrectly handles certain numerical
precision issues, which we now briefly describe. Recall that a run of the ellipsoid
method requires as inputs an initial bounding ball with radius R and a volume
bound v such that the algorithm stops when the ellipsoid’s volume is smaller
than v. To correctly certify the (in)feasibility of an LP using the ellipsoid
method, R and v need to be set to appropriate values, which depend on the
maximum encoding size of a constraint in the LP. However (as pointed out by
Papadimitriou and Roughgarden [2008]), each cut returned by the separation
oracle is a convex combination of the constraints of the original dual LP (D)
and thus may require more bits to represent than any of the constraints in
(D); as a result, the infeasibility of the LP (D’) formed by these cuts is not
guaranteed. Papadimitriou and Roughgarden [2008] proposed a method to
overcome this difficulty, but Stein et al. showed that this method is insufficient
for finding an exact CE. For the related problem of finding an approximate
correlated equilibrium (e-CE), Stein et al. gave a slightly modified version of
the Ellipsoid Against Hope algorithm that runs in time polynomial in log % and
the game representation size.> For problems that can have necessarily irrational
solutions, it is typical to consider such approximations as efficient; however, the
computation of a sample CE is not such a problem, as there always exists a
rational CE in a game with rational utilities, since CE are defined by linear
constraints. It remained an open problem to determine whether the Ellipsoid
Against Hope algorithm can be modified to compute an exact, rational correlated

2In what follows, by “rational” we refer to rational numbers (ratios of integers) rather than
an assumption about agents maximizing their own utilities.
3An e-CE is a distribution that violates the CE incentive constraints by at most e.



equilibrium.*

1.2 Our Results

In this paper, we resolve this open problem by deriving a variant of the Ellip-
soid Against Hope algorithm algorithm that computes in polynomial time an
exact (and rational) correlated equilibrium given a game representation that
has polynomial type and satisfies the polynomial expectation property. Our
modification to the Ellipsoid Against Hope algorithm follows an alternate ap-
proach, which completely sidesteps the issues just discussed. Specifically, our
approach is based on the observation that if we use a separation oracle (for
the same dual LP formulation proposed by Papadimitriou and Roughgarden
[2008]) that generates cuts corresponding to pure-strategy profiles (instead of
Papadimitriou and Roughgarden’s separation oracle that generates nontrivial
product distributions), then these cuts are actual constraints in the dual LP,
as opposed to convex combinations of constraints. As a result we no longer
encounter the numerical accuracy issues that prevented the previous approaches
from finding exact correlated equilibria. Both the resulting algorithm and its
analysis are also considerably simpler than the original: standard techniques
from the theory of the ellipsoid method are sufficient to show that our algorithm
computes an exact CE using a polynomial number of oracle queries.

The key issue is the identification of pure-strategy-profile cuts. It is relatively
straightforward to show that such cuts always exist: since the product distribution
generated by the Ellipsoid Against Hope algorithm ensures the nonnegativity of
a certain expected value, then by a simple application of the probabilistic method
there must exist a pure-strategy profile that also ensures the nonnegativity of
that expected value. The key is to go beyond this nonconstructive proof of
existence to also compute pure-strategy-profile cuts in polynomial time. We show
how to do this by applying the method of conditional probabilities [Erdés &
Selfridge, 1973; Spencer, 1994; Raghavan, 1988], an approach for derandomizing
probabilistic proofs of existence. At a high level, our new separation oracle begins
with the product distribution generated by Papadimitriou and Roughgarden’s
separation oracle, then sequentially fixes a pure strategy for each player in a way
that guarantees that the corresponding conditional expectation given the choices
so far remain nonnegative. Since our separation oracle goes through players
sequentially, the cuts generated can be asymmetric even for symmetric games.
Indeed, we can confirm (see Section 4.2) that it makes such asymmetric cuts on
Stein, Parrilo and Ozdaglar’s symmetric game—thus violating their condition
(¢)—because our algorithm always identifies a rational CE.

Another effect of our use of pure-strategy-profile cuts is that the correlated
equilibria generated by our algorithm are guaranteed to have polynomial-sized
supports; i.e., they are mixtures over a polynomial number of pure strategy

4In a recent addendum to their original paper, Papadimitriou and Roughgarden [2010]
acknowledged the flaw in the original algorithm. We note also that Stein et al. subsequently
withdrew their paper from arXiv. It is our belief that their technical results are nevertheless
correct; we discuss them here because they help to motivate our alternate approach.



profiles. Correlated equilibria with polynomial-sized supports are known to exist
in every game (e.g., [Germano & Lugosi, 2007]); intuitively this is because CE are
defined by a polynomial number of linear constraints, so a basic feasible solution
of the linear feasibility program would have a polynomial number of non-zero
entries. Such small-support correlated equilibria are more natural solutions than
the mixtures of product distributions produced by the Ellipsoid Against Hope
algorithm: because of their simpler form they require fewer bits to represent
and fewer random bits to sample from; furthermore, verifying whether a given
polynomial-support distribution is a CE only requires evaluating the utilities
of a polynomial number of pure strategy profiles, whereas verifying whether a
mixture of product distributions is a CE requires evaluating expected utilities
under product distributions, which is generally more expensive. No tractable
algorithm has previously been proposed for identifying such a CE; thus, our
algorithm is the first to compute in polynomial time a CE with polynomial
support given a compactly-represented game. In fact, we show that any CE
computed by our algorithm corresponds to a basic feasible solution of the linear
feasibility program that defines CE, and is thus an extreme point of the set of
CE of the game.

Since Papadimitriou and Roughgarden’s [2008] proposal of the Ellipsoid
Against Hope algorithm for computing a CE, other researchers have proposed
algorithms for related problems based on a similar approach (which we call
the Ellipsoid Against Hope approach): first “solving” an infeasible LP using
the ellipsoid method with some separation oracle, then arguing that the LP
formed by the cutting planes is also infeasible, and finally solving the dual of the
latter polynomial-sized LP. For example, Hart and Mansour [2010] considered
the setting where each player initially knows only her own utility function,
and proposed a communication procedure that finds a CE with polynomial
communication complexity using a straightforward adaptation of the Ellipsoid
Against Hope algorithm. Huang and von Stengel [2008] proposed a polynomial-
time algorithm for computing a extensive-form correlated equilibrium (EFCE)
[von Stengel & Forges, 2008], a solution concept for extensive-form games, by
applying the Ellipsoid Against Hope approach to the LP formulation of EFCE.
For both algorithms, the separation oracle outputs a mixture of the original
constraints, and hence the flaws of the Ellipsoid Against Hope algorithm pointed
out by Stein et al. [2010] also apply. We show that our techniques can be
adapted to these two algorithms, yielding in both cases exact solutions with
polynomial-sized supports. In particular, we replace the original separation
oracles with “purified” versions that output cutting planes corresponding to the
original constraints.

The rest of the paper is organized as follows. We start with basic definitions
and notation in Section 2. In Section 3 we summarize Papadimitriou and
Roughgarden’s Ellipsoid Against Hope algorithm. In Section 4 we describe our
algorithm and prove its correctness. In Sections 5 and 6 we describe our fixes
to Hart and Mansour’s [2010] and Huang and von Stengel’s [2008] algorithms
respectively, and Section 7 concludes.



2 Preliminaries

We largely follow the notation of Papadimitriou [2005] and Papadimitriou and
Roughgarden [2008]. Consider a simultaneous-move game with n players. Denote
a player p, and player p’s set of pure strategies (i.e., actions) S,. Let m =
max, |Sp|. Denote a pure strategy profile s = (s1,...,s,) € S, with s, being
player p’s pure strategy. Denote by S_, the set of partial pure strategy profiles
of the players other than p. Player p’s utility under pure strategy profile s is u®.
We assume that utilities are nonnegative integers (but results in this paper can
be straightforwardly adapted to rational utilities). Denote the largest utility of
the game as u. Thus each utility value of the game can be encoded by at most
log, u bits.

A correlated distribution is a probability distribution over pure strategy
profiles, represented by a vector z € RM, where M = [1, ISp|- Then z; is the
probability of pure strategy profile s under the distribution z. A correlated
distribution x is a product distribution when it can be achieved by each player p
randomizing independently over her actions according to some distribution z?,
ie, x5 = Hp xf . Such a product distribution is also known as a mixed-strategy
profile, with each player p playing the mixed strategy xP.

A game representation is a method for encoding the information needed to
specify a game, i.e., to specify its number of players n, its set of pure strategies
Sy for each player p, and its utilities {u2}. An instance of a game representation
is a game encoded in that representation. The size of an instance is the amount
of data required to specify it. For example, the normal form representation
explicitly stores each utility value u? in a cell of a multidimensional table. The
size of this tableis n [ ], |S,| = nM, which dominates the amount of data required
to specify n and |S,|. Thus an instance of the normal form representation has
size ©(nM).

For games with structured utilities, it is possible to have a more compact game
representation. One type of structure is symmetry. A game is player-symmetric
when all players are identical and interchangeable. In a player-symmetric game, a
player’s utility depends only on the player’s chosen action and the configuration,
which is the vector of integers specifying the number of players choosing each
of the actions. As a result, player-symmetric games can be represented more
compactly than games in normal form: we only need to specify a utility value
for each action and each configuration. For a player-symmetric game with n
players and m actions per player, the number of configurations is ("er*l). With

m—1
m=1) numbers are required to specify the

fixed m, this grows like n™~!, and ©(n
game.

Throughout the paper (except Sections 5 and 6) we assume that a game is
given in a game representation satisfying two properties, following Papadimitriou

and Roughgarden [2008]:

e polynomial type: for all instances of the game representation, the number
of players and the number of pure strategies for each player are bounded
by polynomials in the size of the game instance.



e the polynomial expectation property: we have access to an algorithm that
given an instance of the game representation computes the expected utility
of any player p under any product distribution x, i.e., > g ubz,, in time
polynomial in the size of the game instance.

The normal form representation satisfies these properties, with the corresponding
expected utility algorithm being the trivial one that directly computes the
sum ) g ubx,. Papadimitriou and Roughgarden [2008] showed that many
compact game representations, including player-symmetric games, graphical
games, polymatrix games and congestion games, also satisfy these properties;
they gave a polynomial-time expected utility algorithm for each case. Jiang
et al. [2011] showed that action-graph games—games represented in a language
that unifies these and other existing compact representations—also satisfy these
properties.

Definition 2.1. A correlated distribution x is a correlated equilibrium (CE) if
it satisfies the following incentive constraints: for each player p and each pair of
her actions i,j € Sp,

ST b, — b i >0, (1)

seS_p

where the subscript “is” (respectively “js”) denotes the pure strategy profile in
which player p plays i (respectively j) and the other players play according to
the partial profile s € S_,.

Intuitively, when a trusted intermediary draws a strategy profile s from this
distribution, privately announcing to each player p her own component s,, p
will have no incentive to choose another strategy, assuming others follow the
suggestions. We write these incentive constraints in matrix form as Ux > 0.
Thus U is an N x M matrix, where N = Zp |S,|2. The rows of U, corresponding
to the left-hand sides of the constraints (1), are indexed by (p,i,7) where p is
a player and i, j € .S, are a pair of p’s actions. Denote by U, the column of U
corresponding to pure strategy profile s. These incentive constraints, together

with the constraints
x>0, Y a.=1, (2)
seS

which ensure that x is a probability distribution, form a linear feasibility program
that defines the set of CE. The largest value in U is at most u.

We define the support of a correlated equilibrium x as the set of pure strategy
profiles assigned positive probability by x. Germano and Lugosi [2007] showed
that for any n-player game, there always exists a correlated equilibrium with
support size at most 1+ > [Sp[(|Sp| —1) = N +1 = 3" [S,|. Intuitively,
such correlated equilibria are basic feasible solutions of the linear feasibility
program for CE, i.e., vertices of the polyhedron defining the feasible region.
Furthermore, these basic feasible solutions involve only rational numbers for
games with rational payoffs (see e.g. Lemma 6.2.4 of [Grotschel et al., 1988]).



3 The Ellipsoid Against Hope Algorithm

In this section, we summarize Papadimitriou and Roughgarden’s [2008] Ellipsoid
Against Hope algorithm for finding a sample CE, which can be seen as an
efficiently constructive version of earlier proofs [Hart & Schmeidler, 1989; Nau &
McCardle, 1990; Myerson, 1997] of the existence of CE. We will concentrate on
the main algorithm and only briefly point out the numerical issues discussed at
length by both Papadimitriou and Roughgarden [2008] and Stein et al. [2010],
as our analysis will ultimately sidestep these issues.
Papadimitriou and Roughgarden’s approach considers the linear program

maXsz (P)
Ux >0, x>0,

which is modified from the linear feasibility program for CE by replacing the
constraint ) g x5 = 1 from (2) with the maximization objective. (P) either
has x = 0 as its optimal solution or is unbounded; in the latter case, taking a
feasible solution and scaling it to be a distribution yields a correlated equilibrium.
Thus one way to prove the existence of CE is to show the infeasibility of the
dual problem

Uty < -1, y > 0. (D)

The Ellipsoid Against Hope algorithm uses the following lemma, versions of
which were also used by Nau and McCardle [1990] and Myerson [1997].

Lemma 3.1 ([Papadimitriou & Roughgarden, 2008]). For every dual vector
y >0, there exists a product distribution x such that xUTy = 0.> Furthermore
there exists an algorithm that given any y > 0, computes the corresponding x
(represented by x*, ..., x™) in time polynomial in n and m.

We will not discuss the details of this algorithm; we will only need the
facts that the resulting x is a product distribution and can be computed in
polynomial time. Note also that the resulting x is player-symmetric if the game
is player-symmetric and y is player-symmetric. Lemma 3.1 implies that the dual
problem (D) is infeasible (and therefore a CE must exist): zU”y is a convex
combination of the left hand sides of the rows of the dual, and for any feasible y
the result must be less than or equal to —1.

The Ellipsoid Against Hope algorithm runs the ellipsoid algorithm on the
dual (D), with the algorithm from Lemma 3.1 as separation oracle, which we
call the the Product Separation Oracle. At each step of the ellipsoid algorithm,
the separation oracle is given a dual vector y(*. The oracle then generates the
corresponding product distribution (¥ and indicates to the ellipsoid algorithm
that (z(WUT)y < —1 is violated by 3. The ellipsoid algorithm will stop after a

5For notational simplicity, throughout the paper we treat a vector (in this case x) as a row
vector when it is multiplied to the left of a matrix.



polynomial number of steps and determine that the program is infeasible. Let X
be the matrix whose rows are the generated product distributions (", ... z(%).
Consider the linear program

[XUT]y S _15 Yy 2 07 (Dl)

and observe that the rows of [XU7T]y < —1 are the cuts generated by the ellipsoid
method. If we apply the same ellipsoid method to (D’) and use a separation oracle
that returns the cut z(VUTy < —1 given query y, the ellipsoid algorithm would
go through the same sequence of queries (¥ and cutting planes (WU Ty < —1
and return infeasible. Presuming that numerical problems do not arise,® we will
find that (D’) is infeasible. This implies that its dual [UXT]a > 0, a > 0 is
unbounded and has polynomial size, and thus can be solved for a nonzero feasible
a. We can thus scale a to obtain a probability distribution. We then observe
that X7« satisfies the incentive constraints (1) and the probability distribution
constraints (2) and is therefore a correlated equilibrium. The distribution X7«
is the mixture of product distributions ("), ..., 2(E) with weights «, and thus
can be represented in polynomial space and can be efficiently sampled from.

One issue remains. Although the matrix XU is polynomial sized, computing
it using matrix multiplication would involve an exponential number of operations.
On the other hand, entries of XUT are differences between expected utilities
that arise under product distributions. Since we have assumed that the game
representation admits a polynomial-time algorithm for computing such expected
utilities, XU can be computed in polynomial time.

Lemma 3.2 ([Papadimitriou & Roughgarden, 2008]). There exists an algo-
rithm that given a game representation with polynomial type and satisfying the
polynomial expectation property, and given an arbitrary product distribution
x, computes xU” in polynomial time. As a result, XU can be computed in
polynomaal time.

4 Our Algorithm

In this section we present our modification of the Ellipsoid Against Hope al-
gorithm, and prove that it computes exact CE. There are two key differences
between our approach and the original algorithm for computing approximate

CE.

6Since each row of (D’)’s constraint matrix XUT may require more bits to represent than
any row of the constraint matrix U7 for (D), running the ellipsoid algorithm on (D’) with
the original bounding ball and volume lower bound for (D) would not be sound, and as a
result (D’) is not guaranteed to be infeasible. Indeed, Stein et al. [2010] showed that when
running the algorithm on their symmetric game example, (D’) would remain feasible, and thus
the output of the algorithm would not be an exact CE. Furthermore, since the only CE of
that game that is a mixture of symmetric product distributions is irrational, there is no way
to resolve this issue without breaking at least one of the symmetry and product distribution
properties of the Ellipsoid Against Hope algorithm. For more on these issues and possible
alternative ways to address them than that presented here, please see Papadimitriou and
Roughgarden [2008]; Stein et al. [2010]; Papadimitriou and Roughgarden [2010].
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1. Our modified separation oracle produces pure-strategy-profile cuts;

2. The algorithm is simplified, no longer requiring a special mechanism to deal
with numerical issues (because pure-strategy-profile cuts can be represented
directly as rows of (D)’s constraint matrix).

4.1 The Purified Separation Oracle

We start with a “purified” version of Lemma 3.1.

Lemma 4.1. Given any dual vector y > 0, there exists a pure strategy profile s
such that (Us)Ty > 0.

Remark. Lemma 4.1 only establishes the existence of such an s. Later in
this section we will prove Lemma 4.2, an efficiently constructive version of this
lemma. Although Lemma 4.1 is technically redundant, we nevertheless give its
simple proof to help provide intuition.

Proof. Recall that Lemma 3.1 states that given dual vector y > 0, a product
distribution x can be computed in polynomial time such that U7y = 0. Since
x[UTy] is a convex combination of the entries of the vector U7y, there must exist
some nonnegative entry of U7y. In other words, there exists a pure strategy
profile s such that (U)Ty > 2UTy = 0. O

The proof of Lemma 4.1 is a straightforward application of the probabilistic
method: since U7y is the expected value of (Us)Ty under distribution z,
which we denote F,,[(Us)Ty], the nonnegativity of this expectation implies the
existence of some s such that (Us)?y > 0. Like many other probabilistic proofs,
this proof is not efficiently constructive; note that there are an exponential
number of possible pure strategy profiles.

It turns out that for game representations with polynomial type and satisfying
the polynomial expectation property, an appropriate s can indeed be identified in
polynomial time. Our approach can be seen as derandomizing the probabilistic
proof using the method of conditional probabilities [Erdés & Selfridge, 1973;
Spencer, 1994; Raghavan, 1988]. At a high level, for each player p our algorithm
picks a pure strategy s,, such that the conditional expectation of (Us)”y given the
choices so far remains nonnegative. This requires us to compute the conditional
expectations, but this can be done efficiently using the expected utility subroutine
guaranteed by the polynomial expectation property.

Lemma 4.2. There exists a polynomial-time algorithm that given

e an instance of a game in a representation satisfying polynomial type and
the polynomial expectation property,

e a polynomial-time subroutine for computing expected utility under any
product distribution (as guaranteed by the polynomial expectation property),
and

11



Algorithm 1 Computes a pure strategy profile s such that (Us)Ty > 0.

1. Given y > 0, identify a product distribution x satisfying xU”y = 0, using
the algorithm described in Lemma 3.1.

2. Sequentially for each player p € {1,...,n},

a) iterate through actions s, € S,, and compute z(,_,, U’ using the
P P (p—sp)
algorithm described in Lemma 3.2, until we find an action s, € S,

such that [x(,HS;)UT} y > 0.
(b) set z to be @(p—ys).

3. The resulting x corresponds to a pure strategy profile s. OQutput s.

e a dual vector y > 0,
finds a pure strategy profile s € S such that (Us)Ty > 0.

Proof. Given a product distribution z, let z(,,,,) be the product distribution
in which player p plays s, and all other players play according to z. Since z is a
product distribution, x(pﬁsp)UTy is the conditional expectation of (Us)Ty given
that p plays sp, and furthermore we have for any p,

zUTy = Z [x(p_,sp)UTy] :v’s’p. (3)

Sp

Since z? is a distribution, the right hand side of (3) is a convex combination
and thus there must exist an action s, € S, such that z¢,_, \UTy > 2U"y.
Since x(,,,,) is a product distribution, this process can be repeated for each
player to yield a pure strategy profile s such that (Us)Ty > 2U”y. Since we
can get a product distribution z with zUTy = 0, this process yields (Us)Ty > 0.
This is formalized in Algorithm 1.

We now consider the running time of Algorithm 1. We observe that x remains
a product distribution throughout the algorithm and can thus be represented by
its marginals 2!, ..., z", requiring only polynomial space. Due to the polynomial
expectation property, the algorithm described in Lemma 3.2 is polynomial,
which implies that in Step 2a, for each s, € Sp, m(p_mp)UT can be computed in
polynomial time. Since Step 2a requires at most |S,| such computations, and
since polynomial type implies that n and |S,| are polynomial in the input size,
the algorithm runs in polynomial time. U

A straightforward corollary is the following:

Corollary 4.3. Algorithm 1 can be used as a separation oracle for the dual LP
(D) in the Ellipsoid Against Hope algorithm: for each query point y, the oracle
computes the corresponding pure-strategqy profile s according to Algorithm 1 and
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returns the half space (Us)Ty < —1. We call this the Purified Separation Oracle.
This separation oracle has the following properties:

e Each returned half space is one of the constraints of (D).

o Since Algorithm 1 iterates through the players sequentially, the generated
pure-strateqy profiles can be asymmetric even for symmetric games and
symmetric y.

e Since a pure-strateqy profile is a special case of a product distribution, the
resulting pure-strategy profile s also satisfies Lemma 3.1, with x being the
basis vector corresponding to s, i.e., with xs = 1 and its other entries being
zero.

4.2 The Simplified Ellipsoid Against Hope Algorithm

We now modify the Ellipsoid Against Hope Algorithm by replacing the Product
Separation Oracle with our Purified Separation Oracle. The rows of X in (D’)
become basis vectors corresponding to the pure-strategy profiles generated by
the oracle. Thus, we can write (D’) as

(U)'y<-1, y>0, (D")

where the matrix U’ = UX7T consists of the columns U, that correspond to
pure-strategy profiles s() generated by the separation oracle. Note that each
constraint of (D") is also one of the constraints of (D), and as a result neither
the coefficients nor the right-hand sides of (D”) have bit complexities greater
than in (D). Therefore, a starting ball and volume lower bound that are valid
for a run of the ellipsoid method on (D) is also valid for (D"). We thus avoid the
precision issues faced by the Ellipsoid Against Hope algorithm, and it is sufficient
to use standard values for the initial radius and volume lower bound, and
standard perturbation methods for dealing with non-full-dimensional solutions.
The resulting CE is a mixture over a polynomial number of pure strategy profiles.
We can make a further conceptual simplification of the algorithm: instead of
using X as in the Ellipsoid Against Hope algorithm, we can directly treat the
generated pure-strategy profiles as columns of U, and use U’ in place of UX ™.

We now formally state and prove our result. Note that although we only
briefly discussed the way numerical issues are addressed in the original Ellipsoid
Against Hope algorithm in Section 3, we do go into detail about how our
algorithm ensures its own numerical accuracy. That task is comparatively easy,
as it is sufficient for us to apply standard techniques from the theory of the
ellipsoid method. Our analysis makes use of the following lemma from Grotschel
et al. [1988].

Lemma 4.4 (Lemma 6.2.6, [Grotschel et al., 1988]). Let P = {y € RY|Ay < b}
be a full-dimensional polyhedron defined by the system of inequalities, with the
encoding length of each inequality at most . Then P contains a ball with radius
2-TN%¢, Moreover, this ball is contained in the ball with radius 25N*¢ centered
at 0.
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Algorithm 2 Computes an exact rational CE given a game representation
satisfying polynomial type and the polynomial expectation property.

1. Apply the ellipsoid method to (D), using the Purified Separation Oracle,
a starting ball with radius of R = u5" ® centered at 0, and stopping when
the volume of the ellipsoid is below v = ayu™" 5, where ay is the volume
of the N-dimensional unit ball.

2. Form the matrix U’ whose columns are the Uy, ..., Uyw) generated by
the separation oracle during the run of the ellipsoid method.

3. Compute a basic feasible solution 2’ of the linear feasibility program
Uz >0, a'>0, 172 =1, (P*)

by applying the ellipsoid method on the explicitly represented (P*) and
recovering a basis using, e.g., Algorithm 4.2 of Dantzig and Thapa [2003].

4. Output ' and sV ..., s(E) interpreted as a distribution over pure-strategy
profiles s, ..., s(¥) with probabilities .

We note that Lemma 4.4’s only restriction on P is full dimensionality; we do
not need to assume that P is bounded, or that P has full row rank.

Theorem 4.5. Given a game representation with polynomial type and satisfying
the polynomial expectation property, Algorithm 2 computes an exact and rational
CE with support size at most 1+ 3 |Sp|(|Sp| — 1) in polynomial time.

Proof. We begin by proving the correctness of Algorithm 2. This part of the
proof has three steps. (i) We show that the ellipsoid method” in Step 1 certifies
that (D) (and therefore (D)) is either infeasible or not full dimensional. Observe
that this argument is not sufficient to rule out the possibility that (D”) has a
non-full-dimensional (yet non-empty) feasible set. Intuitively this is because the
ellipsoid method, which relies on shrinking the volume of the candidate set, is
not able to distinguish between infeasibility and non-full-dimensional feasible
sets. (ii) To overcome this, we define (4), a perturbed version of (D”), and
show that it is infeasible. (iii) We show that it is sufficient for our purposes to
work with (4), because a feasible and normalized solution of (4)’s unbounded
dual is a CE, and can be computed by Step 3. Having proven the correctness
of Algorithm 2, we next show that the CE identified by the algorithm has the
required support size, and finally demonstrate that the algorithm terminates in
polynomial time.

First, we will show that the ellipsoid method in Step 1 correctly certifies
that the feasible set of (D) is either empty or not full dimensional. Suppose

"Note that the ellipsoid method is used twice in Algorithm 2, once in Step 1 to generate
U’, and once in Step 3 on a polynomial-sized system.

14



the contrary, i.e., the feasible set of (D) is non-empty and full dimensional.
Recall that the utilities of the games are nonnegative integers that are at most
u. Since the encoding length of each constraint of (D) is at most N log, u, then
by Lemma 4.4, the feasible set must contain a ball with radius v~ " 4, and thus
volume ayu~™ 57 and furthermore this ball must be contained in the ball with
radius u?N” centered at 0, which is the initial ball of our ellipsoid method in Step
1. Since at the end of Step 1 the ellipsoid method certifies that the intersection
of the initial ball and the feasible set has volume less than v = ayu="™"", we
reach a contradiction and therefore either the LP (D) must be infeasible or the
feasible set must not be full dimensional. Recall that the LP (D"”) is formed by
collecting the generated cutting planes, as done in Step 2 of Algorithm 2. Since
the largest magnitude of the coefficients in (D”) is also u, Step 1 is also a valid
run for (D”) and therefore either (D”) must be infeasible or the feasible set of
(D) must not be full dimensional.

Second, we show that a perturbed version of (D”) is infeasible. Fix p >
1. Consider the following LP, which is formed by modifying the constraints
(U"NTy < —1 of (D") by multiplying the RHS by p:

min 0 (4)
Uy < —p1
y=>0.
We claim that (4) is infeasible. Suppose otherwise: then there exists a y € RY

such that y > 0 and (U")Ty < —pl. Let v’ € RN be a vector such that
0<y;—y; < pN—_ul for all j. Then y’ > 0, and each component s of U7y’ satisfies

"y < )Ty + L3 U] 9
<—p+(p-1) (6)
=—1.

The first inequality (5) holds because (U))"(y' —y) = >, UZ(y; — y;) <
> |U4| |y§ —y;| < > US| pN;ul. The second inequality (6) holds because
each UY is an entry of the constraint matrix U of (P), with absolute value at
most u. Thus, any such gy’ is feasible for (D”). However, the set of all such
vectors ' is a full-dimensional cube. This contradicts the fact that (D”) is either

infeasible or not full dimensional, and therefore (4) is infeasible.
This means that (4)’s dual

max p17z’ (7)
U'z' >0
x>0

is unbounded (since it is feasible, e.g., with 2 = 0). Then a nonzero feasible
vector 2’ is (after normalization) a distribution over the pure strategy profiles
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corresponding to columns of U’. Treating it as a sparse representation of
a correlated distribution z, it satisfies the feasibility program for CE and is
therefore an exact CE.

This CE is exact but its support size could be greater than 143 |5 |(|Sp[—1)
(although as we argue below it is still polynomial). To get a CE with the required
support size, we notice that since (7) is unbounded, a feasible solution of the
bounded linear feasibility program (P*) is a CE, which we solve in Step 3 of
Algorithm 2. Note that (P*) has the same number of constraints as the feasibility
program for CE defined by (1) and (2), and that for each player p and action
i € Sp, the incentive constraint (p,i,¢) corresponds to deviating from action %
to itself and is therefore redundant. Thus the number of bounding constraints
of (P)is at most 143 [Sp|(|Sp| — 1) and therefore a basic feasible solution
x’ of (P*), which is the output of Algorithm 2, will have the required support
size. Since the coefficients and right-hand sides of (P*) are rational, then (by
e.g. Lemma 6.2.4 of Grotschel et al. [1988]) its basic feasible solution z’ is also
rational and can be represented using at most 4N3 log u bits.

We now consider the running time of Algorithm 2. Since Step 1 is a standard
run of the ellipsoid method, it terminates in a polynomial number of iterations.
For example if we use the ellipsoid algorithm presented in Theorem 3.2.1 of
Grotschel et al. [1988], then by Lemma 3.2.10 of Grotschel et al. [1988] the ratio
between volumes of successive ellipsoids vol(Eg1)/vol(Ey) < e~ /N With
the volume of the initial ellipsoid at most ay RY and stopping when volume is
below v, the number of iterations L is at most

5N [In(ayRY) —Inv]
=5N [5N*Inu+ 7N’ Inu]
= O(N®Inu),

which is polynomial in the input size since N = Zp |S,|? is polynomial. Since
each call to the separation oracle takes polynomial time by Lemma 4.2, Step 1
takes polynomial time. L being polynomial also ensures that (P*) has polynomial
size, and thus a basic feasible solution can be found in polynomial time in Step
3. O

We note that the estimates on R and v (and thus L) can be improved, but
we have satisfied our main goal here, which was proving that the running time
of our algorithm is polynomial.

The reader may wonder how our algorithm would deal with Stein et al.
[2010]’s counterexample, a symmetric game in which the only CE that is a convex
combination of symmetric product distributions has irrational probabilities.
Since we have proved that our algorithm computes a rational CE as a convex
combination of product distributions, it must violate the symmetry property.
Indeed as we discussed in Section 4.1, our Purified Separation Oracle can return
asymmetric cuts for symmetric games and symmetric queries, and thus for this
game it must return at least one asymmetric cut.
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5 Uncoupled Dynamics with Polynomial Com-
munication Complexity

Hart and Mansour [2010] considered the setting where each player initially
knows only her own utility function, and analyzed the communication complexity
for such uncoupled dynamics to reach various equilibrium concepts. They use
a straightforward adaptation of Papadimitriou and Roughgarden’s Ellipsoid
Against Hope algorithm to show that a CE can be reached using polynomial
communication. The recent discovery by Stein et al. [2010] of flaws of the
Ellipsoid Against Hope algorithm imply that Hart and Mansour’s procedure as
proposed would not reach an exact CE. We show that our modified version of
the Ellipsoid Against Hope algorithm can be straightforwardly adapted into a
polynomial communication procedure for exact CE.

Formally, in Hart and Mansour’s setting, each player p initially knows only
her utility function uP. No assumption is made on how the game is represented
and the cost of computation is of no concern; instead, we focus on the amount of
communication required to reach a CE. Hart and Mansour’s approach used the
following property of the Product Separation Oracle (Lemma 3.1): given y > 0,
the corresponding product distribution x depends only on y and not on the
utilities of the game. Although generating the cutting plane requires computing
2UT which does depend on the utilities, each entry (p,,7) of the vector zU”T
depends only on the utilities of player p.

We now describe Hart and Mansour’s procedure. A center (a designated
player that communicates with all other players) runs the Ellipsoid Against Hope
algorithm; when the Product Separation Oracle generates a product distribution
x, the center sends it to all players, and asks each player p to compute her
segment of the vector zU7, i.e., entries (p, i, j) for all 4,5 € S,, to send back to
the center. This exactly simulates the Ellipsoid Against Hope algorithm, and its
communication costs are those of sending the product distributions to players
and each player sending back her part of zU7.

This procedure can be modified to use the Purified Separation Oracle instead.
At Step 2a of the Purified Separation Oracle (Algorithm 1), for each s, € S,
the center sends z(,_,,) to all players and asks each to compute her segment of
T(pss,)U T, After assembling the vector T(pss,)U T from the segments, the center
checks whether [ac(p_wp)U T} y > 0. We call the resulting modified version of
Algorithm 1 the Uncoupled Purified Separation Oracle. It is straightforward to see
that this exactly simulates the Purified Separation Oracle. The communication
costs are those of the center sending the product distributions and the players
sending back segments of z(, U T, At most Y |S,| rounds of such exchange
are required for each call to the Purified Separation Oracle, therefore the total
amount of communication is polynomially bounded.

Corollary 5.1. Modify Hart and Mansour’s procedure by replacing its sep-
aration oracle with the Uncoupled Purified Separation Oracle. The resulting
communication procedure reaches an exact CE while both the number of bits of
communication required and the size of the support are polynomial in n, Zp |Sp]
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and the bit complexity of the game utilities.

6 Computing Extensive-form Correlated Equi-
libria

Recently, von Stengel and Forges [2008] proposed extensive-form correlated
equilibrium (EFCE), a solution concept for extensive-form games that is closely
related to correlated equilibrium. Whereas in a CE of the induced normal
form of a game the intermediary recommends a pure strategy (i.e., a move for
each information set) to each player at the start of the game, in an EFCE the
intermediary recommends a move to the player only when the corresponding
information set is reached. Here we focus on the computational problem of
finding an EFCE and refer interested readers to von Stengel and Forges [2008] for
details on EFCE as a solution concept. Huang and von Stengel [2008] described
a polynomial-time algorithm for computing sample extensive-form correlated
equilibria. Their algorithm follows a very similar structure as Papadimitriou
and Roughgarden’s Ellipsoid Against Hope algorithm, and the problems pointed
out by Stein et al. [2010] carry over. As a result, the algorithm can fail to find
an exact EFCE.

We extend our fix for Papadimitriou and Roughgarden’s Ellipsoid Against
Hope algorithm to Huang and von Stengel’s algorithm, allowing it to compute an
exact EFCE with polynomial-sized support. We first give a high-level description
of Huang and von Stengel’s algorithm, following Huang [2011].® The input
of the problem is an n-player extensive-form game with perfect recall. Each
nonterminal node of the game tree is a decision node for either one of the players
or Chance. H denotes the set of information sets, and C} denotes the set of
moves available from h € H, and T denotes the set of terminal nodes. Due to
the tree structure of the extensive form, for each node there exists a unique path
from the root of the tree to that node. Let s be a pure-strategy profile; s(h)
denotes the move at information set h € H. Let z be a distribution over the set
of pure-strategy profiles. Generically the size of z is exponential. Huang and von
Stengel [2008] showed that z is an EFCE if it satisfies a polynomial number of
linear constraints, which can be written as Az + Bv > 0 where v is an auxiliary
vector of polynomial size. They considered the exponential-sized primal LP

max Z s (8)

Az+Bv >0
z >0,

8We assume that readers are familiar with the standard concepts of extensive form games,
information sets, perfect recall, and behavior strategies.
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and its dual

Aly<—1 9)
BTy=0
y >0

which has a polynomial number of variables and exponential number of con-
straints. The following is a key lemma:

Lemma 6.1. [Huang & von Stengel, 2008] For all y > 0 such that BTy =
0, there exists a product distribution z such that zATy = 0. Given vy, the
corresponding z can be computed in polynomial time.

Unlike the simultaneous-move game case, z being a product distribution
(mixed-strategy profile) does not imply that it can be concisely represented, as
the number of pure strategies for each player can be exponential. Fortunately
the z constructed by Lemma 6.1 corresponds to a behavior strategy profile, which
specifies a distribution (denoted z”) over moves for each information set h.
Formally, given 2" for all h € H, the resulting distribution over pure-strategy
profiles is given by

VS, Zs = Z p(t)xh

teT:t agrees with s

where we say t agrees with pure-strategy profile s if all the moves by the players
on the path from the root to ¢ are given by s, p(t) is the product of probabilities
of moves by Chance along the path from the root to ¢, and z; =[], precedes ¢ zg(h)
is the product of probabilities of moves by the players along the path from the
root to t. Here by “h precedes t” we mean that h is an information set on the
path from the root to . Note that perfect recall ensures that an information
set h appears at most once along the path from the root to ¢. Such a behavior
strategy profile requires only a polynomial number of values to specify.

By the same argument as for the Ellipsoid Against Hope algorithm, Lemma 6.1
implies the infeasibility of (9), and can be used as a separation oracle for applying
the ellipsoid method on (9). In order to generate the cutting plane [zAT]y < —1,
the oracle needs to compute zA” whose inner dimensions are exponential. It
turns out that zAT can be formulated as expected utility computations which
can be carried out in polynomial time. Huang and von Stengel’s algorithm
thus proceeds similarly as in the Ellipsoid Against Hope algorithm to produce a
feasible solution to (8), which can be scaled to be an EFCE.

By the same argument as our fix of the Ellipsoid Against Hope algorithm, in
order to overcome the problems pointed out by Stein et al. [2010] it is sufficient
to construct a Purified Separation Oracle that given a y > 0 such that BTy = 0,
computes a pure-strategy profile s such that (A4,)Ty > 0. We construct such
an oracle using a similar application of the method of conditional probabilities.
For a behavior strategy profile z, an information set h, and a move d € Cj,
define z(;_.q) to be the behavior strategy profile that is identical to 2 except at
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information set h, where the corresponding player deterministically chooses d
instead. Our Purified Separation Oracle starts with the behavior strategy profile
constructed by Lemma 6.1, and uses the same algorithm as Algorithm 1, except
that instead of going through players in step 2a, we go through information sets
sequentially, and for each information set h we iterate through z(;_,q) until we
find a d* such that [z(h_nl*)AT]y > 0.

To show that our algorithm is correct, we use the following lemma:

Lemma 6.2. Given a behavior strategy profile z, for each information set h,

_ h
z= E Z(h—d)%d >
deCy,

where 2" is the probability of choosing d at h prescribed by z.

Zs = Z p(t)ﬂ:t,

teT:t agrees with s

Proof. Recall that

where z; =[], precedes t zf(h). Since the moves along the path to ¢ are uniquely
determined by ¢, x; is fully specified by the behavior strategies and does not
depend on s. We can write this in matrix form as z = Fz, with z € RI7|. Let
T(hsd) € R/ be the vector induced by behavior strategy profile Z(h—sd)- We
then have z(j,_,q) = F'z(4_q). Furthermore, we observe that for all h,

T = Z x(h%d)zfj.

deCyp

(It is straightforward to verify the above by considering the terminal nodes ¢ for
which h precedes ¢ and then the other terminal nodes.) We thus have

h h
z=Fx=F Z T(hod)Zd = Z Z(h—sd)?d s
deChp deChp

which is the required equality. O

The correctness and the polynomial running time of our algorithm for Purified
Separation Oracle then follow by the same argument as in the proof of Lemma
4.2. After modifying Huang and von Stengel’s algorithm by replacing their
separation oracle with our Purified Separation Oracle, the resulting algorithm
computes in polynomial time an exact EFCE that is a mixture of a polynomial
number of pure-strategy profiles.

Corollary 6.3. Given a game in extensive form, an exact EFCFE with polynomial-
sized support can be computed in polynomial time.
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7 Conclusion

We have proposed a polynomial-time algorithm, a variant of Papadimitriou and
Roughgarden’s Ellipsoid Against Hope approach, for computing an exact CE
given a game representation with polynomial type and satisfying the polynomial
expectation property. A key component of our approach is a derandomization
of Papadimitriou and Roughgarden’s separation oracle using the method of
conditional probabilities, yielding a polynomial-time separation oracle that
outputs cuts corresponding to pure-strategy profiles. Our approach is then
spared from dealing with the numerical precision issues that were a major focus
of previous approaches, and the algorithm is considerably simplified as a result.
Furthermore, the correlated equilibria returned by our algorithm have polynomial-
sized supports. We expect these properties of our algorithm to be independently
interesting, beyond its usefulness in resolving the recent uncertainty about the
computational complexity of identifying exact CE. For example, we show that
our techniques can be adapted to two existing algorithms that are based on
the Ellipsoid Against Hope approach, Hart and Mansour’s [2010] CE procedure
with polynomial communication complexity and Huang and von Stengel’s [2008]
polynomial-time algorithm for extensive-form correlated equilibria, yielding in
both cases exact solutions with polynomial-sized supports.

Our algorithm has additional practical benefits: the resulting cutting planes
are deeper cuts than those produced by the original oracle, resulting in a smaller
number of iterations required to reach convergence, albeit at the cost of more
work per iteration. It is also possible to return cuts corresponding to pure
strategy profiles with (e.g.) good social welfare, yielding a heuristic method for
generating correlated equilibria with good social welfare; we do note, however,
that finding a CE with optimal social welfare is generally NP-hard for many
game representations [Papadimitriou & Roughgarden, 2008].
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