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We consider the optimization of revenue in advertising auctions based on the generalized second-price (GSP)
paradigm, which has become a de facto standard. We examine several different GSP variants (including

squashing and different types of reserve prices), and consider how to set their parameters optimally. One
intriguing finding is that charging each advertiser the same per-click reserve price (“unweighted reserve
prices”) yields dramatically more revenue than the quality-weighted reserve prices that have become common
practice. This result is robust, arising both from theoretical analysis and from two different kinds of

computational experiments. We also identify a new GSP variant that is revenue optimal in restricted settings.
Finally, we study how squashing and reserve prices interact, and how equilibrium selection affects the revenue
of GSP when features such as reserves or squashing are applied.
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1. INTRODUCTION

Advertising on search result pages is a multi-billion dollar industry and the main source
of revenue for major search engines. This ad space is sold by auction on a per-keyword
basis. The underlying auction designs evolved in an ad hoc way, but all the major search
engines have converged on the same design—the weighted generalized second-price auction
(GSP; defined at the beginning of Section 2). Notably, this auction design is not incentive
compatible—it is typically not in an advertiser’s best interest to truthfully report her per-
click willingness to pay. In contrast, incentive compatible designs have been proposed by the
research community [e.g., Aggarwal et al. 2006], but not adopted by any search engine.

Revenue optimization is typically framed as a question of finding the revenue-maximizing
auction design. We instead ask “how can we optimize revenue within the basic GSP design?”
Specifically, we consider a range of different GSP variants that have been used in practice.
Each has adjustable parameters; we consider how these parameters should be set in order to
optimize revenue.

Our most striking finding is that a new reserve price scheme used by major search engines
(“quality-weighted reserves”: low-quality advertisers must pay more per click) is not a good
choice from a revenue perspective; the old scheme (“unweighted reserves”: all advertisers
have the same per-click reserve price) is substantially better. Indeed, this finding is not just
striking, but also robust: we offer evidence for it across three different analysis methods and
two different sets of assumptions about bidder valuations. We observed that richer GSP
variants sometimes outperformed GSP with unweighted reserves, but these variants tended
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Mirrokni and the anonymous reviewers for their comments and suggestions.
Author’s addresses: D. Thompson: K. Leyton-Brown: Computer Science Department, Vancouver, Canada.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
EC’13, June 16–20, 2013, Philadelphia, USA. Copyright c© 2013 ACM 978-1-4503-1962-1/13/06...$15.00



to incorporate (approximately) unweighted reserves. Three of our paper’s other contributions
also deserve mention here. First, we identify a new GSP variant that is provably revenue
optimal in some restricted settings, and that achieves very good revenue in settings where it is
not optimal. Second, we perform the first systematic investigation of the interaction between
reserve prices and another revenue-optimization technique called “squashing”. Interestingly,
we find that squashing can substantially improve the performance of quality-weighted reserve
prices, but this effect is almost entirely arises because squashing undoes the quality weighting.
Third, we perform the first systematic investigation of how equilibrium selection interacts
with revenue optimization techniques like reserve prices. Again, unweighted reserve prices
prove to be superior, especially from the perspective of optimizing the revenue of worst-case
equilibria.

This paper proceeds as follows. Section 2 describes the GSP variants and how they are
used in practice, the model of advertiser preferences, and finally a review of related work. In
Section 3 we perform a theoretical analysis of the problem of selling only a single position. The
simplicity of this setting allows us to identify properties of the optimal auction, and to contrast
them with the GSP variants. Section 4 covers our first computational analysis of auctions
involving multiple ad positions. Here, we we used efficient game representations to enumerate
the entire set of pure-strategy equilibria. Section 5 describes a further computational analysis,
where we performed very large-scale experiments, focusing on a commonly studied restricted
class of equilibria. Section 6 discusses some implications of our results and directions for
future work.

2. BACKGROUND

The weighted generalized second-price auction (which we hereafter call “vanilla GSP”) works
as follows. Each advertiser i is assigned a quality score qi ∈ (0, 1] by the search engine. We
assume that this quality score is equal to the probability that the advertiser’s ad would be
clicked on if it were shown in the top position. Each advertiser submits a bid bi that specifies
the maximum per-click price that she would be willing to pay. Ads are shown ordered by
biqi from highest to lowest. When a user clicks on an ad, the advertiser pays the minimum
amount she could have bid while maintaining her position in the ordering.

Three simple variants of vanilla GSP have been proposed—and used in practice—to
improve revenue.

(1) Squashing changes vanilla GSP by changing how bidders are ranked, according to a
real-valued parameter s: bidders are ranked by biq

s
i . When s = 1, squashing GSP is

identical to regular GSP. When s = 0, squashing GSP throws away all quality information
and ranks advertisers by their bids, promoting lower-quality advertisers and forcing
higher-quality advertisers to pay more to retain the same position. Intermediate values
of s ∈ (0, 1) smoothly interpolate between these two extremes [Lahaie and Pennock
2007].

(2) An unweighted reserve price (UWR) specifies a minimum per-click price r that every
advertiser must bid (and pay) in order for her ad to be shown.1 We call this per-click
reserve price “unweighted” because it is constant across all the advertisers, regardless of
their qualities.

(3) A quality-weighted reserve price (QWR) also specifies a minimum price that advertisers
must pay, but now this price is increased for higher-quality bidders. Specifically, each
advertiser i must pay at least r/qi per click.

1Note: we assume that advertisers who do not bid above their minimum bid do not affect the outcome in
any way. Particularly, this means that an advertiser who bids below her minimum bid does not affect the
prices that other agents must pay.



Squashing and both kinds of reserve prices have been used in practice (and in combination).
Google initially used a UWR of $0.05 across all keywords [Varian 2007], but switched to
QWR in 2005 [Google’s “Inside AdWords” blog 2006]. Yahoo! also had a UWR ($0.10), but
in a well-documented field experiment switched to QWR while both tailoring reserve prices
to specific keywords and dramatically them overall [Ostrovsky and Schwarz 2009]. Yahoo!
researchers have publicly confirmed that the auctions use squashing [Metz 2010]. However,
since search engines withhold many auction details (e.g., the methods used to calculate
quality scores and minimum bids), it is impossible to be certain of current practice.

Finally, we consider three richer GSP variants. The first two, UWR+Sq and QWR+Sq,
combine squashing with the two reserve price variants. The third—which to our knowledge
has not previously been discussed in the literature, and which we dub anchoring—imposes
unweighted reserve prices, but ranks advertisers based only on the portion of bids that
exceeds the reserve price, multiplied by the quality score: (bi − r)qi. Anchoring is interesting
because (as we show in Section 3) it is the optimal auction for some very simple settings; we
also found that it performed well in settings where it was not provably optimal.

2.1. Model

We focus on one of the most widely used models of advertiser preferences, due to Varian
[2007].2 In this model, a setting is specified by a 4-tuple 〈N, v, q, α〉: N is the set of agents
(numbered 1, . . . , n); vi specifies agent i’s value for a single click; qi specifies agent i’s quality
score, which is equal to the probability that i’s ad would receive a click if shown in the top
position (qi > 0); and αj is the probability that an agent with quality of 1.0 will receive a
click in position j. Observe that α1 = 1.0; we further assume that α is decreasing, meaning
that higher positions get more clicks. Thus, if agent i’s ad is shown in position j with a price
of p per click, then her expected payoff is αjqi(vi − p).

As in most literature on GSP [e.g., Edelman et al. 2007; Varian 2007]), we assume that
the setting is common knowledge to all the advertisers. This assumption is motivated by the
fact that in practice, advertisers can learn a great deal about each other through repeated
interactions. We assume that the search engine is able to directly observe and condition on
the number of bidders and their quality scores. As is common in the literature on revenue
optimization (going back to Myerson [1981] and continuing in work related to GSP [Ostrovsky
and Schwarz 2009; Sun et al. 2011]), we further assume that details of the setting (v, q, α) are
drawn from a distribution which is known to the auctioneer. Thus while the search engine is
unable to choose a reserve price conditional on the advertisers’ valuations, it can base this
decision on the distribution from which these values are drawn. We further assume that the
auctioneer can observe and condition on the number of agents, and on each agent’s quality
score. To understand this last assumption, note that the search engine directly observes
every click on an ad. Thus, even if qi begins as private information, it is impossible for an
advertiser to misreport this value. This assumption is a key distinction between our work
and previous work on revenue optimization (most notably, Sun et al. [2011]).

2.2. Related Work

Revenue has been a major consideration since the earliest equilibrium analysis of vanilla
GSP. Varian [2007] and Edelman et al. [2007] each analyzed a specific equilibrium refinement,
under which they found that GSP was at least as good at generating revenue as VCG.
Subsequent research has shown that VCG (and therefore GSP) achieves revenue close to
that of the optimal auction [Dughmi et al. 2009]—though in practice, this could mean that

2A wide range of richer models have been proposed in the literature, e.g., allowing consideration of externalities
[e.g., Ghosh and Mahdian 2008; Kempe and Mahdian 2008]; richer advertiser preferences [e.g., Blumrosen et al.
2008; Benisch et al. 2008]; and uncertainty [e.g., Gomes and Sweeney 2011]. Investigating the optimization
of GSP revenue under such models is an important direction for future work.



search engines leave billions of dollars on the table. Other work has looked into general
Nash equilibria (without the refinements mentioned earlier) and found that GSP has many
equilibria, ranging from some much worse than VCG [Thompson and Leyton-Brown 2009] to
others that are significantly better [Thompson and Leyton-Brown 2009; Lucier et al. 2012].

Lahaie and Pennock [2007] first introduced the concept of squashing. While squashing
behaves similarly to the virtual values of Myerson, in that it tends to promote weak bidders,
they proved that no squashing scheme (or indeed any other manipulation of quality scores)
can yield an optimal auction. (Our Figure 1 gives some visual intuition as to why this is true.)
They also performed substantial simulation experiments, demonstrating the effectiveness
of squashing as a means of sacrificing efficiency for revenue. Recently—and departing from
the model we consider in our own work—it has been shown that squashing can improve
efficiency when quality scores are noisy [Lahaie and McAfee 2011].

Reserve prices have been used in GSP auctions for years, but our theoretical understanding
of their effects is still relatively limited. Since weighted GSP has the same outcome as VCG
in many analyses (e.g., Aggarwal et al. [2006] and the Bayesian analyses of Varian [2007]
and Gomes and Sweeney [2011]), one could infer that weighted GSP with a weighted reserve
would have the same outcome as VCG with an unweighted reserve, which often corresponds
to the optimal auction of Myerson [1981]. Ostrovsky and Schwarz [2009] showed that GSP
with weighted reserves is not quite equivalent to the optimal auction in the case of asymmetric
bidders. Recently, Sun et al. [2011] showed that GSP with weighted reserves is optimal when
the quality score is part of the advertisers’ private information. However, the question of
how to optimize revenue in the arguably more realistic case where quality scores are known
to the auctioneer remains open. Despite the fact that squashing and reserve prices have
been used together in practice, we are aware of no studies of how they interact. Further,
little is known about how equilibrium selection affects the revenue of GSP with reserves or
squashing.

3. FIRST ANALYSIS: SINGLE-SLOT AUCTIONS WITH KNOWN QUALITY SCORES

For our first analysis of the problem of revenue optimization in GSP, we consider an extremely
restricted case—selling a single slot to advertisers with independent, identically distributed
per-click valuations, but known quality scores. We restrict ourselves to a single slot because
it allows us to rely directly upon Myerson’s characterization to identify the optimal auction.
Observe that our use of Varian’s model in this setting is less restrictive than it might appear:
richer models such as cascade [e.g., Ghosh and Mahdian 2008; Kempe and Mahdian 2008]
and position preferences [e.g., Blumrosen et al. 2008; Benisch et al. 2008] all collapse to
Varian’s model in the single-slot case.

First, we consider the problem of which kind of reserve prices are optimal.

Proposition 3.1. The optimal auction uses the same per-click reserve price for all bid-
ders in any one-position setting for which all agents’ per-click valuations (v) are independently
drawn from a common, regular distribution g.

Proof. First, observe that although per-click valuations are identically distributed in
this setting, agents’ per-impression valuations (denoted V) are not. If an agent i’s per-click
valuation is vi, then her per-impression valuation (given qi) is qivi = Vi. Because the
auctioneer is effectively selling impressions, it is the latter value that matters. Let fi and Fi

denote the probability density function and cummulative distribution function of Vi
As was shown by Myerson [1981], when f is regular the optimal auction allocates by

virtual values ψ:

ψi(Vi) = Vi −
1− Fi(Vi)
fi(Vi)

. (1)



Table I. Comparing GSP variants for two bidders with
q1 = 1, q2 = 1/2, and v1, v2 ∼ U(0, 1).

Auction Revenue Parameter(s)

VCG/GSP 0.208 —
Squashing 0.255 s = 0.19

QWR 0.279 r = 0.375
UWR 0.316 r = 0.549

QWR+Sq 0.321 r = 0.472, s = 0.24
UWR+Sq 0.322 r = 0.505, s = 0.32

Anchoring 0.323 r = 0.5

For any per-click valuation distribution g, we can identify the per-impression valuation
distribution for an agent with quality qi: f(qivi) = g(vi)/qi and F (givi) = G(vi). Substituting
these into (1) gives

ψi(qivi) = qivi −
1−Gi(vi)

gi(vi)/qi
= qi

(
vi −

1−Gi(vi)

gi(vi)

)
. (2)

The value vi that makes this expression equal to zero is independent of qi, and so the optimal
per-click reserve is independent of qi.

Next, we consider a simple value distribution: the uniform one. Because this case has such
a simple functional form, it is easy to identify the optimal auction for such bidders. In fact,
the optimal auction for the uniform distribution is precisely the anchoring rule described
earlier.

Proposition 3.2. The anchoring GSP auction is optimal in any one-position setting
for which (1) all the agents’ per-click valuations (v) are independently drawn from a uniform
distribution on [0, v] (hereafter U(0, v)), and (2) each agent i’s quality score qi is known to
the auctioneer.

Proof. For valuations from U(0, x), f(v) = 1/x and F (v) = v/x. Note that for every
agent i, x corresponds to i’s maximum possible per-impression valuation qiv. Substituting
these into Equation (1) gives

ψi(qivi) = qivi −
1− qivi/(qiv)

1/(qiv)
= qi(2vi − v). (3)

Thus, the optimal per-click reserve price r∗i occurs at ψi(qiri) = 0, ri = v/2 in this case.
In the optimal auction, advertisers are ranked by ψ(qivi) = qi(2vi − v) ∝ qi(vi − r∗i ), and so
the anchoring auction is optimal.

However, not all value distributions give rise to optimal auctions with simple (e.g., linear)
forms. Consider the log-normal distribution, which some researchers have argued is a good
model of real-world bidder valuations [Lahaie and Pennock 2007; Ostrovsky and Schwarz
2009]. The optimal auction for log-normal distributions (of course) uses unweighted reserve
prices, and behaves similarly to anchoring when bids are close to the reserve. However, far
from the reserves, the optimal auction’s allocation more closely resembles vanilla GSP. (See
Figure 1 for a visualization of the optimal auction for uniform valuations and Figure 4 for a
visualization of the optimal auction for log-normal valuations.)

The uniform distribution also makes it easy to calculate the optimal auction’s expected
revenue. We considered the case of two bidders, one with high quality (q1 = 1) and one
with lower quality (q2 = 1/2), and calculated the optimal parameter settings for each of the
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Fig. 1. Allocation functions visualized (regions in which agent 1 wins are dark green; regions where agent 2
wins are yellow.) Left: the efficient (VCG) auction; middle: the revenue-optimal auction; right: the optimal
squashing auction. Note that squashing changes the slope of the dividing line, while the optimal auction
transposes it without changing the slope. (Specifically, the optimal auction “anchors” the dividing line to the
point where every agent bids his reserve price.) This provides intuition for the result by Lahaie and Pennock
[2007] that no combination of squashing and reserve prices can implement the optimal auction.

GSP variants defined above (see Table I).3 While anchoring (of course) generated the most
revenue, other mechanisms could also be configured to achieve very nearly optimal revenues:
reserves and squashing used together were ∼ 99% optimal, and UWR was ∼ 98% optimal.
Squashing and QWR were far behind (at ∼ 79% ∼ 83% respectively).

We can gain insight into the GSP variants’ similarities and differences by visualizing
their allocation functions, for the same setting with two bidders with uniformly distributed
valuations and different quality scores (see Figures 1–3). In each case, the x and y axes
correspond to the per-click valuations of agents 1 and 2 respectively. The green region, yellow
region and white region respectively indicate joint values for which agent 1 wins, agent 2
wins, and neither agent wins. The dashed line indicates the dividing line of the efficient
allocation, with agent 1 winning below the line and agent 2 winning above it.

In summary, this section considered single-slot auctions with i.i.d. per-click values, and
obtained the following main findings:

(1) the optimal auction uses unweighted reserve prices;
(2) when values are uniform, anchoring GSP is optimal;
(3) in a very restricted uniform setting, the richer mechanisms (anchoring, QWR+sq, and

UWR+sq) achieve approximately equal revenue when optimized, and are slightly better
than UWR which is better than QWR and squashing.

4. SECOND ANALYSIS: ALL PURE NASH EQUILIBRIA

As mentioned earlier, it is widely known that GSP has multiple Nash equilibria that can yield
substantially different revenue and social welfare. For our second analysis, we investigated
how equilibrium selection affects GSP and the six GSP variants by directly calculating
their pure strategy Nash equilibria. To do this, we leverage the action-graph game (AGG)
representation [Jiang et al. 2011]. Using an appropriate encoding, it is possible to efficiently
encode GSP games as polynomial-sized, computationally usable AGGs [Thompson and

3Because of the simplicity of the model, we could calculate the expected revenues numerically (to 10−5

accuracy). To find the optimal parameter settings, we used grid search with increments of 0.001 for r and
increments of 0.01 for s.
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Fig. 2. Left: the optimal UWR auction; right: the optimal QWR auction. Note that the optimal unweighted
reserve is higher than the reserve used by the optimal auction (0.588 rather than 0.5), and that agent 2 only
wins when agent 1 does not meet his reserve, because 1’s quality is much higher. Also, note the compromise
involved in quality-weighted reserve prices: because the reserve prices must correspond to a point on the
efficient dividing line, obtaining a reasonable reserve for agent 1 (relative to the optimal auction) results in a
much-too-high reserve for agent 2. Because of this compromise, QWR generates ∼ 13% less revenue than
UWR. Note that whenever agent 1 exceeds his reserve price in UWR, he wins regardless of agent 2’s bid.
For multi-slot UWR auctions, this can have an unexpected side effect: it can be impossible for a high-quality
advertiser to win the second position.
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Fig. 3. Left: the UWR+Sq auction; right: the QWR+Sq auction. Both have reserves that are much closer to
the reserves of the optimal auction (and both are within ∼ 1% of revenue-optimal), but both use substantial
squashing (0.2 and 0.3 respectively, where squashing of 0 indicates completely disregarding quality scores).

Leyton-Brown 2009]. Further, using support enumeration, it is possible to enumerate all4

the pure strategy Nash equilibria of an AGG [Porter et al. 2008; Thompson et al. 2011].
For this set of experiments we used a uniform distribution5 over settings: drawing each

agent’s valuation from U(0, 25), each agent’s quality score from U(0, 1), and αk+1 from
U(0, αk). We generated 100 5-bidder, 5-slot settings. (Observe that our use of reserves implies

4As is common in worst-case analysis of equilibria of auctions, [e.g., Roughgarden and Tardos 2012;
Caragiannis, Kaklamanis, Kanellopoulos, Kyropoulou, Lucier, Paes Leme, and Tardos Caragiannis et al.] we
assume that bidders are conservative, i.e., no bidder ever follows the weakly dominated strategy of bidding
more than his valuation. Without this assumption, many implausible equilibria are possible, e.g., even
single-good Vickrey auctions have equilibria that are unboundedly far from efficient, and unboundedly far
from the revenue of truthful bidding.
5We could not get meaningful results for log-normal distributions. In a log-normal distribution, a large
fraction of the expected revenue is contributed by a small fraction of instances involving bidders with
exceptionally high quality scores and valuations. Thus, accurate expected-revenue estimates require many
more samples than we could practically generate.
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Fig. 4. The optimal auction for log-normal valuations (µ = 0 and σ = 0.25) and plotting valuations up to

the 99.9th% quantile. This auction resembles anchoring (shown with the solid black line) when values are
below or near the reserve price. As values get further from the reserve, the allocation tends towards the
efficient auction.

Table II. Comparing the various auction variants given their optimal parameter settings (Left: Worst-case
equilibrium; Right: Best-case equilibrium) Bold indicates variants that are significantly better than all other
variants, but not significantly different from each other (based on p ≤ 0.05 with Bonferroni correction).

Auction Revenue Parameter(s)

Vanilla GSP 3.814 —
Squashing 4.247 s = 0.4

QWR 9.369 r = 9.0
Anchoring 10.212 r = 13.0
QWR+Sq 10.217 r = 15.0, s = 0.2

UWR 11.024 r = 15.0
UWR+Sq 11.032 r = 15.0, s = 0.6

Auction Revenue Parameter(s)

Vanilla GSP 9.911 —
QWR 10.820 r = 5.0

Squashing 11.534 s = 0.2
UWR 11.686 r = 11.0

Anchoring 12.464 r = 11.0
QWR+Sq 12.627 r = 7.0, s = 0.2
UWR+Sq 12.745 r = 9.0, s = 0.2

that not all ads will be shown for every realization of bidder values.) Every auction has a
minimum bid of 1 bid increment per click, with ties broken randomly and prices rounded up
to the next whole increment. We used grid search to explore the space of possible parameter
settings: We varied reserve prices between 0.1 and 1 in steps of 0.1 (this range only affects
low quality advertisers and only in QWR), and between 1 and 25 in steps of 2. We varied
squashing power between 0 and 1 in steps of 0.2.

As with our previous two-bidder, one-slot analysis, we used grid search to explore the space
of possible reserve prices and squashing factors. Specifically, we computed all pure-strategy
Nash equilibria of every one of our 100 perfect-information auction settings, and every
discretized setting of each GSP variant’s parameter(s). For each variant we identified the
parameter settings that maximized: (i) the revenue of the worst-case equilibrium, averaged
across settings; and (ii) the revenue of the best-case equilibrium, again averaged across
settings.

Broadly, we found that every reserve price scheme dramatically improved worst-case
revenue, though UWR was particularly effective. Squashing did not help appreciably with
the revenue of worst-case equilibria (see Figure 5). Comparing the mechanisms (Table II), we
found that UWR and UWR+Sq were among the best and were dramatically better than any
other mechanism in worst-case equilibria. Also, we noticed that optimizing for worst-case
equilibria consistently yielded higher reserve prices than optimizing for best-case equilibria.

In summary, this setting enumerated the equilibria of perfect-information, 5-slot, 5-bidder
ad auction settings with independent, uniform valuations, and found that:

(1) There is a huge gap between best- and worst-case equilibria (over 2.5× for vanilla GSP).
Squashing does not help to close this gap, but reserve prices do.



(2) The optimal reserve price is much higher (for any GSP variant) when optimizing
worst-case revenue than when optimizing best-case revenue.

(3) When considering best-case equilibria, the revenue ranking remains roughly the same as
in our simple 2-bidder, 1-slot analysis (Anchoring ' QWR+sq ' UWR+sq > UWR >
Squashing > QWR). When considering the worst-case equilibria, the revenue ranking
changes slightly (UWR ' UWR+sq > Anchoring ' QWR+sq > QWR > Squashing).

5. THIRD ANALYSIS: EQUILIBRIUM REFINEMENT

For our third analysis, we again considered multiple-slot settings. In this case we solved the
equilibrium selection problem by considering the perfect-information Nash equilibrium in
which each agent’s expected payment is equal to what she would pay in a dominant-strategy
truthful mechanism with the same allocation function as the corresponding GSP variant.
This refinement has been used extensively in the analysis of vanilla GSP, where it is the
unique Nash equilibrium equivalent to VCG’s truthful equilibrium (i.e., one that chooses
the same outcome and charges the same expected payments). When applied to vanilla GSP,
this equilibrium has a number of desirable properties:

— It is guaranteed to exist (provided that bids are continuous) and is computable in
polynomial time [Aggarwal et al. 2006].

— The outcome is a competitive, symmetric and envy-free equilibrium [Varian 2007; Edelman
et al. 2007]

— The equilibrium is impersonation-proof [Kash and Parkes 2010].
— It does not violate the non-contradiction criterion (i.e., we should not be interested in

equilibria of the perfect-information game that generate more expected revenue than the
optimal auction) [Edelman and Schwarz 2010].

This equilibrium refinement can also be applied to other GSP variants (Lahaie and Pennock
[2007] used it to analyze squashing, and Edelman and Schwarz [2010] used it to analyze
reserve prices). This equilibrium is guaranteed to exist for all of our GSP variants because
they are all monotonic (i.e., increasing an agent’s bid weakly increases his position and
therefore his expected number of clicks).

Although we focus on this equilibrium for mainly economic reasons, this choice also has
computational advantages. Specifically, it is possible to compute the payments very quickly
using the algorithm of Aggarwal et al. [2006] (see Figure 6).

For the experiments presented in this section, we considered two distributions:

— Uniform, where each agent’s valuation is drawn from U(0, 25), each agent’s quality score
is drawn from U(0, 1), and αk+1 is drawn from U(0, αk) (as in Section 4);

— Log-normal, where each agent’s valuation and quality are drawn from log-normal
distributions, and valuation and quality are positively correlated using a Gaussian copula
[Nelsen 2006]. The exact parameters were provided to us by Sébastien Lahaie of Yahoo!
Research, who derived it from confidential bidder data. Although we cannot disclose them,
we can say that the distribution is a refinement of the distribution studied in Lahaie and
Pennock [2007].

From the uniform distribution, we sampled 1000 5-bidder, 5-slot settings; for the log-normal
distribution we sampled 10000 5-bidder, 5-slot settings.6 To explore auction parameters, we
used a simple grid search. We varied reserve prices between 0 and 30 in steps of 2, between
30 and 100 in steps of 10, between 100 to 1000 in steps of 100, and from 1000 to 10000 in

6A substantial fraction of the expected revenue in log-normal settings comes from rare, high valuation
bidders. Thus, the expected revenue had much higher variance than in the uniform case; we thus needed
many more samples to reduce noise and obtain statistically significant results.
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Fig. 5. Depending on parameter settings, revenue can vary dramatically between worst- and best-case
equilibria. Squashing has almost no effect on worst-case equilibrium, while any reserve price scheme can
substantially improve it. (Top left: squashing; top right: anchoring; middle left: UWR; middle right: QWR;
bottom left: UWR+sq (s = 0.2); bottom right: QWR+sq (s = 0.2))
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Fig. 7. The optimal squashing power is zero or close to it. Squashing offers modest revenue gains given a
uniform value distribution (left) and substantial gains given a log-normal value distribution (right).

steps of 1000. We varied squashing power between 0 and 1 in steps of 0.25. Our objective
was expected revenue averaged across all samples.

We began by investigating the optimal parameter settings for each mechanism. For
squashing, the optimal squashing power was 0 for log-normal distributions (as was also
observed in previous work [Lahaie and Pennock 2007]), but greater than zero for uniform
distributions, where squashing was also somewhat less effective (see Figure 7). UWR and
anchoring had similar optimal reserve prices, which were dramatically different from QWR’s
optimal reserve (see Figure 8). Adding squashing to UWR produced some improvements
and had little effect on the optimal reserve price (see Figure 9). QWR greatly benefited from
squashing, but the optimal reserve price was extremely sensitive to the squashing parameter
(see Figure 10).

We then compared GSP variants (summarized in Table III). We found that among simple
variants UWR was clearly superior to both squashing and QWR. The richer variants—
anchoring, QWR+Sq and UWR+Sq—all performed comparably well (within ∼ 2% of each
other), though QWR+Sq was consistently the worst.

Interestingly, QWR+Sq was only competitive with the other top mechanisms when
squashing power was set close to zero. Observe that squashing has two effects when added
to QWR: it changes the ranking among bidders who exceed their reserve prices, but it also
changes the reserve prices. As squashing power gets closer to zero, reserve prices tend towards
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Fig. 8. All three reserve-based variants (anchoring, QRW and UWR) provide substantial revenue gains.
Anchoring is slightly better than UWR, and both are substantially better than QWR. (left: uniform; right:
log-normal)
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Fig. 9. Adding squashing to UWR provides modest marginal improvements (compared to the optimal
unweighted reserve price with no squashing) and does not substantially affect the optimal reserve price. (left:
uniform; right: log-normal)

Table III. Comparing the various auction variants given their optimal parameter settings. Note that in this analysis,
vanilla GSP is equivalent to VCG. (Uniform distribution to the left and log-normal distribution to the right) Bold
indicates variants that are significantly better than all other variants, but not significantly different from each
other. (p ≤ 0.05 with Bonferroni correction.)

Auction Revenue Parameter(s)

Vanilla GSP 7.737 —
Squashing 9.123 s = 0.25

QWR 10.598 r = 8.0
UWR 12.026 r = 14.0

QWR+Sq 12.046 r = 12.0, s = 0.25
UWR+Sq 12.220 r = 12.0, s = 0.25
Anchoring 12.279 r = 12.0

Auction Revenue Parameter(s)

Vanilla GSP 20.454 —
QWR 48.071 r = 400.0

Squashing 53.349 s = 0.0
QWR+Sq 79.208 r = 20.0, s = 0.0

UWR 80.050 r = 20.0
Anchoring 80.156 r = 20.0
UWR+Sq 81.098 r = 20.0, s = 0.5
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Fig. 10. Adding squashing to QWR provides dramatic improvements. However, the higher the squashing
power, the less the reserve prices are actually weighted by quality. In the case of a log-normal value
distribution, the optimal parameter setting (s = 0.0) removes quality scores entirely and is thus equivalent
to UWR. Note that different values of squashing power lead to dramatically different optimal reserve prices.
(left: uniform; right: log-normal)
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Fig. 11. When squashing is only applied to reserve prices, it can dramatically increase QWR’s revenue.
However, there has to be a lot of squashing (i.e., s close to 0), and the optimal reserve price is very dependent
on the squashing power. In fact, for both distributions, the optimal parameters set s = 0, in which case the
mechanism is identical to UWR.

UWR. We hypothesized that QWR+Sq was only performing as well as it did because of this
second effect. To tease apart these two properties, we tested them in isolation. Specifically,
we tested (1) a GSP variant in which reserve prices were weighted by squashed quality but
ranking among reserve-exceeding bidders was performed according to their true quality
scores, and (2) a GSP variant in which reserve prices were weighted by true quality scores
but rankings were done using squashed quality scores. These experiments confirmed our
hypothesis: the first variant (Figure 11)—which uses squashing to make the mechanism
behave more like UWR—was much more effective at increasing revenue than the second
(Figure 12).

Next, we investigated the effect of varying the number of bidders. Broadly, we found that
the ranking among auctions remained consistent (see Figure 13). The optimal reserve price
tended to increase with the number of bidders, particularly in the case of UWR. We found
this especially interesting because a heuristic often described in the literature is to take
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Fig. 12. When squashing is only applied to ranking, but not to the reserve prices, the marginal gains from
squashing over QWR (with the optimal reserve) are very small.
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Fig. 13. As the number of agents varies, the relative ranking of GSP variants remains mostly unchanged.
The one notable exception to this is squashing and QWR, their ranking can be reversed depending on the
distribution and number of bidders.

Myerson’s optimal reserve prices and add them to GSP [e.g., Ostrovsky and Schwarz 2009].
Our results show that Myerson’s finding that the optimal reserve price does not vary with
the number of bidders is only a property of the optimal auction, not of other auctions such
as these GSP variants.

In summary, this section considered the equilibria of multi-slot ad auctions which are
revenue-equivalent to the truthful equilibria of corresponding dominant-strategy mechanisms
with the same allocation rules, and considered both uniform and log-normal valuations. Our
main conclusions were that:

(1) As in the previous analyses, the mechanisms best able to optimize revenue were Anchoring,
QWR+sq, UWR+sq and UWR; either squashing or QWR took fifth place with the
other in sixth. Within these groups, the exact ranking depended on the distribution and
the number of bidders.

(2) QWR+sq only performed as well as it did when squashing was configured to make its
reserve prices behave like UWR. When squashing is applied to the allocation in QWR,
but not to the reserve prices, very little revenue improvement was possible.



6. CONCLUSIONS AND FUTURE WORK

We have explored the optimization of revenue in position auction variants based on the
generalized second-price framework. Considering single-shot auctions in which bidders have
both uniform and log-normal valuations in the most widely-studied valuation model, we
observed via three different forms of analysis that the highest revenues were produced by
mechanisms that (directly or effectively) use unweighted per-click reserve prices. We also
introduced anchoring, a novel GSP variant that uses unweighted reserve prices; anchoring
is provably optimal in very simple settings and experimentally very effective in others. We
found that any kind of reserve price (including anchoring) dramatically improved worst-case-
equilibrium revenue, while vanilla GSP and squashing were very sensitive to equilibrium
selection. However, we found that squashing could provide extra benefits when used in
conjunction with UWR or QWR.

Our rather robust conclusion that UWR achieves higher revenues than QWR raises the
question of why Google and Yahoo! both made the transition from unweighted to quality-
weighted reserves. One likely explanation is that search engines do not aim to optimize their
short-term revenue, but instead optimize long-term revenue via other short term objectives
such as efficiency, user satisfaction, revenue under a constraint that ads are costly to show,
etc. Other possibilities are that search engines are motivated by other business considerations
entirely,7 that they have simply acted in error, or that our findings expose a flaw in the
standard model of position auctions. Finally, it is possible that the premise of our question is
wrong: perhaps search engines do not in fact use QWR, but instead use some other (secret)
approach to setting reserves.

We believe that the most pressing open problem stemming from our work is to attempt
to resolve these questions by examining richer models that allow short-term revenue to be
contrasted with longer-term revenue. Considering short-term revenue, we conjecture that
in the field experiment of Ostrovsky and Schwarz [2009], where Yahoo! increased revenue
by increasing reserve prices and simultaneously switching to QWR, the revenue increases
would have been even greater if Yahoo! had retained optimized reserve prices but maintained
UWR. Considering longer-term revenue, consider a richer model in which quality and click
probability are determined by the advertiser’s choice of ad text, rather than being exogenous.
In equilibrium, this choice must be a best response to the rules of the auction and the choices
of the other agents. For example, consider the problem of an advertiser who has two choices
of ad text. One choice will yield 1000 clicks per hour, leading to 11 sales per hour. The
other choice yields 10 clicks per hour, but every click produces a sale. With weighted reserve
prices (and no squashing) the advertiser will always choose the first text, since it produces
more sales per hour for the same price. With appropriate quality-weighted reserve prices (or
squashing), the advertiser would chose the second, which generates nearly as many sales,
and requires him to pay the reserve price far less often. It is not immediately clear which
text the search engine should prefer: the first satisfies more users, but also wastes the time
of many users who click through but do not buy.
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