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Abstract
In proof-of-payment transit systems, passengers are legally
required to purchase tickets before entering but are not phys-
ically forced to do so. Instead, patrol units move about the
transit system, inspecting the tickets of passengers, who face
fines if caught fare evading. The deterrence of such fines de-
pends on the unpredictability and effectiveness of the patrols.
In this paper, we present TRUSTS, an application for schedul-
ing randomized patrols for fare inspection in transit systems.
TRUSTS models the problem of computing patrol strate-
gies as a leader-follower Stackelberg game where the ob-
jective is to deter fare evasion and hence maximize rev-
enue. This problem differs from previously studied Stackel-
berg settings in that the leader strategies must satisfy massive
temporal and spatial constraints; moreover, unlike in these
counterterrorism-motivated Stackelberg applications, a large
fraction of the ridership might realistically consider fare eva-
sion, and so the number of followers is potentially huge.
A third key novelty in our work is deliberate simplification
of leader strategies to make patrols easier to be executed.
We present an efficient algorithm for computing such patrol
strategies and present experimental results using real-world
ridership data from the Los Angeles Metro Rail system. The
Los Angeles County Sheriff’s department has begun trials of
TRUSTS.

Introduction
In the Los Angeles Metro Rail system and other proof-of-
payment transit systems worldwide, passengers are legally
required to buy tickets before boarding, but there are no
gates or turnstiles. There are, quite literally, no barriers to
entry, as illustrated in Figure 1. Instead, security personnel
are dynamically deployed throughout the transit system, ran-
domly inspecting passenger tickets. This proof-of-payment
fare collection method is typically chosen as a more cost-
effective alternative to direct fare collection, i.e., when the
revenue lost to fare evasion is believed to be less than what
it would cost to directly preclude it.

For the LA Metro, with approximately 300,000 riders
daily, this revenue loss can be significant; the annual cost
has been estimated at $5.6 million (Booz Allen Hamilton
2007). The Los Angeles Sheriffs Department (LASD) de-
ploys uniformed patrols on board trains and at stations for
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Figure 1: Entrance of an LA Metro Rail station.

fare-checking (and for other purposes such as crime pre-
vention), in order to discourage fare evasion. With limited
resources to devote to patrols, it is impossible to cover all
locations at all times. The LASD thus requires some mech-
anism for choosing times and locations for inspections. Any
predictable patterns in such a patrol schedule are likely to
be observed and exploited by potential fare-evaders. The
LASD’s current approach relies on humans for scheduling
the patrols. However, human schedulers are poor at generat-
ing unpredictable schedules (Wagenaar 1972; Tambe 2011);
furthermore such scheduling for LASD is a tremendous cog-
nitive burden on the human schedulers who must take into
account all of the scheduling complexities (e.g., train tim-
ings, switching time between trains, and schedule lengths).
Indeed, the sheer difficulty of even enumerating the trillions
of potential patrols makes any simple automated approach—
such as a simple dice roll—inapplicable.

The result of our investigation is a novel application called
TRUSTS (Tactical Randomization for Urban Security in
Transit Systems), for fare-evasion deterrence in urban tran-
sit systems, carried out in collaboration with the LASD. We
model this problem as a Stackelberg game with one leader
(the LASD) and many followers, in which each metro rider
(a follower) takes a fixed route at a fixed time. The leader
precommits to a mixed patrol strategy (a probability distri-
bution over all pure strategies), and riders observe this mixed
strategy before deciding whether to buy the ticket or not
(the decision to ride having already been made), in order to
minimize their expected total cost, following for simplicity
the classic economic analysis of rational crime (Becker and
Landes 1974). Both ticket sales and fines issued for fare eva-
sion translate into revenue to the government. Therefore the



optimization objective we choose for the leader is to max-
imize total revenue (total ticket sales plus penalties). There
are exponentially many possible pure patrol strategies, each
subject to both the spatial and temporal constraints of travel
within the transit network. Explicitly representing a mixed
strategy would be impractical.

To remedy the difficulty above, TRUSTS uses the tran-
sition graph, which captures the spatial as well as temporal
structure of the domain, and solves for the optimal (frac-
tional) flow through this graph, using linear programming
(LP). Such a flow can be interpreted as a marginal cov-
erage vector. Additionally, we show that a straightforward
approach to extracting patrol strategies from the marginals
faces important challenges: it can create infeasible patrols
that violate the constraint on patrol length, and it can gener-
ate patrols that switch too frequently between trains, which
can be difficult for patrol personnel to carry out. Thus, we
present a novel technique to overcome these difficulties us-
ing an extended formulation on a history-duplicate transi-
tion graph that (1) forbids patrols that are too long and (2)
penalizes patrols with too many switches.

Finally, we perform simulations based on actual ridership
data provided by the LASD, for four LA Metro train lines
(Blue, Gold, Green, and Red). Our results suggest the pos-
sibility of significant fare evasion deterrence and hence pre-
vention of revenue loss with very few resources. The LASD
is currently testing TRUSTS in the LA Metro system by de-
ploying patrols according to our schedules and measuring
the revenue recovered.

Related Work
There has been research on a wide range of problems re-
lated to game-theoretic patrolling on graphs. One line of
work considers games in which one player, the patroller,
patrols the graph to detect and catch the other player, the
evader, who tries to minimize the detection probability. This
includes work on hider-seeker games (Halvorson, Conitzer,
and Parr 2009) for the case of mobile evaders, and search
games (Gal 1979) for the case of immobile evaders.

Another line of research considers games in which the pa-
troller deploys resources (static or mobile) on the graph to
prevent the other player, the attacker, from reaching certain
target vertices. There are a few variations depending on the
set of possible sources and targets of the attacker. Infiltra-
tion games (Alpern 1992) considered one source and target.
Asset protection problems (Dickerson et al. 2010) consider
multiple sources and multiple equally weighted targets. Net-
worked security games (Tsai et al. 2010) consider targets
with different weights.

The leader-follower Stackelberg game model has been the
topic of much recent research (Tambe 2011) and has been
applied to a number of real-world security domains, includ-
ing the Los Angeles International Airport (Jain et al. 2010),
the Federal Air Marshals Service (Jain et al. 2010), and the
Transportation Security Administration (Pita et al. 2011).

Urban transit systems, however, present unique computa-
tional challenges. First, unlike in existing work on graph pa-
trolling games, and unlike in previous deployed applications

on counterterrorism, here the followers we seek to influ-
ence are potentially very many: large numbers of train riders
might plausibly consider fare evasion. Booz Allen Hamilton
(2007) estimates that 6% of riders are ticketless in the metro
system overall; anecdotal reports suggest that on some lines
this percentage could be far greater, even a majority. Second,
the leader has exponentially many possible patrol strategies,
corresponding to all the feasible trips within the transit net-
work subject to certain restrictions and preferences. Simi-
lar to FAMS (Jain et al. 2010), we represent patrol strate-
gies compactly as a marginal coverage vector. But unlike the
FAMS problem in which a patrol consists of very limited
number of flights (often a pair of flights), TRUSTS allows
much more complex patrols and thus uses a novel compact
representation based on history-duplicate transition graphs.

Problem Setting
TRUSTS addresses the challenge of generating randomized
schedules for LASD patrols for four separate LA Metro
lines. We model this problem as a leader-follower Stackel-
berg game with one leader (the LASD) and multiple follow-
ers (riders). In this game, a pure leader strategy is a patrol,
i.e., a sequence of patrol actions (defined below), of constant
bounded duration. The two possible pure follower strategies
are buying and not buying. Each follower observes the strat-
egy the leader commits to and plays a best response. There
are many types of followers, one for each source, destina-
tion, and departure time triple (corresponding to the set of
all riders who take such a trip). In general the leader’s strate-
gies will be mixed; the followers are assumed to play pure
strategies (Conitzer and Sandholm 2006).

Train System: The train system consists of a single line
on which trains travel back and forth, in general with multi-
ple trains traveling simultaneously. The system operates ac-
cording to a fixed daily schedule, with trains arriving at sta-
tions at (finitely many) designated times throughout the day.
Therefore we can model time as discrete, focusing only on
the time steps at which some train arrival/departure event
occurs. We use the (directed) transition graph G = 〈V,E〉
to encode the daily timetable of the metro line, where a ver-
tex v = 〈s, t〉 corresponds to some pair of station s and time
point t. An edge inG represents a possible (minimal) action.
In particular, there is an edge from 〈s, t〉 to 〈s′, t′〉 if:
• s′ is either the predecessor or successor of s in the station
sequence and 〈s, t〉 and 〈s′, t′〉 are two consecutive stops for
some train in the train schedule (traveling action), or
• s′ = s, t < t′, and there is no vertex 〈s, t′′〉 with
t < t′′ < t′ (staying action).
We refer to the entire path that a given train takes throughG,
from the start station to the terminal station, as a train path.
As this model suggests, TRUSTS treats the LA Metro Sys-
tem’s multiple lines as independent. Indeed, currently, LA’s
metro lines have just a few transfer points. Dealing with the
impact of transfers will be a topic for future work.

Patrols: There are a fixed number γ of deployable patrol
units, each of which may be scheduled on a patrol of dura-
tion at most κ hours (with, e.g., κ = 7). There are two sorts
of patrol actions, which a given patrol unit can alternate be-
tween on its shift: on-train inspections (in which patrollers



ride the train, inspecting passengers), and in-station inspec-
tions (in which they inspect passengers as they exit the sta-
tion). A pure patrol strategy is represented mathematically
as a path in G for each patrol unit, in which an edge e repre-
sents an atomic patrol action, i.e., inspecting in-station from
the time of one train event at that station to the next (at that
station) or inspecting on-train as it travels from one station
to the next. Each edge e has a length le equal to the corre-
sponding patrol action duration and an effectiveness value
fe, which represents the percentage of the relevant ridership
inspected by this action. For both in-station and on-train in-
spections, fe depends on the ridership volume at that loca-
tion and time of day and on the duration. A valid pure patrol
strategy is a set of paths P1, ..., Pγ , each of size at most κ.
Example 1. A simple scenario with 3 stations (A,B,C) and
4 discrete time points (6pm, 7pm, 8pm, 9pm) is given in Fig-
ure 2. The dashed lines represent staying actions; the solid
lines represent traveling actions. There are 4 trains in the
system; all edge durations are 1 hour. A sample train path
here is 〈A, 6pm〉 → 〈B, 7pm〉 → 〈C, 8pm〉. In this exam-
ple, if κ = 2 and γ = 1, then the valid pure leader strategies
(pure patrol strategies) consist of all paths of length 2.

A, 7PM

B, 7PM

C, 7PM C, 9PM

B, 9PM

A, 9PM

B, 8PM

A, 6PM

B, 6PM

C, 6PM

A, 8PM

C, 8PM

A

B

C

6PM 7PM 8PM 9PM

 

Figure 2: The transition graph of a toy problem instance.
Riders: The riders are assumed to be daily commuters

who take a fixed route at a fixed time. Horizon research cor-
poration (2002) suggests more than 82% of riders use the
system at least 3 days a week. The ticket price (for any trip
within the transit system) is a nominal fee ρ, with the fine for
fare evasion τ much greater. As the riders follow the same
route every day, they could estimate the likelihood of be-
ing inspected, based on which they make a decision as to
whether to buy a ticket. We assume the riders know the in-
spection probability perfectly, and are rational, risk-neutral
economic actors (Becker and Landes 1974), who make this
choice in order to minimize expected cost.

A rider’s type is defined by the path he takes in the graph.
Because there is a single train line, riders never linger in
stations, i.e., do not follow any “stay” edges (staying at a
station) mid-journey; the last edge of every follower type is
a (short) stay edge, representing the action of “exiting” the
destination station, during which the rider may be subject to
in-station inspection. Therefore the space Λ of rider types
corresponds to the set of all subpaths of train paths. (When
G is drawn as in Figure 2, all rider paths are “diagonal” ex-
cept for the last edge.) A metro line with N stops and M
scheduled trains will have O(MN2) rider types.

Given a pure patrol strategy of the γ units, (P1, . . . , Pγ),
the inspection probability for a rider of type λ ∈ Λ is:

min{1,
γ∑
i=1

∑
e∈Pi∩λ

fe}, (1)

and therefore his expected utility is the negative of the
expected amount he pays: −ρ if he buys the ticket and
−τ min{1,

∑γ
i=1

∑
e∈Pi∩λ fe} otherwise. The inspection

probability for a mixed strategy is then the expectation of
Equation (1), taken over the distribution of pure strategies.

We justify the inspection probability in Equation (1) as
follows. First, consider on-train inspections. The fraction of
the train that is inspected in a given inspection action is de-
termined by fe (which depends on ridership volume). The
key is that in the next inspection action, a patrol will not
reinspect the fraction of the train that is already inspected
in a previous inspection action. Therefore, unlike in settings
where patrollers may repeatedly draw a random sample from
the same set train passengers to inspect, in our setting, the
probabilities fe are added rather than multiplied. Now also
consider in-station inspections. Since a rider taking a jour-
ney only exits a single station, a rider will encounter at most
one in-station inspection. Finally, when multiple patrol units
cover the same edge e, the inspection probability given by
(1) is the sum of the contributions from each patrol unit,
capped at 1. This is a reasonable assumption when the num-
ber of patrol units on each edge e is small, as multiple patrol
units on the same train could check different cars or different
portions of the same car, and multiple patrol units inspecting
at the same station could be checking different exits.

Objective: The leader’s utility, equal to total expected
revenue, can be decomposed into utilities from bilateral in-
teractions with each individual follower. Hence the game
is equivalent to a Bayesian Stackelberg game between one
leader with one type and one follower with multiple types.
Specifically, we denote the prior probability of a follower
type λ ∈ Λ (proportional to its ridership volume) by pλ.

Furthermore, these utility functions imply that the game
is zero sum, in which case the Stackelberg equilibrium is
equivalent to the maximin solution. Although such zero-
sum Bayesian games are solvable by either applying the LP
formulation of (Ponssard and Sorin 1980) or treating the
Bayesian game as a extensive-form game and applying the
sequence form LP formulation of (Koller, Megiddo, and von
Stengel 1994), those LP formulations would be impractical
here because they explicitly enumerate the exponential num-
ber of pure strategies of the leader.

Linear Program Formulation
In this section, we formulate a linear program which finds a
maximum-revenue (mixed) patrol strategy. As noted above,
the leader’s space of pure strategies is exponentially large,
even with a single patrol unit. We avoid this difficulty by
compactly representing mixed patrol strategies by marginal
coverage on edges xe of the transition graph (the marginal
strategy), i.e., by the expected numbers of inspections that
will occur on these edges. Subsequently, we construct a



mixed strategy (i.e., a probability distribution over pure
strategies) consistent with the marginal coverage.

For expository purposes, we first present a basic LP for-
mulation of our approach of compactly representing the
problem using marginal coverage. This basic formulation
also illustrates the key issues that make it difficult for the
end-user to deploy the patrol strategies computed. We then
introduce an extended formulation to address these issues.

Basic Formulation
We denote the set of possible starting vertices in the transi-
tion graph G = 〈V,E〉 by V + ⊂ V , and the set of possible
ending vertices by V − ⊂ V . For algorithmic convenience,
we add to the transition graph a source v+ with edges to all
vertices in V + and a sink v− with edges from all vertices in
V −. We assign these additional dummy edges zero duration
and zero effectiveness.

Based on this graph, we provide a linear program (shown
in Figure 3) to provide an upper bound on the optimal rev-
enue achievable. Here uλ denotes the expected value paid
by a rider of type λ, and so pλuλ is the expected total rev-
enue from riders of this type; xe is the expected number of
inspections on edge e. Constraint (4) bounds the total flow
entering and exiting the system by γ, the number of total
patrol units allowed. Constraint (5) enforces conservation of
flow, which clearly is satisfied by any mixed patrol strategy.
Constraint (6) limits the total number of time units to γ · κ,
and also bounds xe for each e. Since xe is the expected cov-
erage of e, it could theoretically go up to as much as γ. On
the other hand our assumption that the inspection probabil-
ity is added across patrol units (Equation (1)) is valid only
when a small number of units are on each edge. Thus we
have another parameter α ∈ [1, γ] as the upper-bound of xe.

Finally, let us consider Constraint (3), which indicates
that the rider will best respond, by bounding the expected
cost to a rider of type λ by both the ticket price ρ and
τ min{1,

∑
e∈λ xefe} = min{τ, τ

∑
e∈λ xefe}, the formu-

lation’s estimate of the expected fine if the rider chooses
not to buy. However, the latter is only an overestimate of
the actual expected fine of not buying. This is because the
expression min{1,

∑
e∈λ xefe} only caps the expectation

(over its pure strategies) of the inspection probability at 1,
but allows a pure strategy (P1, . . . , Pγ) in its support to
achieve

∑γ
i=1

∑
e∈Pi∩λ fe > 1, whereas according to (1)

the inspection probability of each pure strategy should be
at most 1. This results in an overestimate of the actual in-
spection probability (and thus the leader’s utility). As a re-
sult the solution of this LP provides only an upper bound
on the optimal revenue. Fortunately, once we generate the
patrols from the marginals we are able to compute the ac-
tual best-response utilities of the riders. Our experiments
show that the differences between the actual utilities and the
upper-bounds given by the LP formulation are small. The
remaining task is to construct a γ-unit mixed strategy whose
marginals match the marginal strategy x.

Proposition 1. Given a marginal strategy x, a γ-unit mixed
strategy for the leader that produces the same coverage on
each edge e as x does can be constructed in polynomial time.

Proof. First, we construct a set Υ of weighted patrol paths,
by extracting distinct source-to-sink flows from x through
the following iterative procedure.
1. Find a path P from v+ to v− where xe > 0 for all e ∈ P .
If no such path exists, terminate because xe must then be 0
for all e ∈ E (due to Constraint (5)). Otherwise go to step 2.
2. Let x∗ = mine∈P {xe}. Add path P with weight x∗ to the
set Υ. Deduct x∗ from xe for all e ∈ P . Go to step 1.

Since every iteration removes a complete source-to-sink
flow, constraint (5) is maintained throughout the execution
of this procedure. The procedure’s running time is polyno-
mial because at least one new xe is set to 0 in each iteration.

Finally, we create a mixed strategy of joint patrol paths
(with γ units) that matches exactly the set of weighted pa-
trol paths Υ obtained in the procedure above, and thus the
marginal strategy x. To do this, we could assign a path of
weight x∗ to the γ units independently, each with an equal
probability of x

∗

γ . Since x∗ ≤ γ, we have x∗

γ ≤ 1.

Issues with the Basic Formulation
There are two fundamental issues with the basic formula-
tion. First, the mixed strategy constructed can fail to satisfy
the patrol length limit of κ, notwithstanding Constraint (6)
on the sum of the lengths of all patrols, and hence be in-
feasible. In fact, the marginal strategy computed in the ba-
sic formulation may not correspond to any feasible mixed
strategy in which all patrols have length at most κ. Con-
sider the counterexample in Figure 5. Edges v1 → v2 and
v2 → v3 represent two real atomic actions, each with du-
ration 1. Patrols must start from either v1 or v3, but can
terminate at any of v1, v2 and v3. This is specified using
v+ and v−, the dummy source and sink respectively. We
assume κ = 1 and γ = 1. It can be verified that the
marginal strategy shown in Figure 5 satisfies constraints (4)
through (6). However, the only corresponding mixed strat-
egy is to take v+ → v3 → v− with 50% probability and
v+ → v1 → v2 → v3 → v− with 50% probability. This
mixed strategy is infeasible since its second patrol has du-
ration greater than 1. This patrol length violation arises be-
cause the basic formulation only constrains the average pa-
trol length, and therefore allows the use of overlong patrols
as long as some short patrols are also used.

v
+

v1 v2 v3 v
-

0.5

0.5 0.5 0.5 1

0
00

 

Figure 5: Example of an infeasible marginal strategy.

Second, the paths selected according the constructed
mixed strategy may switch between trains or between in-
station and on-train at impractically large number of times,
making the patrol path difficult to implement and error-
prone. This is an important issue as we want real LASD
officers to be able to carry out these strategies. The more
switches there are in a patrol strategy, the more instruc-



max
x,u

∑
λ∈Λ

pλuλ (2)

s.t. uλ ≤ min{ρ, τ
∑
e∈λ

xefe}, for all λ ∈ Λ (3)∑
v∈V +

x(v+,v) =
∑
v∈V −

x(v,v−) ≤ γ (4)

∑
(v′,v)∈E

x(v′,v) =
∑

(v,v†)∈E

x(v,v†), for all v ∈ V (5)

∑
e∈E

le · xe ≤ γ · κ, 0 ≤ xe ≤ α,∀e ∈ E (6)

Figure 3: Basic Formulation

max
x,y,u

∑
λ∈Λ

pλuλ − β
∑
e∈E

ceye (7)

s.t. uλ ≤ min{ρ, τ
∑
e∈λ

xefe}, for all λ ∈ Λ (8)∑
v∈V+

y(v+,v) =
∑
v∈V−

y(v,v−) ≤ γ (9)

∑
(v′,v)∈E

y(v′,v) =
∑

(v,v†)∈E

y(v,v†), for all v ∈ V (10)

xe =
∑

e′∈Γ(e)

ye′ ,∀e ∈ E, 0 ≤ xe ≤ α,∀e ∈ E (11)

Figure 4: Extended Formulation

tions the patrol unit has to remember, and the more likely
they will miss a switch due to imperfections in the train
schedule and/or the unit’s mis-execution of the instructions.
For example, in Example 1, 〈A, 6pm〉 → 〈B, 7pm〉 →
〈A, 8pm〉 and 〈C, 6pm〉 → 〈B, 7pm〉 → 〈C, 8pm〉 each do
1 switches while 〈A, 6pm〉 → 〈B, 7pm〉 → 〈C, 8pm〉 and
〈C, 6pm〉 → 〈B, 7pm〉 → 〈A, 8pm〉 each do none. Both
path pairs cover the same set of edges, making the second
preferable because it is easier to implement.

Extended Formulation
Now we present a more sophisticated formulation design
to address the two aforementioned issues. The difficulty in-
volved in imposing constraints on the patrol paths (i.e., pe-
nalizing or forbidding certain paths) in the marginal repre-
sentation is that paths themselves are not represented, in-
stead being encoded only as marginal coverage.

Hence the key idea is to preserve sufficient path history
information within vertices to be able to evaluate our con-
straints, while avoiding the exponential blowup creating a
node for every path would cause. We construct a new graph,
called the History-Duplicate Transition graph (HDT graph),
by creating multiple copies of the original vertices, each cor-
responding to different values of history information.

We first explain how to construct the HDT graph from
a transition graph G in order to forbid patrol paths longer
than κ. The HDT graph is composed of multiple restricted
copies ofG (i.e., subgraphs ofG), corresponding to different
possible starting time points. For the copy corresponding to
starting time point t∗, we only keep the subgraph on vertices
v = 〈s, t〉 ∈ V where t∗ ≤ t ≤ t∗ + κ. Thus, in each
restricted copy of G, the length of any path is guaranteed to
be less than or equal to κ. Since there are a finite number of
distinct possible starting time points (i.e., all distinct discrete
time points in V +), the new graph is a linear expansion of
G. An approximation can be obtained by taking one starting
time point every δ time units. In this case, an original vertex
(edge) will be kept in at most dκ/δe copies, implying the
new graph is at most dκ/δe times larger than G.

Figure 6(a) shows the HDT graph (the shaded portion
further explained below) of Example 1 with κ = 2 and

2 starting time points, 6pm and 7pm. The HDT graph is
thus composed of two restricted copies of the original tran-
sition graph. In each vertex, the time shown in parenthesis
indicates the starting time point. For example, the original
vertex 〈A, 7pm〉 now has two copies 〈A, 7pm, (6pm)〉 and
〈A, 7pm, (7pm)〉 in the HDT graph. For the starting time
point of 6pm, the patrol must end at or before 8pm, hence
we do not need to keep vertices whose discrete time point
is 9pm. For the starting time point of 7pm, the patrol must
start at or after 7pm, hence we do not need to keep vertices
whose discrete time point is 6pm. The two restricted copies
are not two separate graphs but a single graph that will be
tied together by the dummy source and sink.

Next, we explain how to further extend the HDT graph to
penalize complex patrol paths. The idea is to have each ver-
tex encode the last action occurring prior to it. Specifically,
we create multiple copies of a vertex v, each corresponding
to a different edge that leads to it. If v is a possible starting
vertex, we create an additional copy representing no prior
action. If there is an edge from v to v′, we connect all copies
of v to the specific copy of v′ whose last action was (v, v′).
A new edge is called a switching edge if the recorded last ac-
tions of its two vertices are of different types (e.g., inspecting
different trains), unless one of the two vertices is a “no prior
action” vertex. As can be verified, the number of switches
of a patrol path in the new graph is the number of switching
edges it has. To favor simple patrol paths, we demand a cost
β > 0 for using switching edges. Varying the value of β lets
us trade off between solution quality (greater revenue) and
patrol preference (lower average number of switches).

In Figure 6(b), we show how to apply this extension using
the subgraph shown in the shaded box of Figure 6(a). Since
there is only one edge leading to 〈A, 7pm, (6pm)〉, we cre-
ate one copy of it representing the action of staying at A.
There are 3 edges leading to 〈B, 7pm, (6pm)〉, so we create
3 copies of it representing the actions of taking train from
A, staying at B, and taking train from C. The original edges
are also duplicated. For example, 〈B, 7pm, (6pm)〉 →
〈B, 8pm, (6pm)〉 has 3 copies connecting the 3 copies of
〈B, 7pm, (6pm)〉 to the copy of 〈B, 8pm, (6pm)〉, repre-
senting the staying at B action. Among the three copies, only



the “Stay” to “Stay” edge is not a switching edge.
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Figure 6: (a) HDT graph of Example 1 with two starting time
points. (b) extension storing the last action occurring.

Given the final HDT graph G = 〈V, E〉, we provide an
extended linear program formulation in Figure 4. We still
use xe to represent the marginal coverage of an original edge
e ∈ E being selected, but we now also use ye to represent
the marginal coverage of an HDT graph edge e ∈ E being
selected. Let Γ(e) ⊂ E be the set of copies of e, then xe =∑
e′∈Γ(e) ye′ . Let ce = 1 if e ∈ E is a switching edge and

0 otherwise. The set of possible starting vertices V+ is the
set of copies of V + that are “no prior action” vertices. The
set of possible ending vertices V− is the set of all copies of
V −. We again add a dummy source v+ leading to V+ and
a dummy sink that can be reached from V−. Because the
extended formulation enforces stricter restrictions on patrols
allowed than the basic formulation, the LP of Figure 4, with
β set to 0, provides a tighter upper bound on the optimal
revenue than the LP of Figure 3.

A path in the HDT graph G trivially corresponds to a path
in the transition graph G, since any edge in G is a duplicate
of some edge in G. Therefore from the solution y∗, we can
use the same process described for the basic formulation to
construct a mixed strategy. Because the length of any patrol
path in the HDT graph is bounded by κ, the mixed strategy
must be feasible. In addition, since the number of switches
in a patrol path equals the number of switching edges in it,
the average number of switches of the constructed mixed
strategy is always equal to

∑
e∈E cey

∗
e .

Real-World Evaluation
We present our evaluation based on real metro schedules and
rider traffic data provided by the LASD. We solved the LP in
the extended formulation using CPLEX 12.2 on a standard
2.8GHz machine with 4GB memory. We first describe the
data sets we used, followed by our experimental results.

Data Sets
We created four data sets, each based on a different Los
Angeles Metro Rail line: Red (including Purple), Blue,
Gold, and Green. For each line, we created its transi-
tion graph using the corresponding timetable from http:
//www.metro.net. Implementing the LP requires a fine-
grain ridership distribution of potential fare evaders (recall
that a rider type corresponds to a 4-tuple of boarding station
/ time and disembarking station / time).

In our experiments, we assumed that potential fare
evaders were evenly distributed among the general popula-
tion and created the required fine-grained rider distribution
using hourly boarding and alighting counts provided by the
Los Angeles Sheriff Department. Suppose the percentage of
riders boarding in hour i is d+

i and the percentage of riders
alighting in hour i is d−i . Denote the set of those that board
in hour i by Λ+

i and that alight in hour i by Λ−i . Then we
would like to compute a fine-grained ridership distribution
p to match the hourly boarding and alighting percentages,
i.e., to find a point within the following convex region Ω,

Ω = {p|p � 0 ∧
∑
λ∈Λ+

i

pλ = d+
i ∧

∑
λ∈Λ−i

pλ = d−i ,∀i}.

We estimate the fare evader distribution by finding the ana-
lytic center of Ω, i.e., p∗ = arg minp∈Ω

∑
λ∈Λ− log(pλ),

which is efficiently computable.
The inspection effectiveness fe of an edge is assigned

based on the assumption that 10 passengers can be inspected
per minute. fe is capped at 0.5 to capture the fact that the
inspector cannot switch between cars while the train is mov-
ing. (Trains contain at least two cars.) The ticket fare was
set to $1.5 (the actual current value) while the fine was set
to $100. (Fare evaders in Los Angeles can be fined $200, but
they also may be issued warnings.) If we could increase the
fine dramatically the riders would have much less incentive
for fare evasion, and we could achieve better revenue. How-
ever a larger fine is infeasible legally. Table 1 summarizes
the detailed statistics for the Metro lines.

Line Stops Trains Daily Riders Types

Red 16 433 149991.5 26033
Blue 22 287 76906.2 46630
Gold 19 280 30940.0 41910
Green 14 217 38442.6 19559

Table 1: Statistics of Los Angeles Metro lines.

Experimental Results
Throughout our experiments, we fixed γ to 1 (and thus α =
1). In our first set of experiments, we fixed penalty β to 0
(no penalty for using patrol paths with more switches), and
varied the maximum number of hours that an inspector can
patrol from 4 to 7 hours. To create the HDT graph, we took
one starting time point every hour (i.e., δ = 1 hour).

Figure 7(a) shows the expected revenue per rider of the
mixed patrol strategy we generated, which is the total rev-
enue divided by the number of daily riders. Since the LP
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Figure 7: Experimental results.

only returns an upper bound of the attainable revenue, the
true expected revenue of the mixed patrol strategy was com-
puted by evaluating the riders’ best responses for all rider
types. A rider can always pay the ticket price for $1.5 and
will only evade the ticket when the expected fine is lower.
Hence the theoretical maximum achievable value is $1.5,
which is achieved when every rider purchases a ticket. As we
can see, the per-rider revenue increases as the number of pa-
trol hours increases, almost converging to the theoretical up-
per bound of $1.5 for the Gold and Green line. Specifically,
a 4-hour patrol strategy already provides reasonably good
expected value: 1.31 for the Blue line (87.4% of the max-
imum), 1.45 for the Gold line (97.0%), 1.48 for the Green
line (98.8%), and 1.22 for the Red line (81.3%). Among the
four lines, the Red line has the lowest revenue per rider. This
is because the effectiveness of fare inspection decreases as
the volume of daily riders increases, and the Red line has sig-
nificantly higher number of daily riders than the other lines.

We depict in Figure 7(b) the percentage of the true ex-
pected revenue vs. the theoretical upper bound returned by
the LP. Strategies generated by our method are near optimal;
for example, our 4-hour strategies for the Blue, Gold, Green,
and Red lines provided expected revenues of 96.5%, 98.5%,
99.5%, and 97.0% of the upper bound (and thus at least as
much of the optimum), respectively.

To study riders’ responses to the computed strategy, we
partitioned the entire population of riders into three groups
depending on their expected fine if fare-evading: riders who
prefer purchasing tickets (expected fine is greater than 1.7—
13.3% above the ticket price), riders who prefer fare eva-
sion (expected fine is less than 1.3—13.3% below the ticket
price), and indifferent riders (expected fine is between 1.3
and 1.7). In Figure 7(c), we show the distribution of the three
groups against the strategies computed for the Red line. The
three dashed lines inside the region of indifferent riders rep-

resent, from top to bottom, the percentages of riders whose
expected fine is less than 1.6, 1.5, and 1.4, respectively. As
the number of patrol hours increases from 4 to 7, the percent-
age of riders who prefer fare evasion decreases from 38% to
7%, the percentage of riders who prefer purchasing tickets
increases from 17% to 43%, and the percentage of indiffer-
ent riders remains stable between 45% and 50%.

Zooming in on the fare evasion, Figure 7(d) shows the
percentage of riders who preferred fare evasion against the
patrol strategies computed. As we can see, this percentage
decreased almost linearly in the number of additional patrol
hours beyond 4. Our 7-hour patrol strategy lowered this per-
centage to 4.2% for the Blue line, 0.01% for the Gold line,
0.01% for the Green line, and 6.8% for the Red line. Again,
due to having the highest daily volume, the Red line had the
highest percentage of riders who preferred fare evasion.

Finally, Figure 7(e) shows the runtime required by
CPLEX to solve the LPs we created. As we can see, the
runtime increased as the number of patrol hours increased
for all the metro lines. This is because the size of the HDT
graph constructed is roughly proportional to the maximum
length of the patrols, and a larger HDT graph requires an LP
with more variables and constraints. Among the four lines,
the Red and the Green lines have significantly fewer types,
and are thus easier to solve than the other two lines.

In our second experiment, we varied the interval δ of tak-
ing starting time points, trading off solution quality for effi-
ciency. We fixed the patrol length κ to 4 hours and penalty
parameter β to 0. For each line, we tested 6 interval (δ) set-
tings ranging from 0.5 hour to 4 hours. In Figure 7(f), the
x-axis is the runtime (in log-scale) and the y-axis is the nor-
malized revenue against the expected revenue of δ = 0.5
within each line. For each line, a data point from left to right
corresponds to δ = 4, 3, 2, 1.5, 1, and 0.5 respectively. In-
creasing the runtime (by decreasing δ) always led to a better



solution; however, the quality gain diminished. For example,
for the Blue line, it took 20 seconds of additional runtime to
increase the solution quality from 87.9% (δ = 4 hours) to
92.9% (δ = 3 hours), whereas it took 1456 seconds of ad-
ditional runtime to increase the solution quality from 99.1%
(δ = 1 hour) to 100% (δ = 0.5 hour).

In the final experiment, we varied the penalty β, trading
off between the solution quality and the average number of
switches. We fixed the patrol length κ to 4 hours and start-
ing time interval δ to one hour. For each line, we tested 7
penalty settings from β = 0 to β = 0.01. Figure 7(g) plots
the average number of switches against the normalized rev-
enue against the expected revenue of β = 0 within each line.
For all lines, higher β values led to both lower solution qual-
ity and fewer number of switches. For example, the average
number of switches in the solution of the highest revenue
(β = 0) ranged from 18.6 (Gold line) to 26.7 (Red line).
However, by allowing 3% quality loss, this number could be
lowered to less than 10 for all the four lines.

To further understand the patrol paths returned in these
solutions, we show, in Figure 7(h), the cumulative probabil-
ity distributions of the number of switches for the Red line
given 3 settings of β: 0, 0.001, and 0.01. Choosing a lower
β tended to lead to more complex patrol paths. For example,
the solution of β = 0 used patrol paths whose number of
switches is greater than 20 with 68.9% probability; the so-
lution of β = 0.001 (99.7% of the optimum) only used such
paths with 31.2% probability. And the solution of β = 0.01
(97.0% of the optimum) never used patrol paths that had
more than 20 switches.

LASD Evaluation of TRUSTS
LASD has started testing our generated patrol strategies. For
example, in initial test runs for the Red Line on Thursday,
Jan 4 and Friday, Jan 5, 2012, one patrol unit conducted a 4-
hour fare-inspection patrol on each day. A total of 851 fare
checks were made, with 41 fare evaders cited and 3 felons ar-
rested. The patrols implemented in the two days had 4 and 5
switches, respectively, and the officers were able to make the
switches we requested. Due the felony arrests, the actual op-
eration duration was slightly less than 4 hours in both days.
More tests are scheduled in the future to provide a more thor-
ough evaluation of the effectiveness of our strategies.

Summary
In this paper we presented TRUSTS, a novel application
for fare-evasion deterrence in urban transit systems. Our de-
velopment of TRUSTS opens the door to applying game-
theoretical randomization beyond previous applications of
counterterrorism, to a much broader setting in which com-
mon individuals and daily routines are involved. We mod-
eled the domain as a Stackelberg game, providing a novel
compact representation of the leader’s mixed strategies as
flows in the history-duplicate transition graph. We found in
our simulations that our method computed close-to-optimal
strategies, which effectively deterred fare evasion and en-
sured high levels of revenue with few patrol hours. We are
currently evaluating TRUSTS within the LA Metro system
in collaboration with LASD.
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