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Abstract

Uniform random 3-SAT at the solubility phase transi-
tion is one of the most widely studied and empirically
hardest distributions of SAT instances. For 20 years, this
distribution has been used extensively for evaluating and
comparing algorithms. In this work, we demonstrate that
simple rules can predict the solubility of these instances
with surprisingly high accuracy. Specifically, we show
how classification accuracies of about 70% can be ob-
tained based on cheaply (polynomial-time) computable
features on a wide range of instance sizes. We argue in
two ways that classification accuracy does not decrease
with instance size: first, we show that our models’ pre-
dictive accuracy remains roughly constant across a wide
range of problem sizes; second, we show that a classifier
trained on small instances is sufficient to achieve very
accurate predictions across the entire range of instance
sizes currently solvable by complete methods. Finally,
we demonstrate that a simple decision tree based on only
two features, and again trained only on the smallest in-
stances, achieves predictive accuracies close to those of
our most complex model. We conjecture that this two-
feature model outperforms random guessing asymptoti-
cally; due to the model’s extreme simplicity, we believe
that this conjecture is a worthwhile direction for future
theoretical work.

Introduction
The propositional satisfiability problem (SAT) is arguably the
most widely studied NP-complete problem. Given a Boolean
formula F , it asks whether there exists an assignment of truth
values to the variables in F under which F evaluates to true.
A prominent family of SAT instances is uniform random 3-
SAT, which consists of formulae in conjunctive normal form,
parameterized by a number of variables v, and of clauses c.
Each clause consists of three literals (i.e., variables or their
negations); it is generated by selecting these literals uniformly
at random, without replacement, from a set of v variables,
and by negating each variable thus selected with probability
0.5. Each instances is created by independently generating c
clauses. Because random 3-SAT instances are easy to gener-
ate and often hard to solve, they have frequently been used
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as a test bed for the design and evaluation of heuristic algo-
rithms (see, e.g., Le Berre, Roussel, and Simon, 2011).

In the early 1990s, it was observed that the probability that
a random 3-SAT instance is satisfiable exhibits sharp thresh-
old behavior when the control parameter α = c/v passes
a critical value (Cheeseman, Kanefsky, and Taylor 1991;
Mitchell, Selman, and Levesque 1992). The width of the
window in which this solubility phase transition takes place
becomes narrower as the instance size grows. Most interest-
ingly, a wide range of state-of-the-art SAT solvers exhibit
dramatically longer runtimes for instances in this critical
region. Intuitively, note that instances are underconstrained
when α is small (there are few constraints, and therefore
many solutions), and overconstrained when α is large (there
are many constraints, making it relatively easy to derive a
contradiction). The so-called phase transition point occurs
between these extremes, when the probability of generating
a satisfiable instance is 0.5.

Crawford and Auton (1996) confirmed these findings
in an extensive empirical study and proposed a more ac-
curate formula for identifying the phase transition point:
c = 4.258 ·v+58.26 ·v−2/3. Kirkpatrick and Selman (1994)
used finite-size scaling, a method from statistical physics, to
characterize size-dependent effects near the transition point,
with the width of this transition narrowing as the number of
variables increases. Yokoo (1997) studied the behavior of
simple local search algorithms on uniform random 3-SAT
instances, observing a peak in the hardness for solving satisfi-
able instances at the phase transition point. He attributed this
hardness peak to a relatively larger number of local minima
present in critically constrained instances, as compared to
overconstrained satisfiable instances. Hoos and Stützle (1999)
further investigated the behavior of stochastic local search
algorithms on random 3-SAT instances at the phase transi-
tion, demonstrating substantial runtime variability across sets
of instances with the same number of variables and clauses,
and showing that the runtime over independent runs on the
same instance tends to be exponentially distributed (for near-
optimal parameter settings of the algorithm).

There is a useful analogy between uniform random 3-SAT
problems and what physicists call “disordered materials”:
conflicting interactions in the latter are similar to the ran-
domly negated variables in the former. Exploiting this con-
nection, uniform random 3-SAT has been studied using meth-



ods from statistical physics. Monasson and Zecchina (1996;
1997) applied replica methods to determine the characteris-
tics of uniform random 3-SAT and showed that the ground
state entropy is finite at the phase transition. They concluded
that the transition itself is due to the abrupt appearance of
logical contradictions in all solutions and not to a progressive
decrease in the number of models. Based on a conceptual
link between uniform random 3-SAT and spin glass models,
Mézard and Zecchina (2002) developed the survey propa-
gation algorithm and demonstrated that it can solve random
3-SAT instances just below the phase transition point with
up to 100 000 variables and 420 000 clauses. However, the
phase transition becomes dramatically sharper with problem
size; thus, these instances are almost always satisfiable and
are much easier than those at the phase transition.

More recent work, much of it by our own group, has stud-
ied the use of machine learning methods to make instance-
specific predictions about solver runtimes. Leyton-Brown,
Nudelman, and Shoham (2002; 2009) introduced the use of
such models for predicting the runtimes of solvers for NP-
hard problems, and Nudelman et al. (2004) showed that using
this approach, surprisingly accurate runtime predictions can
be obtained for uniform random 3-SAT at the phase transi-
tion. That work also noted that satisfiable and unsatisfiable
instances exhibited very different performance characteris-
tics, and hence that training models on only SAT or UNSAT
instances allowed much simpler—albeit, very dissimilar—
models to achieve high accuracies. We subsequently reasoned
that because unconditional models are able to predict run-
times accurately, despite the qualitative differences between
the SAT and UNSAT regimes, the models must implicitly
predict satisfiability status (Xu, Hoos, and Leyton-Brown
2007). Thus, we tried predicting satisfiability status directly,
and achieved classification accuracies more than 70% on
four well studied instance sets (86% on random 3-SAT at
the phase transition with 400 variables). However, that find-
ing was not the focus of our earlier work; instead, our main
goal was to show how to leverage such predictions to obtain
more accurate runtime predictions. Thus, critically, we in-
cluded features that were capable of solving relatively small
instances (e.g., so-called probing features). (Observe that
such features have predictive value beyond their ability to
solve an instance. Nevertheless, when a feature does solve an
instance, it is quite easy for the model to accurately “predict”
satisfiability status, boosting the reported classification ac-
curacy.) Also, we only considered phase transition instances
at a single size (v = 400). Taken together, these facts raise
the concern that our previous finding may have been a small-
size effect: that satisfiability status might be predictable only
for small 3-SAT instances (which are in any case relatively
easy to solve with modern methods), but that as instance
size grows and runtimes increase exponentially, predictive
accuracy could decrease to that of random guessing.

Main Contributions
Our work presented here is the first to thoroughly investigate
the prediction of satisfiability status. We consider instances
at the 3-SAT solubility phase transition, varying from 100
variables (for which median runtime of a high-performance

SAT algorithm was too fast to measure accurately) to 600
variables (median runtime: 10 hours). We build classification
models that achieve accuracies of about 70%, despite restrict-
ing ourselves to features that are not able to solve instances.
We offer two arguments that these model accuracies are not a
small-size effect. First, we show that our models’ predictive
accuracy remains roughly constant—and thus far better than
that of random guessing—across the entire range of problem
sizes. Second, we show that we can achieve very similar ac-
curacy (across instances of all sizes) using a classifier trained
only on very easy instances (v = 100).

We also conducted a detailed investigation into the min-
imal set of features sufficient for such accurate predictions.
We found that two features sufficed to achieve good perfor-
mance: one feature based on variation in the slack vectors
of an LP relaxation of the SAT instance, and another based
on the ratio of positive to negative literals in the formula. Fi-
nally, we present a three-leaf decision tree based on these two
features, and trained only on the smallest instances, which
achieved predictive accuracies across the entire range of in-
stance sizes close to those of our most complex models. We
conjecture that our findings hold asymptotically, and believe
our findings could open a new direction for theoretical analy-
sis of unform random 3-SAT. Essentially, the classifier can
be viewed as a simple approximate (and polynomial-time)
solver. In our experiments this solver achieved robust perfor-
mance (accuracy above 65%) on a class of SAT instances
that are extremely hard for current state-of-the-art solvers.

Experimental Setup
We considered uniform random 3-SAT instances generated
at the solubility phase transition with v ranging from 100 to
600 variables in steps of 25. Following Crawford and Au-
ton (1996), we estimated the location of the phase transition
as c = 4.258 · v + 58.26 · v−2/3 clauses. For each value of
v, we generated 1000 instances with different random seeds,
using the same instance generator as SAT competitions since
2002 (Simon 2002). In total, we thus obtained 21 instance
sets jointly comprising 21 000 3-SAT instances. For v = 100,
we generated an additional 25 000 instances; we refer to this
instance set as v100(large).1

We solved all of our instances using kcnfs07 (Dubois and
Dequen 2001) with a budget of 36 000 CPU seconds per in-
stance, with the exception of 2 instances for v = 575 and 117
instances for v = 600. For these, we performed an additional
5 runs of adaptg2wsat09++ (Li and Wei 2009) with a cutoff
time of 36 000 CPU seconds, which also failed to solve them.
Because this cutoff is more than 100 times larger than the
longest runtime of adaptg2wsat09++ on any of the solvable
600-variable instances, and the largest increase in running
time needed for solving an additional instance for v > 475
was lower than a factor of 6.5, we believe that these instances

1To verify that we were indeed generating instances at the phase
transition point, we examined the fraction of satisfiable and unsatis-
fiable instances in each set. The majority contained between 49 and
51% satisfiable instances (with mean 50.2% and standard deviation
1.6%), and there was no indication that deviations from the 50%
mark correlated with instance size. Our large set of instances with
v = 100 contained 49.5% satisfiable instances.
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Figure 1: Left: Median runtime of kcnfs07 for each instance set.
The solutions of some instances in v ≥ 575 were estimated by
running adaptg2wsat09++ for 36 000 CPU seconds. Right: Cumu-
lative distribution function of kcnfs07’s runtime for v = 500.

are unsatisfiable and treated them as such for the remainder
of our study. (Readers who feel uncomfortable with this ap-
proach should feel free to disregard our results for v ≥ 575;
none of our qualitative conclusions is affected.)

Figure 1 (left) shows the median runtime of kcnfs07 on
both satisfiable and unsatisfiable instances across our 21 in-
stance sets. Median kcnfs07 runtime increased exponentially
with the number of variables, growing by a factor of about 2.3
with every increase of 25 variables beyond v = 200 (before
this point, many instances were solved more quickly than the
smallest CPU time we could measure).

We observed large variation in runtime on satisfiable in-
stances, as illustrated in Figure 1 (right) for v = 500. Overall,
unsatisfiable instances tended to be harder to solve, and to
give rise to less runtime variation. Intuitively, to prove unsat-
isfiability, a complete solver like kncfs07 needs to reason
about the entire space of candidate assignments, while satisfi-
ability may be proven by producing a single model. Depend-
ing on the number of solutions of a given instance, which is
known to vary at the phase transition point, the search cost
of finding the first one can vary significantly.

We opted to rely on a different classification method than
used in our previous work (Xu, Hoos, and Leyton-Brown
2007); specifically, we used decision forests rather than
SMLR. This change had two advantages: we obtained ro-
bust uncertainty estimates, were able to visualize models
directly (as, indeed, we do later in this work) while achiev-
ing very good predictive accuracies. We also experimented
with SMLR on the 21 instance sets used in this work; it
yielded similar classification accuracies to those reported here
(the result of a Mann-Whitney U test showed no significant
difference). We constructed decision forests as collections
of T decision trees (Ting 2002), with T = 99. Following
Breiman (2001), given n training data points with k features
each, for each tree we drew a bootstrap sample of n training
data points sampled uniformly at random with repetitions;
during tree construction, we sampled a random subset of
log2(k) + 1 features at each internal node to be considered
for splitting the data at that node. Predictions were based on
majority voting across all T trees. In our case, the class labels
were SAT and UNSAT. Since we used 99 trees, an instance i
was classified as SAT if more than 44 trees predicted that it
was satisfiable. We measured the decision forest’s confidence
as the fraction of trees that predicted i to be satisfiable; by
choosing T as an odd number, we avoided the possibility of
ties. We validated our decision forests on the same 3-SAT
instance set at the phase transition used in our previous work

(Xu, Hoos, and Leyton-Brown 2007). It produced predictive
accuracy very close to that of SMLR (0.2% lower).

We used 61 cheaply computable instance features, of
which 7 are related to problem size, 29 to graph-based rep-
resentations of the CNF formula, 13 to balance properties,
6 to proximity to a Horn formula, and 6 to LP relaxations.
These features were obtained from the feature computation
code used in Xu et al. (2009); The feature computation time
depends on the size of the instance under consideration (e.g.,
about 41.1 CPU seconds on average for all features on a sin-
gle instance with v = 550, of which about 41.0 CPU seconds
were spent on computing the 6 LP-based features). We nor-
malized each feature so that it had a mean of 0 and standard
deviation of 1 across the training set.

For each size v, we first partitioned the respective instance
set into two subsets based on satisfiability status. Then, we
randomly split each subset 60:40 into training and test sets.
Finally, we combined the training sets for SAT and UNSAT to
form the final training set, and the SAT and UNSAT test sets
to form the final test set. We trained our decision forests on
the training sets only, and used only the test sets to measure
model accuracy. In order to reduce variance in these accuracy
measurements we repeated this whole process 25 times (with
different random training/test splits); the results reported in
this paper are medians across these 25 runs.

We collected all runtime and feature data on a computer
cluster with 840 nodes, each equipped with two 3.06 GHz
Intel Xeon 32-bit processors and 2GB of RAM per processor.
The decision forest classifier was implemented in Matlab,
version R2010a, which we also used for data analysis.

Experimental Results
Predictive quality. At the solubility phase transition, uni-
form random 3-SAT instances are equally likely to be sat-
isfiable or unsatisfiable. Thus, random (and, indeed, deter-
ministic) guessing can achieve predictive accuracy of only
50%. Our first goal was to investigate the extent to which
our models were able to make more accurate predictions. We
found that they did; specifically, they achieved accuracies
of between about 70% and 75%, as shown in Figure 2 and
Table 1. The result of a Mann-Whitney U test showed no
significant difference in the frequency of the two possible
predictive errors (predicting SAT as UNSAT and vice versa).

Classifier confidence. Figure 3 shows two sample distribu-
tions (v = 200 and v = 500) of classifier confidence. The
plots for other instance sets (not shown here) were qualita-
tively similar. Recall that we measured the confidence of the
classifier by the fraction of ‘SAT’ predictions among the 99
trees. Therefore, the classifier had complete confidence if all
99 predictions were consistent, and had the least confidence
if the numbers of ‘SAT’ predictions and ‘UNSAT’ predic-
tions were the same. As illustrated in Figure 3, the classifier
had low levels of confidence more often than high levels of
confidence; however, these low confidence levels occurred
on somewhat fewer instances as instance size grew.

As one might hope, we found that confidence was posi-
tively correlated with classification accuracy. This can be seen
by comparing the height of the bars for correct and wrong



Median Incorrect Incorrect
Variables Accuracy “SAT” “UNSAT”

100 0.694 0.138 0.168
125 0.709 0.125 0.166
150 0.702 0.148 0.150
175 0.702 0.155 0.144
200 0.682 0.153 0.164
225 0.703 0.148 0.153
250 0.697 0.158 0.148
275 0.740 0.140 0.120
300 0.714 0.143 0.143
325 0.749 0.122 0.130
350 0.704 0.151 0.143
375 0.697 0.148 0.155
400 0.724 0.143 0.135
425 0.727 0.138 0.135
450 0.740 0.128 0.132
475 0.744 0.118 0.138
500 0.737 0.130 0.133
525 0.733 0.143 0.125
550 0.747 0.120 0.133
575 0.762 0.113 0.125
600 0.732 0.129 0.139

Table 1: The performance of decision forests with 61 features
on our 21 primary instance sets. We report median classification
accuracy over 25 replicates with different random splits of training
and test data, as well as the fraction of false positive and false
negative predictions.
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Figure 2: Classification accuracies achieved on our 21 primary
instance sets. The box plots are based on 25 replicates of decision
forest models, trained and evaluated on different random splits of
training and test data. The median predictive accuracies of using
the decision forest trained on v100(large) are shown as stars. The
median predictive accuracies of using a single decision tree trained
on v100(large) based on two features are shown as squares.

predictions at each predicted probability of SAT. When pre-
dicted probability of SAT was close to 0 or 1, the classifier
was almost always correct, and when the predicted probabil-
ity of SAT was close to 0.5, accuracy dropped towards 0.5
(i.e., that of random guessing).

The decision forest’s confidence was also correlated with
kcnfs07’s runtime. As shown in Figure 4, instances tended
to be easier to solve when the predicted probabilities of SAT
were close to either 0 or 1. Recall that variation in runtime
was more pronounced on satisfiable instances, as previously
illustrated in Figure 1 (right).

Problem size: Pairwise significance tests. We now exam-
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Figure 3: Classifier confidence vs fraction of instances. Left: v =
200; Right: v = 500.
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Figure 4: Classifier confidence vs instance hardness. Each marker
([x, y]) shows the average runtime of kcnf07 over a bin of instances
with classifier confidence (predicted probability of SAT) between
x− 0.05 and x. Each marker’s intensity corresponds to the amount
of data inside the bin. Left: v = 200; Right: v = 500.

ine the hypothesis that our models’ predictive accuracy de-
creases as problem size grows. We offer two arguments that
this hypothesis should be rejected. First, we describe the re-
sults of a pairwise comparison of the classification accuracies
obtained from the full decision forest models trained for each
instance size. For each pair of data sets with instance sizes
i and j (i > j), Figure 5 shows a dark dot when classifi-
cation accuracy on size i was significantly higher than on
size j, and a light dot when classification accuracy on size i
was significantly lower than on size j, according to a Mann-
Whitney U test. Among the 210 paired comparisons with
significance level 0.05, there are 133 dark dots (63.3%), and
21 light dots (10.0%). Thus, we found little evidence that
predictive accuracy decreases as instance size grows; indeed,
our data appears to be more consistent with the hypothesis
that predictive accuracy increases with instance size.

Problem size: Generalizing from small to large problems.
We now give a second argument against the hypothesis that
predictive accuracy decreases with problem size: models
trained only on the smallest problems achieved high levels of
predictive accuracy across the whole range of problem sizes.
The stars in Figure 2 indicate the performance of the decision
forest trained on v100(large) evaluated on problems of other
sizes. This single model performed about as well—indeed, in
many cases better—than the models specialized to different
problem sizes.

We note that, in order to evaluate a model trained on in-
stances of size x on (test set) instances of size y 6= x, feature
values were normalized to obtain mean 0 and standard de-
viation 1 across the training set instances of size y. This
normalization was then applied to the features computed for
test set instances of size y, and the original model was evalu-
ated on these normalized feature values. This additional step
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Figure 5: Statistical significance of pairwise differences in clas-
sification accuracy for our 21 primary instance sets. Light dots:
accuracy on the smaller instance size is significantly higher than on
the larger size. Dark dots: accuracy on the smaller instance size is
significantly lower than on the larger size. No dot: the difference is
insignificant.

was easy in practice, as there is no obstacle to generating an
arbitrary number of uniform-random 3-SAT formulae of a
given size, and as feature computation scales polynomially
in problem size.

Although we do not report the results here, we also trained
decision forests on each of the other 20 instance sets; in each
case, we found that the models generalized across the entire
range of problem sizes in qualitatively the same way.

Most predictive features. Next, we tried to identify the
smallest set of features that could be used to build accurate
models. We imagined that most predictive features might
be different for large instances and for small instances, and
therefore divided the 21 instance sets into two groups, small
(10 instance sets, v = 100 to 325) and large (10 instance
sets, v = 375 to 600). We did not use the 350-variable set in
this analysis, in order to keep the two groups balanced. We
considered every subset of our 61 features having cardinality
1, 2 or 3, and in each case, measured the accuracy of the cor-
responding model. For both groups, we found that the best 1-
and 2-feature sets were subsets of the best 3-feature subset.
Next, we performed forward selection to build subsets of
up to 10 features, as exhaustive enumeration was infeasible
above 3 features. Specifically, starting with the best 3-feature
set, and for every feature not in the set, we determined the
mean of median classification accuracy across all of the in-
stance sets in the group. We then added the feature with the
best such accuracy to the set and repeated the process, again
considering adding another feature. We repeated these steps
until we had 10 features in our set.

We list the sets of features that we obtained, as well
as the improvement in classification accuracy achieved at
each step, in Table 2. In both cases, we were be able to
achieve good classification accuracy with a small number
of features; for each number of features, classification accu-
racy on large instances was better than on small instances.
The two most informative features were identical for both

groups, and adding additional features beyond this point
offered little marginal benefit. (We note that, since we per-
formed an exhaustive analysis of feature subsets up to size
three, this is not an artifact of our subset selection tech-
nique: there really was no 3-feature subset that performed
substantially better than the best 2-feature subset.) It is there-
fore worth understanding the meaning of these two features.
In words, LPSLACK coeff variation is the coefficient of
variation in the integer slack vector of the linear program-
ming relaxation of the integer programming formulation of
SAT; POSNEG ratio var mean is the average imbalance in
the number of positive and negated occurrences of each vari-
able.
Definition 1 (LPSLACK coeff variation) LetC denote the
set of clauses, let L denote the set of positive literals, and
let L denote the set of negative literals. Then let v∗ denote a
solution to the linear program

maximize
∑
c∈C

 ∑
i∈L∩c

vi +
∑

j∈L∩c

(1− vj)


subject to

∑
i∈L∩c

vi +
∑

j∈L∩c

(1− vj) ≥ 1 ∀c ∈ C.

Let LPSLACKi = min{1− v∗i , v∗i }, i.e., v∗i ’s proximity to inte-
grality, µ∗ the mean of LPSLACKi and σ∗ the standard devia-
tion of LPSLACKi over all i. Then LPSLACK coeff variation
= σ∗/µ∗, i.e., the coefficient of variation of LPSLACK.
Definition 2 (POSNEG ratio var mean) Let Pi and Ni de-
note the number of positive and negated occurrences of vari-
able i, and let n denote the number of variables. Then

POSNEG ratio var mean =
2

n
·
∑
i

∣∣∣∣0.5− Pi

Pi +Ni

∣∣∣∣ .
Simple classifier. So far, we have presented three main find-
ings: (1) that our models achieved high accuracies; (2) that
models trained on small instances were effective for large
instances; (3) that a model consisting of only two features
was nearly as accurate as the full decision forest models.
We now show that all of these findings also held simultane-
ously: that we were able to achieve high accuracies using a
two-feature model trained only on small instances. Specif-
ically, we constructed a single decision tree (rather than a
random forest) using only the LPSLACK coeff variation
and POSNEG ratio var mean features, and trained it using
only our easiest instances, v100(large). We further simpli-
fied this model by setting the parameter minparent of the
tree building procedure to 10 000. The minparent parame-
ter defines the smallest number of observations that impure
nodes may contain before they are allowed to further split;
setting it to such a large value forced the decision tree to be
extremely simple. This tree’s performance is indicated by the
squares in Figure 2. Overall, it achieved remarkably good
predictive accuracies, always exceeding 65%.

Figure 8 shows the decision tree. First, it classifies in-
stances as satisfiable if LPSLACK coeff variation takes a
value above its mean: that is, if LPSLACK exhibits large vari-
ance across the variables in the given formulae (region A).



Small instance sets: between 100 and 325 variables Large instance sets: between 375 and 600 variables

Classification Stepwise Classification Stepwise
Features ordered by FW Accuracy Improvement Features ordered by FW Accuracy Improvement

LPSLACK coeff variation 0.614 – LPSLACK coeff variation 0.646 –
POSNEG ratio var mean 0.670 0.056 POSNEG ratio var mean 0.696 0.050
LP OBJ 0.681 0.011 LPSLACK mean 0.706 0.010
VG mean 0.688 0.007 LP int ratio 0.714 0.008
LPSLACK max 0.690 0.002 VCG clause max 0.720 0.006
VG max 0.692 0.002 CG mean 0.721 0.001
VCG var max 0.694 0.002 TRINARYp 0.725 0.004
POSNEG ratio var max 0.694 0.000 HORNY var coeff variation 0.727 0.002
LPSLACK mean 0.695 0.001 DIAMETER entropy 0.728 0.001
LP int ratio 0.697 0.002 POSNEG ratio clause entropy 0.728 0.000

Table 2: The mean of median classification accuracy with up to 10 features selected by forward selection. The stepwise improvement for a
feature fi at forward selection step k is the improvement when we add fi to the existing k − 1 features. Left: mean of median over small
instance sets. Right: mean of median over large instance sets. Each median classification accuracy is based on the results of 25 runs of
classification with different random splits of training and test data.
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Figure 6: Distribution of LPSLACK coeff variation over instances
in each of our 21 sets. Left: SAT; Right: UNSAT. Top: original value;
Bottom: value after normalization. The line at y = 0.0047 indicates
the decision threshold used in the tree from Figure 8.
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Figure 7: Distribution of POSNEG ratio var mean over instances in
each of our 21 instance sets. Left: SAT; Right: UNSAT. Top: original
value; Bottom: value after normalization. The line at y = 0.1650
indicates the decision threshold used in the tree from Figure 8.

LPSLACK_coeff_variation
>=0.00466585

Yes No

SAT [A] POSNEG_ratio_var_mean
>= 0.164963

UNSAT [C]SAT [B]

Yes No

Figure 8: The decision tree trained on v100(large) with
only the (normalized) features LPSLACK coeff variation and
POSNEG ratio var mean, and with minparent set to 10 000.

(Recall that the feature was normalized to have mean 0.)
When LPSLACK coeff variation takes a value below its
mean, the model considers the balance between positive and
negative literals in the formula (POSNEG ratio var mean). If
the literals’ signs are relatively balanced, the model predicts
unsatisfiability (region C). Otherwise, it predicts satisfiability
(region B). To gain further understanding about the effective-
ness of this model, we partitioned each of our 21 data sets
into the three regions and observed the fraction of each par-
tition that was correctly labeled by the tree. These fractions

were between 60 and 70% (region A), between 70 and 80%
(region C), and about 50% (region B).

Finally, Figures 6 and 7 show the distribution of the
LPSLACK coeff variation and POSNEG ratio var mean
features over each of our 21 instance sets, before and af-
ter normalization, and considering satisfiable and unsatisfi-
able instances separately. We observe that both features’ pre-
normalization variation decreased with instance size, while
their median values remained relatively constant. After nor-
malization, both features’ distributions remained very similar
as instance size increased. The decision thresholds used by
our simple decision tree are plotted as solid horizontal lines
in these figures. Both thresholds were located near the 25th
or 75th percentiles of the respective distributions, regardless
of instance size.

We end by stating the following conjecture, which we hope
will serve as a basis for future theoretical investigation.

Conjecture 1 The decision tree in Figure 8 can determine
the satisfiability status of uniform-random 3-SAT instances
at the phase transition with accuracy bounded strictly above
0.5 as instance size grows.



Indeed, we note that a simpler version of this conjecture
might be easier to analyze, and is implied by Conjecture 1.
Specifically, we can make the same claim about either of
two one-node decision trees: (1) the subtree rooted at the
POSNEG ratio var mean node; (2) the root node, with the
“no” edge leading to an “UNSAT” leaf. We also note that,
while our model is dependent on normalized feature values,
it is likely possible to obtain an analytic solution for the
normalization factors.

Conclusions
Uniform random 3-SAT instances from the solubility phase
transition are challenging to solve considering their size. Nev-
ertheless, we have shown that the satisfiability of such in-
stances can be predicted efficiently and with surprisingly
high accuracy. We have demonstrated that high predictive
accuracies (19% – 26% better than random guessing) can
be achieved across a wide range of instance sizes, and
that there is little support for the hypothesis that this ac-
curacy decreases as instance sizes grow. The predictive
confidence of our classifiers correlates with the predic-
tive accuracy obtained and with the runtime of a state-
of-the-art complete SAT solver. A classifier trained on
small, very easy instances also performed well on large,
extremely challenging instances. Furthermore, the features
most important to models trained on different problem
sizes were substantially the same. Finally, we showed that
using only two features, LPSLACK coeff variation and
POSNEG ratio var mean, we could build a trivial, three-leaf
decision tree that achieved classification accuracies only
slightly below those for our most complex decision forest
classifier. Examining the operation of this model, we observe
the surprisingly simple rules that instances with large varia-
tion in LPSLACK (distance of LP solutions to integer values)
across variables are likely to be satisfiable, and that instances
with small variation of LPSLACK and roughly balanced num-
bers of positive and negated occurrences of variables are
likely to be unsatisfiable. We hope that these rules will lead to
novel heuristics for SAT solvers targeting random instances,
and will serve as a starting point for new theoretical analysis
of uniform random 3-SAT at the phase transition.
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