
The Deployment-to-Saturation Ratio in Security Games

Manish Jain
manish.jain@usc.edu

University of Southern California,
Los Angeles, California 90089.

Kevin Leyton-Brown
kevinlb@cs.ubc.edu

University of British Columbia
Vancouver, B.C., Canada V6T 1Z4.

Milind Tambe
tambe@usc.edu

University of Southern California,
Los Angeles, California 90089.

Abstract

Stackelberg security games form the backbone of systems like
ARMOR, IRIS and PROTECT, which are in regular use by the
Los Angeles International Police, US Federal Air Marshal Ser-
vice and the US Coast Guard respectively. An understanding
of the runtime required by algorithms that power such systems
is critical to furthering the application of game theory to other
real-world domains. This paper identifies the concept of the
deployment-to-saturation ratio in random Stackelberg security
games, and shows that problem instances for which this ratio
is 0.5 are computationally harder than instances with other
deployment-to-saturation ratios for a wide range of different
equilibrium computation methods, including (i) previously
published different MIP algorithms, and (ii) different under-
lying solvers and solution mechanisms. This finding has at
least two important implications. First, it is important for new
algorithms to be evaluated on the hardest problem instances.
We show that this has often not been done in the past, and
introduce a publicly available benchmark suite to facilitate
such comparisons. Second, we provide evidence that this com-
putationally hard region is also one where optimization would
be of most benefit to security agencies, and thus requires sig-
nificant attention from researchers in this area. Furthermore,
we use the concept of phase transitions to better understand
this computationally hard region. We define a decision prob-
lem related to security games, and show that the probability
that this problem has a solution exhibits a phase transition
as the deployment-to-saturation ratio crosses 0.5. We also
demonstrate that this phase transition is invariant to changes
both in the domain and the domain representation, and that
the phase transition point corresponds to the computationally
hardest instances.

Introduction
Software security assistants built on the framework of Stack-
elberg security games (Kiekintveld et al. 2009) have been
deployed by a variety of real-world security agencies. For
example, ARMOR (Jain et al. 2010b) has been in use
by the police at Los Angeles International Airport since
2007. Similarly, IRIS (Jain et al. 2010b) and PRO-
TECT (An et al. 2011) have been in use by the US Fed-
eral Air Marshals Service and the US Coast Guard since
2009 and 2011 respectively. Many different algorithms

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

have been proposed for computing solutions to such prob-
lems (Conitzer and Sandholm 2006; Paruchuri et al. 2008;
Gatti 2008; Kiekintveld et al. 2009; Jain et al. 2010a;
Dickerson et al. 2010; Letchford and Vorobeychik 2011;
Bosansky et al. 2011) with a focus on scalability to enable
the application of these models to newer and more complex
real-world domains.

In this paper, we investigate what properties of Stackelberg
security game instances make them hard to solve in practice,
across different input sizes and different security domains.
We show that this question can be answered using the novel
concept of the deployment-to-saturation (d:s) ratio. This
ratio, which we denote d:s, is defined as the number of de-
ployed defender resources divided by the number of resources
beyond which additional deployments would not provide any
benefit to the defender. We show that the hardest computa-
tional instances arise when this ratio is 0.5, independent of
the domain representation, model and solver. Specifically,
we consider three different classes of security domains, eight
different MIP algorithms (including two algorithms actually
deployed in practice), five different underlying MIP solvers,
two different variations on the Stackelberg equilibrium con-
cept, and a variety of domain sizes and conditions.

We identify two important implications of our findings.
First, new algorithms should be compared on the hardest
problem instances; we show that most previous research has
compared the runtime performance of algorithms only at low
d:s ratios, where problems are comparatively easy. Second,
we argue that this computationally hard region is the point
where optimization offers the greatest benefit to security agen-
cies, implying that problems in this region deserve increased
attention from researchers.

Finally, we leverage the concept of phase transitions to
better understand this algorithm-independent, computation-
ally hard region. This approach to understanding algorithm-
independent structural properties was pioneered by Cheese-
man, Kanefsky, and Taylor (1991) and Mitchell, Selman, and
Levesque (1992). They showed that the probability that a
uniform-random 3-SAT instance will be satisfiable exhibits a
phase transition when the number of variables is fixed and the
number of clauses crosses roughly 4.3 times the number of
variables, which corresponds to the point where the probabil-
ity that the instance will be solvable crosses 0.5. Phase tran-
sitions have also been used to understand the computational

Target 1 Target 2

Target 1 5,−5 −1, 3

Target 2 −6, 3 1,−5

Figure 1: Example security game with two targets and one
attacker type.

impact of problem structure in optimization problems, such
as MAX-SAT (Slaney and Walsh 2002) and TSP (Gent and
Walsh 1996; Frank, Gent, and Walsh 1998). The approach
taken in this work is to identify a phase transition in the deci-
sion version of the optimization problem (i.e., asking whether
or not a solution exists with a given objective function value).
We show that security games exhibit a phase transition at 0.5
for random Stackelberg security game instances, and that this
phase transition corresponds to the computationally hardest
instances at the d:s ratio of 0.5.

Stackelberg Security Games
Stackelberg security games are played between a de-
fender and an attacker, and conform to a leader–follower
paradigm (Conitzer and Sandholm 2006; Paruchuri et al.
2008; Kiekintveld et al. 2009). The defender first commits
to a mixed strategy, to which the attacker then responds. The
actions of the defender correspond to different targets she
can protect, and the action space of the attacker is a choice of
the targets to attack. With each target four payoff values are
associated: reward and penalty to both the defender and the
attacker for an unsuccessful and successful attack. Table 1
shows an example Stackelberg security game with 2 targets.
The defender is the row player, and the attacker is the column
player. In this example, the defender would get a payoff of 5
if she chose to cover (i.e., protect) Target 1 and the attacker
did attack Target 1.

A Bayesian Stackelberg security game extends the frame-
work to multiple types of attackers, with each such type iden-
tified by its own payoff matrix. The defender does not know
which attacker type she will face in a given instance, but
knows the probability distribution from which the attacker’s
type is drawn.

A Strong Stackelberg Equilibrium (SSE) is a mixed strat-
egy for the defender that maximizes her expected utility,
given that the attacker plays a pure strategy best response to
this mixed strategy. A MILP to compute the SSE is given in
Problem 1.1 Equation (2) computes the expected defender
payoff dλ achieved against attacker of type λ when the de-
fender plays mixed strategy x and the attacker’s best response
is aλj . Similarly, Equations (3), (4), (5) and (8) together
guarantee that every attacker type plays a pure strategy best
response aλj to the defender mixed strategy x. Finally, Equa-
tion (6) and (7) ensure that the defender plays a valid mixed

1Problem 1 is a generic definition of SSE. In practice, how-
ever, different formulations of the problem are used with heuristic
algorithms to provide speedups on specific domains.

Problem 1 (Strong Stackelberg Equilibrium (SSE))

maximize
∑
λ∈Λ

dλpλ (1)

dλ −
∑
i

Dλ(i, j)xi ≤ (1− aλj)Z ∀j,∀λ (2)

kλ −
∑
i

Aλ(i, j)xi ≥ 0 ∀j,∀λ (3)

kλ −
∑
i

Aλ(i, j)xi ≤ (1− aλj)Z ∀j,∀λ (4)∑
j∈J

aλj = 1 ∀λ (5)

∑
i

xi = 1 (6)

xi ≥ 0 ∀i ∈ I (7)

aλj ∈ {0, 1} ∀j ∈ J (8)

Symbol Definition

D Defender
A Attacker
Λ Set of attacker types
λ An element of set Λ
pλ The probability that type λ will be realized
x Mixed strategy of D
aλ Mixed strategy of Aλ

Dλ(i, j) Expected utility of D when playing pure strategy i
and when attacker of type λ plays pure strategy j

Aλ(i, j) Expected utility of A when playing pure strategy i
and when attacker of type λ plays pure strategy j

Z Large positive constant

Table 1: Notation.

strategy x. We refer the readers to Paruchuri et al. (2008)
and Kiekintveld et al. (2009) for further details on this MILP
and the computation of SSE. The notation used in this MILP
is given in Table 1. Here, i and j refer to the ith pure strate-
gies of the defender and the jth pure strategy of the attacker
respectively. While the set of attacker pure strategies in all
domains is equivalent to the set of targets to attack, the pure
strategies of the defender vary from domain to domain as we
will describe below.

Computing the SSE solution for Bayesian Stackelberg
games is NP-hard (Conitzer and Sandholm 2006). However,
the problem is nevertheless important to solve: Bayesian
Stackelberg games are an appropriate model for many real-
world security scenarios, and hence many algorithms have
been designed for solving these games. Many software assis-
tants built on these algorithms have also been successfully
deployed (Jain et al. 2010b; An et al. 2011).

Security Domains
In this paper, we investigate the runtime performance of
different algorithms for three different security domains. This
section describes these domains.

SPNSC Domain
SPNSC (Security Problems with No Scheduling Constraints)
refers to a security domain with distinct targets, a set of de-
fender resources and many attacker types. Each defender
resource can defend any one target, and there are no schedul-
ing constraints on the defender. Thus, in this domain, a pure
strategy i of the defender is a joint allocation of all defender
resources to targets. Two different representations have been
proposed for modeling SPNSC problems.

General-sum representation. This representation models
every possible combination of actions of the defender’s re-
sources as a pure strategy for the defender. Thus, the number
of defender pure strategies for this domain is exponential in
the number of defender resources. Three algorithms, Multi-
pleLPs (Conitzer and Sandholm 2006), DOBSS (Paruchuri
et al. 2008) and HBGS (Jain, Kiekintveld, and Tambe 2011),
have been proposed to compute SSE for this representa-
tion. A real-world application of SPNSC is setting up ve-
hicular inspection checkpoints at the Los Angeles Interna-
tional Airport, as implemented in ARMOR (Pita et al. 2008;
Jain et al. 2010b), which was deployed in August, 2007.
ARMOR models the problem as an SPNSC problem and uses
DOBSS to compute the SSE.

Security game compact representation. This representa-
tion only captures the probability of the defender covering
any particular target, since the expected utilities of both the
defender and the attacker in a security game only depends
on the target attacked and the probability of defender pro-
tecting that target. ERASER (Kiekintveld et al. 2009) is the
only algorithm that has been proposed for computing SSE
for Bayesian Stackelberg games represented in this form.

SPARS Domain
The SPARS (Security Problems with ARbitrary Schedules)
domain (Jain et al. 2010a) models a setting in which de-
fender resources may not be homogeneous, and are required
to satisfy scheduling constraints. A practical example is the
scheduling problem faced by the US Federal Air Marshals
Service, where every air marshal is a defender resource who
has to obey spatio-temporal and logistical constraints in se-
lecting flight tours. In a SPARS problem instance, a resource
(e.g., an air marshal) selects a schedule (e.g., a flight tour),
where each schedule can cover multiple targets (e.g., flight
tour spans multiple flights). Thus, each resource is capable
of protecting multiple targets. Therefore, in this domain,
a pure strategy i of the defender is a joint schedule of all
defender resources. ASPEN (Jain et al. 2010a) is the only
algorithm that has been proposed to compute optimal solu-
tions for SPARS instances; it is based on a branch-and-price
algorithm (Barnhart et al. 1994). The IRIS (Jain et al. 2010b)
system was deployed in October 2009 to solve the scheduling

problem faced by the Federal Air Marshal Service; it mod-
els the problem as a SPARS problem and uses the ASPEN
algorithm.

SPPC Domain
We introduce a new security domain: Security Problems with
Patrolling Constraints (SPPC). This is a generalized security
domain that allows us to consider many different facets of
the patrolling problem. The defender needs to protect a set
of targets, located geographically on a plane, using a limited
number of resources. These resources start at a given target
and then conduct a tour that can cover an arbitrary number of
additional targets; the constraint is that the total tour length
must not exceed a given parameter L. For example, if L = 5,
then the length of the tour taken by each defender resource
must not exceed 5 units. Thus, similar to the SPARS do-
main, a pure strategy i of the defender in this domain is a
joint tour of all defender resources. The defender’s objective
is to find the optimal mixed strategy over tours for all its
resources in order to maximize her expected utility. This
domain captures properties of patrolling problems studied by
researchers across many real-world domains (An et al. 2011;
Bosansky et al. 2011; Vanek et al. 2011). We consider the
two variants of this domain featuring different attacker mod-
els. In each case, because no other algorithms are available,
we propose a novel algorithm for computing SSE.

Multiple Attackers. For this domain we propose a branch-
and-price based formulation for computing the optimal strat-
egy for the defender, similar in spirit to ASPEN (Jain et
al. 2010a). We omit the details of our algorithm for space
reasons; they can be found in Section 2 of our online Ap-
pendix (http://teamcore.usc.edu/DTS/Appendix.pdf).

Bayesian Single Attacker. We also consider the Bayesian
version of the patrolling domain, in which there is a single
attacker with many potential types. For example, this prob-
lem is faced by the US Coast Guard when patrolling a set of
targets along the port to protect against potential threats. The
PROTECT system (An et al. 2011) deployed in April 2011,
models this problem as an SPPC problem with a Bayesian
single attacker. We propose a second branch-and-price algo-
rithm for computing SSE in this domain; again the details are
available in Section 3 of our online Appendix.

Runtime Variation
As mentioned previously, this paper focuses on the runtime re-
quired by the different algorithms that compute solutions for
instances of security games for the three domains described
above. Figure 2 shows the runtime for computing solutions
using DOBSS, ASPEN and multiple-attacker branch-and-
price algorithm for the SPNSC, SPARS and SPPC domains
respectively. (Recall that these three configurations are par-
ticularly interesting, as they are the ones that have been de-
ployed in practice.) The x-axis in each figure shows the
number of available resources to the defender, and the y-axis
shows the runtime in seconds. In the SPNSC and the SPARS
domains we define the number of resources as the number of
officers available to the defender; in the SPPC domain, we

0.001	

0.01	

0.1	

1	

10	

100	

0	
 3	
 6	
 9	
 12	
 15	

Ru
n-

m
e	

(se

co
nd

s)	

	

resources	

DOBSS	
 Run-me:	
 2	
 Types	

15	
 Targets	
 10	
 Targets	

(a)

0	

2	

4	

6	

8	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	

Ru
n/

m
e	

	
 (s
ec
on

ds
)	

resources	

Aspen:	
 500	
 Schedules,	
 	

2	
 Targets	
 Per	
 Schedule	

100	
 Targets	
 50	
 Targets	

(b)

1.00	

10.00	

100.00	

1000.00	

1	
 6	
 11	
 16	
 21	
 26	
 31	
 36	

Ru
n+

m
e	

(s
ec
on

ds
)	

tour	
 length	

Mul+ple	
 A8ackers:	
 8	
 Targets	

1	
 Resource	
 2	
 Resources	

(c)

Figure 2: Average running time of DOBSS, ASPEN and multiple-attacker branch-and-price algorithm for SPNSC, SPARS and
SPPC domains respectively.

define it as the maximum feasible tour length. These graphs
show that there is no unified value of the number of defender
resources which makes security game instances hard to solve.
We also tried normalizing the number of resources by the
number of targets, however, we found similar inconsistencies
across different domains even with that normalization.

Deployment to Saturation Ratio
We now propose the novel concept of the deployment-to-
saturation (d:s) ratio, a concept that unifies the domain in-
dependent properties of problem instances across different
security domains. Specifically, we consider the three security
domains introduced before, eight different MIP algorithms
(including two deployed algorithms), five different underly-
ing MIP solvers, two different equilibrium concepts in Stack-
elberg security games, and a variety of domain sizes and
conditions. We show experimentally that the hardest problem
instances occur when the dts ratio is about 0.5. (Specifically,
in our experiments, the hardest problem instances occurred
at the d:s ratios between 0.48 and 0.54. However, because
of discretization, we were not able to test all d:s ratios in
all domains. Without exception, the hardest value was the
feasible value closest to 0.5. This fact, in combination with
our phase transition arguments presented at the end of the
paper, lead us to conclude that the hardest region is precisely
d:s = 0.5.)

More specifically, the deployment-to-saturation (d:s) ratio
is defined in terms of defender resources, a concept whose
precise definition differs from one domain to another. Given
this definition, deployment denotes the number of defender
resources available to be allocated, and saturation denotes
the minimum number of defender resources such that the
addition of further resources beyond this point yields no
increase in the defender’s expected utility. For the SPNSC
and the SPARS domain, deployment denotes the number of
available security personnel, whereas saturation refers to the
minimum number of officers required to cover all targets
with a probability of 1. For the SPPC domain, deployment
denotes the maximum feasible tour length, while saturation
denotes the minimum tour length required by the team of
defender resources such that the team can tour all the targets
with a probability of 1.

We now present results for all the three security domains.
All the results shown below are averaged over 100 samples,
and were collected on a machine with a 2.7GHz Intel Core i7
processor and 8GB main memory. In all graphs, the x-axis
shows the d:s ratio and the y-axis shows the runtime in CPU-
seconds. Experiments were conducted using CPLEX 12.2
unless otherwise noted.

SPNSC Domain
For this domain, we considered both the general-sum and
security game compact representations.

General sum representation. We conducted experiments
varying the algorithm, number of attacker types and number
of targets. The results for the general sum representation are
plotted in Figures 3(a), 3(b) and 3(c). The payoffs for the
two players were selected uniformly at random: the payoffs
for success and failure were selected from the ranges [1, 10]
and [−10,−1] respectively.

Figure 3(a) shows that the runtime required by all three
algorithms (MultipleLPs, DOBSS and HBGS) peaks at
d:s = 0.53. (While we would like to have observed peaks at
d:s = 0.5 in all of our experiments, we typically observed
values that were slightly different. The explanation that might
come first to mind is variance due to having measured an
insufficient number of samples. However, there is also a more
critical issue: because our numbers of resources and targets
are discrete, we were not able to measure every d:s value.
Here, 8 resources and 15 targets corresponded to d:s = 0.53.)
This set of experiments considered 2 attacker types and 15
targets. Moreover, all the three algorithms required the max-
imum runtime when the d:s ratio was 0.53. For example,
MultipleLPs required 27.9 seconds to compute the optimal
solution. This experiment shows that computation is hardest
for the SPNSC problem instances when the d:s ratio is about
0.5.

The next two experiments study runtime variation when the
number of targets and the number of types in the domain vary.
Figure 3(b) varies the number of targets in the domain from
10 to 15. Similarly, Figure 3(c) varies the number of types
from 2 to 3 in the security domain. For example, DOBSS
took 1.8 seconds on average for instances with 3 attacker
types at the d:s ratio of 0.5 (5 resources and 10 targets),

0.001	

0.01	

0.1	

1	

10	

100	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Ru
n,

m
e	

(s
ec
on

ds
)	
 	

d:s	
 ra,o	

Varia,on	
 in	
 Algorithms:	
 	

2	
 Types,	
 15	
 Targets	

Mul,ple	
 LPs	
 DOBSS	
 HBGS	
 	

(a)

0.001	

0.01	

0.1	

1	

10	

100	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Ru
n,

m
e	
 (

se
co
nd

s)	

	

d:s	
 ra,o	

DOBSS	
 Run,me:	
 2	
 Types	

10	
 Targets	
 15	
 Targets	

(b)

0.001	

0.01	

0.1	

1	

10	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Ru
n,

m
e	

(s
ec
on

ds
)	
 	

d:s	
 ra,o	

DOBSS	
 Run,me:	
 10	
 Targets	

2	
 Types	
 3	
 Types	

(c)

0.001	

0.01	

0.1	

1	

10	

100	

1000	

0.00	
 0.20	
 0.40	
 0.60	
 0.80	
 1.00	

Ru
n,

m
e	

(s
ec
on

ds
)	
 	

d:s	
 ra,o	

Brass:	
 2	
 Types	

15	
 Targets	
 10	
 Targets	

(d)

0	

0.4	

0.8	

1.2	

1.6	

2	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 Ru
n,

m
e	

(s
ec
on

ds
)	

d:s	
 ra,o	

Eraser	
 Run,me:	
 2	
 Types	

50	
 Targets	
 75	
 Targets	

(e)

0	

0.5	

1	

1.5	

2	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Ru
n-

m
e	

(s
ec
on

ds
)	

d:s	
 ra-o	

Varia-on	
 in	
 Solu-on	
 Mechanism:	
 	

2	
 Types,	
 	
 50	
 Targets	

CPLEX:	
 Primal	
 Simplex	
 CPLEX:	
 Dual	
 Simplex	

CPLEX:	
 Network	
 Simplex	
 CPLEX:	
 Barrier	

GLPK	
 Simplex	

(f)

Figure 3: Average runtime of computing the optimal solution for a SPNSC problem instance. The vertical dotted line shows
d:s = 0.5.

We also ran experiments with BRASS, which computes
an ε-Stackelberg equilibrium (Pita et al. 2010). These results
are shown in Figure 3(d). The hardest instances for BRASS
in a domain with 15 targets corresponded to a d:s ratio of
0.53 (8 resources), with BRASS taking 17 seconds.

Security game compact representation. We conducted
experiments with ERASER that varied the number of targets
and the number of attacker types. We generated payoffs
for the players as before. Figure 3(e) shows our results for
problem instances with 2 attacker types and both 50 and 75
targets. For example, the runtime required for 75 targets for
the d:s ratio of 0.49 (37 resources) was 1.8 seconds. This
was the computationally hardest point for 75 targets. We also
varied the number of types, and those results also confirmed
our claim. These results can be found in Section 4 of our
online Appendix.

Our next experiment investigated the effect on ERASER’s
runtime of changing its underlying solver and solution mech-
anism. We plot the runtime required by ERASER with
CPLEX Primal Simplex, CPLEX Dual Simplex, CPLEX
Network Simplex, CPLEX Barrier and GLPK Simplex meth-
ods. Again, we generated the payoffs and game instances
as before. A sample result is that, for the d:s ratio of 0.50
(25 targets), the runtime required by CPLEX Dual Simplex
was 0.9 seconds and the runtime required by GLPK Simplex
was 1.6 seconds. TThese experiments again show that the
d:s ratio of 0.5 corresponds with the computationally hardest
instances across a range of underlying solver and solution
mechanisms for the SPNSC domain.

SPARS Domain
We conducted experiments varying the length of a sched-
ule, the number of targets and the number of schedules in
SPARS problem instances. ASPEN was used to compute so-
lutions. As before, payoffs for the two players were selected
uniformly at random; the rewards for success were selected
uniformly at random from the interval [1, 10], and the penalty
for failure uniformly at random from the interval [−10,−1].

Figure 4(a) shows our results for SPARS problem instances
with 100 targets and 500 schedules, when the number of
targets covered by each schedule, denoted by |S|, was varied.
For example, the runtime required for |S| = 2 at the d:s ratio
of 0.50 (20 deployed resources, 40 required for saturation)
was 6.4 seconds. This was computationally the hardest point
for |S| = 2. For |S| = 4, the computationally hardest point
required 28.9 seconds at d:s = 0.5 (10 available resources,
20 required for saturation).

Figure 4(b) shows the results for SPARS problem instances
with 100 targets and 2 targets per schedule, considering 400
and 500 schedules. For example, the runtime required for 500
schedules for the d:s ratio of 0.50 (20 resources, 40 required
for saturation) was 6.4 seconds. Figure 4(c) shows the results
for SPARS problem instances with 500 schedules, 2 targets
per schedule for 50 and 100 targets. For example, the runtime
required for 50 targets for the d:s ratio of 0.50 (10 resources,
20 required for saturation) was 1.9 milliseconds which, again,
was the computationally hardest point for 50 targets.

SPPC Domain
We present results for both the multiple attacker and the
Bayesian single attacker variants in Figure 5. Figure 5(a)
shows the results for the multiple attacker SPPC domain with

1	

10	

100	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Ru
n,

m
e	

(s
ec
on

ds
)	

	

d:s	
 ra,o	

Aspen	
 Run,me	

100	
 Targets,	
 500	
 Schedules	

|S|	
 =	
 4	
 |S|	
 =	
 2	

(a)

0	

2	

4	

6	

8	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Ru
n,

m
e	

(s
ec
on

ds
)	

d:s	
 ra,o	

Aspen:	
 100	
 Targets,	
 	

2	
 Targets	
 per	
 schedule	

400	
 Schedules	
 500	
 schedules	

(b)

0	

2	

4	

6	

8	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Ru
n,

m
e	

	
 (s
ec
on

ds
)	

d:s	
 ra,o	

Aspen:	
 500	
 Schedules,	
 	

2	
 Targets	
 Per	
 Schedule	

100	
 Targets	
 50	
 Targets	

(c)

Figure 4: Average runtime of computing the optimal solution for a SPARS game using ASPEN. The vertical dotted line shows
d:s = 0.5.

0.1	

1	

10	

100	

1000	

0.00	
 0.20	
 0.40	
 0.60	
 0.80	
 1.00	

Ru
n,

m
e	

(s
ec
on

ds
)	
 	

d:s	
 ra,o	

Mul,ple	
 A;ackers:	
 1	
 resource	

8	
 Targets	
 6	
 Targets	

(a)

1.00	

10.00	

100.00	

1000.00	

0.00	
 0.20	
 0.40	
 0.60	
 0.80	
 1.00	

Ru
n,

m
e	

(s
ec
on

ds
)	

d:s	
 ra,o	

Mul,ple	
 A;ackers:	
 8	
 Targets	

1	
 Resource	
 2	
 Resources	

(b)

0.1	

1	

10	

100	

0.00	
 0.20	
 0.40	
 0.60	
 0.80	
 1.00	

Ru
n,

m
e	
 (

se
on

cd
s)	

d:s	
 ra,o	

Bayesian	
 Single	
 A>acker:	
 8	

Targets,	
 1	
 resource	

1	
 Type	
 2	
 Types	

(c)

Figure 5: Average runtime for computing the optimal solution for a patrolling domain. The vertical dotted line shows d:s = 0.5.

1 defender resource, and with the number of targets varying
from 6 to 8. For example, for the d:s ratio of 0.50, the algo-
rithm took 108.2 seconds to compute the optimal solution.
Figure 5(b) shows the runtime required to compute the op-
timal solution for the multple attacker SPPC domain with 8
targets. It varies the number of defender resources from 1
to 2. For example, for the d:s ratio of 0.50, the algorithm
took 144.0 seconds to compute the optimal solution for 2
resources. This was again the computationally hardest point.

Similarly, Figure 5(c) shows the runtime required for our
branch-and-price based algorithm to compute an optimal
solution for the Bayesian single attacker SPPC domain with
8 targets and 1 defender resource, along with the probability p
that the decision problem is solvable. It varies the number of
types from 1 to 2. For example, for the d:s ratio of 0.50, the
algorithm took 2.0 seconds to compute the optimal solution
for 1 type.

Implications of our Findings
We have provided evidence that the hardest random Stack-
elberg game instances occur at a deployment-to-saturation
ratio of 0.5. This finding has two key implications.

First, it is important to compare algorithms on hard prob-
lems. If random data is used to test algorithms for security
domains, it should be generated at a d:s ratio of 0.5. There
has indeed been a significant research effort focusing on the
design of faster algorithms for security domains. Random
data has often been used; unfortunately, we find that it tends
not to have come from the d:s = 0.5 region. (Of course, the

concept of a deployment-to-saturation ratio did not previously
exist; nevertheless, we can assess previous work in terms of
the d:s ratio at which data was generated.) For example,
Jain, Kiekintveld, and Tambe (2011) compared the perfor-
mance of HBGS with DOBSS and MultipleLPs, but they
only compared d:s ratios between 0.10 and 0.20. Similarly,
Pita et al. (2010) presented runtime comparisons between
different algorithms, varying the number of attacker types in
the security domain; all experiments in this paper were fixed
at d:s = 0.30 (10 targets, 3 resources). Jain et al. (2011)
showed scalability results for RUGGED, testing at d:s ratios
of 0.10 and (mostly) 0.20. Runtime results have also been
presented in other security settings (Dickerson et al. 2010;
Vanek et al. 2011; Bosansky et al. 2011); these algorithms
compute defender strategies for networked domains. Their
experiments keep the number of resources fixed and increase
the size of the underlying network; however, none of these
papers provides enough detail about how instances were gen-
erated to allow us to accurately compute the d:s ratio.

To make it easier for future researchers to test their al-
gorithms on hard problems, we have written a benchmark
generator for security games that generates instances from
d:s = 0.5. This generator is written in Java, and is avail-
able for download at http://teamcore.usc.edu/DTS. It
allows users to generate instances for all domains described
above, as well as to compute solutions for all the algorithms
mentioned in this research. It also allows switching between
GLPK and CPLEX.

Second, we observe that intermediate values of the d:s
ratio, the computationally hard region, is also the region

0	

1	

2	

3	

4	

5	

6	

7	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

U
-l
ity

	

d:s	
 ra-o	

U-lity	
 Difference	

(50	
 Targets)	

U-lity	
 Difference	

(75	
 Targets)	

Figure 6: The difference between expected defender utili-
ties from ERASER and a naı̈ve randomization policy. The
vertical line shows d:s = 0.5.

where optimization is most valuable and hence where se-
curity officials are most likely to seek help in optimizing
their resource deployment. If the d:s ratio is large, there are
enough resources to protect almost all targets, and perform-
ing a rigorous optimization offers little additional benefit. If
d:s is small, there are not enough resources for optimized de-
ployment to have a significant impact. To make this intuition
concrete, we show an example from random data from the
SPNSC domain in Figure 6. We present results for 50 and
75 targets, each averaged over 100 random instances. The
x-axis plots the d:s ratio, and the y-axis shows the differ-
ence between the defender utilities obtained by the optimal
strategy and a naı̈ve randomization strategy. A low utility
difference implies that the naı̈ve strategy is almost as good
as the optimal strategy, whereas a high difference shows that
it is worthwhile to invest in computing the optimal strategy.
The naı̈ve strategy we use here prioritizes targets based on
the attacker’s payoff for successfully attacking a target, and
then uniformly distributes its resources over twice as many
top targets as the number of resources. For example, at a d:s
ratio of 0.5, for 50 targets, the difference in utilities between
the optimal solution and the solution from the randomized
strategy was 5.07 units, whereas it was 0.21 units at a d:s
ratio of 1. This suggests that computationally hard settings
are also those where security forces would benefit the most
from adopting nontrivial strategies; hence, researchers should
concentrate on these problems.

Phase Transitions
All our runtime results show an easy-hard-easy computational
pattern as the d:s ratio increases from 0 to 1, with the hardest
problems at d:s = 0.5. Such easy-hard-easy patterns have
also been observed in other NP-complete problems, most
notably 3-SAT (Cheeseman, Kanefsky, and Taylor 1991;
Mitchell, Selman, and Levesque 1992). In 3-SAT, the
hardness of the problems varies with the clause-to-variable
(c/v) ratio, with the hardest instances occurring at about
c/v = 4.26. The SAT community has used the concept of
phase transitions to better understand this hardness peak.

Phase transitions have also been used to study properties

of optimization problems. Specifically, one can derive the
decision version of an optimization problem by asking “does
there exist a solution with objective function value ≥ k?”,
and then looking for a phase transition in the decision prob-
lem. This approach was pioneered by Gent et al. (1995), who
studied the properties of four different optimization problems
including TSP and Boolean circuit synthesis. They computed
the optimal tour length from the TSP optimization problem,
and then used this value as k to define the decision version of
the TSP instance. They showed that a phase transition in the
solubility of this problem corresponded to the computation-
ally hardest region. The same approach was later also used
by Gent and Walsh (1996).

In the context of game theory, phase transitions have
been used to analyze the efficiency of markets in adaptive
games (Savit, Manuca, and Riolo 1999) and the probability
of cooperation in evolutionary game theory (Hauert and Szab
2005). To our knowledge, our work is the first that identi-
fies such structural properties in the context of Stackelberg
security games.

Phase Transitions in Security Games
We begin by defining the decision version of the SSE opti-
mization problem, which we denote SSE(D). SSE(D) asks
whether there exists a defender strategy that guarantees ex-
pected utility of at least the given value D. We want to claim
that a phase transition in the decision problem correlates
with the hardest random problem instances. However, we
obtain different phase transitions for different values of D.
Following Gent et al. (1995), we define D∗ as the median
objective function value achieved in the SSE optimization
problem when the d:s ratio is set to 0.5. (Observe that this
definition guarantees that at a d:s ratio of 0.5, exactly 50%
of problem instances will have a feasible solution. On the
other hand, it does not guarantee that there will be a phase
transition—i.e., a sharp change—in the probability of solv-
ability.) We estimated D∗ by sampling 100 random problem
instances at d:s = 0.5, and computing the sample median of
their objective function values.

Claim 1 As the d:s ratio varies from 0 to 1, the probability p
that a solution exists to SSE(D∗) exhibits a phase transition
at d:s = 0.5. This phase transition is independent of the se-
curity domain or its representation. Furthermore, this phase
transition aligns with the computationally hardest instances.

To support this claim, we computed the probability of
solvability of the decision problem SSE(D∗) for all the
security domains and algorithms mentioned above. We only
include one result from each of the three domains here; the
rest can be obtained from Section 5 of our online Appendix.
The results are shown in Figure 7. The x-axis shows the
d:s ratio as before, the primary y-axis shows the runtime in
seconds, and the secondary y-axis shows the probability p of
finding a solution to SSE(D∗). We plot runtimes using solid
lines, as before, and plot p using a dashed line. Figure 7(a)
presents results for the DOBSS algorithm for the SPNSC
domain for 10 targets and 2 and 3 attacker types. As expected,
the d:s ratio of 0.5 corresponds with p = 0.51 as well as
the computationally hardest instances; more interestingly,

0	

0.5	

1	

0.001	

0.01	

0.1	

1	

10	

100	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Pr
ob

ab
ilit

y	
 p
	

Ru
n7

m
e	

(se

co
nd

s)	

	

d:s	
 ra7o	

DOBSS	
 Run7me:	
 2	
 Types	

10	
 Targets	
 15	
 Targets	

Probability	
 p	
 (10	
 targets)	
 Probability	
 p	
 (15	
 targets)	

(a)

0	

0.5	

1	

0	

2	

4	

6	

8	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	

Pr
ob

ab
ilit

y	
 p
	

Ru
n7

m
e	

(se

co
nd

s)	

d:s	
 ra7o	

Aspen:	
 100	
 Targets,	
 	

2	
 Targets	
 per	
 schedule	

400	
 Schedules	
 500	
 schedules	

Probability	
 p	
 (400	
 schedules)	
 Probability	
 p	
 (500	
 schedules)	

(b)

0	

0.5	

1	

0.1	

1	

10	

100	

1000	

0.00	
 0.20	
 0.40	
 0.60	
 0.80	
 1.00	

Ru
n-

m
e	

(s
ec
on

ds
)	
 	

d:s	
 ra-o	

Mul-ple	
 A<ackers:	
 1	
 resource	

8	
 Targets	
 6	
 Targets	

Probability	
 p	
 (8	
 targets)	
 Probability	
 p	
 (6	
 targets)	

(c)

Figure 7: Average runtime for computing the optimal solution for an example setting for all the three security domains, along
with the probability p plotted on the secondary y-axis. The vertical dotted line shows d:s = 0.5.

we observe that p undergoes a phase transition as the d:s
grows. Similarly, Figure 7(b) shows results for the ASPEN
algorithm for the SPARS domain with 100 targets, 2 targets
per schedule and 400 and 500 schedules, and Figure 7(c)
shows results for the multiple attacker SPPC domain for 1
defender resource. In both cases, we again observe a phase
transition in p.

One might wonder how we can decide that the increase
in p is steep enough to be called a phase transition. We
know from both the experimental and theoretical literature
on phase transitions in decision problems that the transition
becomes steeper as problem size increases, approaching a
step function in the limit (Kirkpatrick and Selman 1994;
Friedgut 1998). This is a property that we can check for
experimentally. We conducted experiments in the SPNSC
domain, since it is the easiest to solve at widely varying
problem sizes; the results are shown in Figure 8. The x-axis
shows the d:s ratio, and the y-axis shows the probability p
of finding a feasible solution to the decision version of a
corresponding SPNSC problem; we plot results for problem
instances with 50, 100 and 150 targets. We observe the
desired result: the phase transition indeed becomes sharper
as the number of targets increases.

Conclusions
Stackelberg security games are a widely studied model of
security domains, with important deployed applications. We
introduced the concept of the deployment-to-saturation (d:s)
ratio, a domain-spanning measure of the density of defender
coverage in any security problem. We showed that the com-
putationally hardest random instances of such games occur
at a d:s ratio of 0.5. Our evidence for this correlation of the
d:s ratio of 0.5 with the computationally hardest instances
was based on eight different algorithms, two deployed in real-
world applications, and in each case variations in the number
of targets, attacker types, solvers used to solve them, and/or
different underlying solution mechanisms; our results were
robust across all of these settings. We provided evidence for
two important implications of our results. First, researchers
comparing and benchmarking algorithms for Stackelberg se-
curity games on random data should concentrate on problems
with d:s = 0.5 (as, unfortunately, much previous work has
failed to do); we wrote a free benchmark generator to help

0	

0.5	

1	

0.3	
 0.4	
 0.5	
 0.6	
 0.7	

Pr
ob

ab
ili
ty
	
 p
	

d:s	
 ra'o	

50	
 Targets	

100	
 Targets	

150	
 Targets	

Figure 8: Probability that the decision problem SSE(D∗)
is soluble for SPNSC instances of three problem sizes. The
phase transition gets sharper as the problem size increases.

researchers do this in the future. Second, we argued that
problems of real-world interest are likely to arise in the com-
putationally hardest region, around the d:s ratio of 0.5, and
backed up this claim by showing that an extremely naı̈ve de-
fender strategy works almost as well as the optimal strategy
at both large and small d:s values. We further demonstrated
that this hard region corresponds to a phase transition in the
probability that a corresponding decision problem for the
Stackelberg security game has a solution.

Acknowledgements

This research was supported by the United States Department
of Homeland Security through the Center for Risk and Eco-
nomic Analysis of Terrorism Events (CREATE) under grant
number 2010-ST-061-RE0001, and Google Faculty Research
Award and NSERC Discovery Grant. All opinions, findings,
conclusions and recommendations in this document are those
of the authors and do not necessarily reflect views of the
United States Department of Homeland Security.

References
An, B.; Pita, J.; Shieh, E.; Tambe, M.; Kiekintveld, C.;
and Marecki, J. 2011. GUARDS and PROTECT: Next
Generation Applications of Security Games. In SIGecom
Exch, volume 10, 31–34.

Barnhart, C.; Johnson, E.; Nemhauser, G.; Savelsbergh, M.;
and Vance, P. 1994. Branch and Price: Column Generation
for Solving Huge Integer Programs. In Operations Research,
volume 46, 316–329.

Bosansky, B.; Lisy, V.; Jakob, M.; and Pechoucek, M. 2011.
Computing Time-Dependent Policies for Patrolling Games
with Mobile Targets. In Tenth International Conference on
Autonomous Agents and Multiagent Systems, 989–996.

Cheeseman, P.; Kanefsky, B.; and Taylor, W. M. 1991. Where
the Really Hard Problems are. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 331–337.

Conitzer, V., and Sandholm, T. 2006. Computing the Op-
timal Strategy to Commit to. In Proceedings of the ACM
Conference on Electronic Commerce (ACM-EC), 82–90.

Dickerson, J.; Simari, G.; Subrahmanian, V.; and Kraus, S.
2010. A Graph-Theoretic Approach to Protect Static and
Moving Targets from Adversaries. In Proceedings of the
Ninth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2010), 299–306.

Frank, J.; Gent, I. P.; and Walsh, T. 1998. Asymptotic and
Finite Size Parameters for Phase Transitions: Hamiltonian
Circuit as a Case Study. Information Processing Letters
65:241–245.

Friedgut, E. 1998. Sharp Thresholds of Graph Properties, and
the k-SAT Problem. Journal of the American Mathematical
Society 12:1017–1054.

Gatti, N. 2008. Game Theoretical Insights in Strategic Pa-
trolling: Model and Algorithm in Normal-Form. In Proceed-
ings of the European Conference on Artificial Intelligence
(ECAI), 403–407.

Gent, I. P., and Walsh, T. 1995. Phase Transitions from
Real Computational Problems. In Proceedings of the 8th
International Symposium on Artificial Intelligence, 356–364.

Gent, I. P., and Walsh, T. 1996. The TSP Phase Transition.
Artificial Intelligence 88(12):349 – 358.

Hauert, C., and Szab, G. 2005. Game theory and Physics.
American Journal of Physics 73(5):405–414.

Jain, M.; Kardes, E.; Kiekintveld, C.; Ordóñez, F.; and
Tambe, M. 2010a. Security Games with Arbitrary Schedules:
A Branch and Price Approach. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

Jain, M.; Tsai, J.; Pita, J.; Kiekintveld, C.; Rathi, S.; Tambe,
M.; and Ordóñez, F. 2010b. Software Assistants for Ran-
domized Patrol Planning for the LAX Airport Police and the
Federal Air Marshals Service. Interfaces 40:267–290.

Jain, M.; Korzhyk, D.; Vanek, O.; Conitzer, V.; Pechoucek,
M.; and Tambe, M. 2011. A Double Oracle Algorithm
for Zero-Sum Security Games on Graphs. In Proceedings
of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS).

Jain, M.; Kiekintveld, C.; and Tambe, M. 2011. Quality-
bounded Solutions for Finite Bayesian Stackelberg Games:
Scaling up. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS).

Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Tambe, M.; and
Ordóñez, F. 2009. Computing Optimal Randomized Re-
source Allocations for Massive Security Games. In Proceed-
ings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 689–696.

Kirkpatrick, S., and Selman, B. 1994. Critical Behavior
in the Satisfiability of Random Boolean Formulae. Science
264:1297–1301.

Letchford, J., and Vorobeychik, Y. 2011. Computing Ran-
domized Security Strategies in Networked Domains. In Pro-
ceedings of the Workshop on Applied Adversarial Reasoning
and Risk Modeling (AARM) at AAAI.

Mitchell, D.; Selman, B.; and Levesque, H. 1992. Hard and
Easy Distributions of SAT Problems. In Proceedings of the
American Association for Artificial Intelligence, 459–465.

Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.; Ordóñez,
F.; and Kraus, S. 2008. Playing Games with Security: An
Efficient Exact Algorithm for Bayesian Stackelberg games. In
Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 895–902.

Pita, J.; Jain, M.; Western, C.; Portway, C.; Tambe, M.;
Ordóñez, F.; Kraus, S.; and Paruchuri, P. 2008. Deployed
ARMOR Protection: The Application of a Game-theoretic
Model for Security at the Los Angeles International Air-
port. In Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), In-
dustry Track, 125–132.

Pita, J.; Jain, M.; Ordonez, F.; Tambe, M.; and Kraus, S.
2010. Robust Solutions to Stackelberg Games: Addressing
Bounded Rationality and Limited Observations in Human
Cognition. Artificial Intelligence Journal, 174(15):1142-
1171, 2010.

Savit, R.; Manuca, R.; and Riolo, R. 1999. Adaptive Compe-
tition, Market Efficiency, Phase Transitions and Spin-Glasses.
University of Michigan 82:2203–2206.

Slaney, J., and Walsh, T. 2002. Phase Transition Behavior:
from Decision to Optimization. In Proceedings of the 5th
International Symposium on the Theory and Applications of
Satisfiability Testing, SAT.

Vanek, O.; Jakob, M.; Lisy, V.; Bosansky, B.; and Pechoucek,
M. 2011. Iterative Game-Theoretic Route Selection for
Hostile Area Transit and Patrolling. In Tenth International
Conference on Autonomous Agents and Multiagent Systems,
1273–1274.

