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Abstract. We analyze the problem of computing a correlated equilibrium that
optimizes some objective (e.g., social welfare). Papadimitriou and Roughgarden
[2008] gave a sufficient condition for the tractability of this problem; however,
this condition only applies to a subset of existing representations. We propose
a different algorithmic approach for the optimal CE problem that applies to all
compact representations, and give a sufficient condition that generalizes that of
Papadimitriou and Roughgarden [2008]. In particular, we reduce the optimal CE
problem to the deviation-adjusted social welfare problem, a combinatorial op-
timization problem closely related to the optimal social welfare problem. This
framework allows us to identify new classes of games for which the optimal CE
problem is tractable; we show that graphical polymatrix games on tree graphs
are one example. We also study the problem of computing the optimal coarse
correlated equilibrium, a solution concept closely related to CE. Using a similar
approach we derive a sufficient condition for this problem, and use it to prove that
the problem is tractable for singleton congestion games.

1 Introduction

A fundamental class of computational problems in game theory is the computation of
solution concepts of finite games. Much recent effort in the literature has concerned
the problem of computing a sample Nash equilibrium [Chen & Deng, 2006; Daskalakis
et al., 2006; Daskalakis & Papadimitriou, 2005; Goldberg & Papadimitriou, 2006]. First
proposed by Aumann [1974; 1987], correlated equilibrium (CE) is another important
solution concept. Whereas in a mixed strategy Nash equilibrium players randomize
independently, in a correlated equilibrium the players can coordinate their behavior
based on signals from an intermediary.

Correlated equilibria of a game can be formulated as probability distributions over
pure strategy profiles satisfying certain linear constraints. The resulting linear feasibility
program has size polynomial in the size of the normal form representation of the game.
However, the size of the normal form representation grows exponentially in the number
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of players. This is problematic when games involve large numbers of players. Fortu-
nately, most large games of practical interest have highly-structured payoff functions,
and thus it is possible to represent them compactly. A line of research thus exists to look
for compact game representations that are able to succinctly describe structured games,
including work on graphical games [Kearns et al., 2001] and action-graph games [Bhat
& Leyton-Brown, 2004; Jiang et al., 2011]. But now the size of the linear feasibility
program for CE can be exponential in the size of compact representation; furthermore
a CE can require exponential space to specify.

The problem of computing a sample CE was recently shown to be in polynomial
time for most existing compact representations [Papadimitriou & Roughgarden, 2008;
Jiang & Leyton-Brown, 2011]. However, since in general there can be an infinite num-
ber of CE in a game, finding an arbitrary one is of limited value. Instead, here we focus
on the problem of computing a correlated equilibrium that optimizes some objective.
In particular we consider optimizing linear functions of players’ expected utilities. For
example, computing the best (or worst) social welfare corresponds to maximizing (or
minimizing) the sum of players’ utilities, respectively. We are also interested in comput-
ing optimal coarse correlated equilibrium (CCE) [Hannan, 1957]. It is known that the
empirical distribution of any no-external-regret learning dynamic converges to the set
of CCE, while the empirical distribution of no-internal-regret learning dynamics con-
verges to the set of CE (see e.g. [Nisan et al., 2007]). Thus, optimal CE / CCE provide
useful bounds on the social welfare of the empirical distributions of these dynamics.

We are particularly interested in the relationship between the optimal CE / CCE
problems and the problem of computing the optimal social welfare outcome (i.e. strat-
egy profile) of the game, which is exactly the optimal social welfare CE problem with-
out the incentive constraints. This is an instance of a line of questions that has received
much interest from the algorithmic game theory community: “How does adding in-
centive constraints to an optimization problem affect its complexity?” This question
in the mechanism design setting is perhaps one of the central questions of algorithmic
mechanism design [Nisan & Ronen, 2001]. Of course, a more constrained problem can
in general be computationally easier than the relaxed version of the problem. Never-
theless, results from complexity of Nash equilibria and algorithmic mechanism design
suggest that adding incentive constraints to a problem is unlikely to decrease its com-
putational difficulty. That is, when the optimal social welfare problem is hard, we tend
also to expect that the optimal CE problem will be hard as well. On the other hand, we
are interested in the other direction: when it is the case for a class of games that the
optimal social welfare problem can be efficiently computed, can the same structure be
exploited to efficiently compute the optimal CE?

The seminal work on the computation of optimal CE is [Papadimitriou & Rough-
garden, 2008]. This paper considered the optimal linear objective CE problem and
proved that the problem is NP-hard for many representations including graphical games,
polymatrix games, and congestion games. On the tractability side, Papadimitriou and
Roughgarden [2008] focused on so-called “reduced form” representations, meaning
representations for which there exist player-specific partitions of the strategy profile
space into payoff-equivalent outcomes. They showed that if a particular separation
problem is polynomial-time solvable, the optimal CE problem is polynomial-time solv-



able as well. Finally, they showed that this separation problem is polynomial-time solv-
able for bounded-treewidth graphical games, symmetric games and anonymous games.

Perhaps most surprising and interesting is the form of Papadimitriou and Roughgar-
den’s sufficient condition for tractability: their separation problem for an instance of a
reduced-form-based representation is essentially equivalent to solving the optimal so-
cial welfare problem for an instance of that representation with the same reduced form
but possibly different payoffs. In other words, if we have a polynomial-time algorithm
for the optimal social welfare problem for a reduced-form-based representation, we can
turn that into a polynomial-time algorithm for the optimal social welfare CE problem.
However, Papadimitriou and Roughgarden’s sufficient condition for tractability only
applies to reduced-form-based representations. Their definition of reduced forms is un-
able to handle representations that exploit linearity of utility, and in which the structure
of player p’s utility function may depend on the action she chose. As a result, many rep-
resentations do not fall into this characterization, such as polymatrix games, congestion
games, and action-graph games. Although the optimal CE problems for these represen-
tations are NP-hard in general, we are interested in identifying tractable subclasses of
games, and a sufficient condition that applies to all representations would be helpful.

In this article, we propose a different algorithmic approach for the optimal CE prob-
lem that applies to all compact representations. By applying the ellipsoid method to
the dual of the LP for optimal CE, we show that the polynomial-time solvability of
what we call the deviation-adjusted social welfare problem is a sufficient condition
for the tractability of the optimal CE problem. We also give a sufficient condition for
tractability of the optimal CCE problem: the polynomial-time solvability of the coarse
deviation-adjusted social welfare problem. We show that for reduced-form-based rep-
resentations, the deviation-adjusted social welfare problem can be reduced to the sep-
aration problem of Papadimitriou and Roughgarden [2008]. Thus the class of reduced
forms for which our problem is polynomial-time solvable contains the class for which
the separation problem is polynomial-time solvable. More generally, we show that if a
representation can be characterized by “linear reduced forms”, i.e. player-specific lin-
ear functions over partitions, then for that representation, the deviation-adjusted social
welfare problem can be reduced to the optimal social welfare problem. As an example,
we show that for graphical polymatrix games on trees, optimal CE can be computed in
polynomial time. Such games are not captured by the reduced-form framework.1

On the other hand, representations like action-graph games and congestion games
have action-specific structure, and as a result the deviation-adjusted social welfare prob-
lems and coarse deviation-adjusted social welfare problems on these representations are
structured differently from the corresponding optimal social welfare problems. Never-
theless, we are able to show a polynomial-time algorithm for the optimal CCE problem
on singleton congestion games [Ieong et al., 2005], a subclass of congestion games.
We use a symmetrization argument to reduce the optimal CCE problem to the coarse
deviation-adjusted social welfare problem with player-symmetric deviations, which can

1 In a recent paper Kamisetty et al. [2011] has independently proposed an algorithm for optimal
CE in graphical polymatrix games on trees. They used a different approach that is specific to
graphical games and graphical polymatrix games, and it is not obvious whether their approach
can be extended to other classes of games.



be solved using a dynamic-programming algorithm. This is an example where the op-
timal CCE problem is tractable while the complexity of the optimal CE problem is not
yet known.

2 Problem Formulation

Consider a simultaneous-move game G = (N , {Sp}p∈N , {up}p∈N ), where N =
{1, . . . , n} is the set of players. Denote a player p, and player p’s set of pure strategies
(i.e., actions) Sp. Letm = maxp |Sp|. Denote a pure strategy profile s = (s1, . . . , sn) ∈
S, with sp being player p’s pure strategy. Denote by S−p the set of partial pure strategy
profiles of the players other than p. Let up be the vector of player p’s utilities for each
pure profile, denoting player p’s utility under pure strategy profile s as ups . Let w be the
vector of social welfare for each pure profile, that is w =

∑
p∈N u

p, with ws denoting
the social welfare for pure profile s.

Throughout the paper we assume that the game is given in a representation with
polynomial type [Papadimitriou, 2005; Papadimitriou & Roughgarden, 2008], i.e., that
the number of players and the number of actions for each player are bounded by poly-
nomials of the size of the representation.

2.1 Correlated Equilibrium

A correlated distribution is a probability distribution over pure strategy profiles, repre-
sented by a vector x ∈ RM , where M =

∏
p |Sp|. Then xs is the probability of pure

strategy profile s under the distribution x.

Definition 1. A correlated distribution x is a correlated equilibrium (CE) if it satis-
fies the following incentive constraints: for each player p and each pair of her actions
i, j ∈ Sp, we have

∑
s−p∈S−p

[upis−p
− upjs−p

]xis−p ≥ 0, where the subscript “is−p”
(respectively “js−p”) denotes the pure strategy profile in which player p plays i (re-
spectively j) and the other players play according to the partial profile s−p ∈ S−p.

Intuitively, when a trusted intermediary draws a strategy profile s from this distribu-
tion, privately announcing to each player p her own component sp, p will have no in-
centive to choose another strategy, assuming others follow the suggestions. We write
these incentive constraints in matrix form as Ux ≥ 0. Thus U is an N ×M matrix,
where N =

∑
p |Sp|2. The rows of U are indexed by (p, i, j), where p is a player

and i, j ∈ Sp are a pair of p’s actions. Denote by Us the column of U correspond-
ing to pure strategy profile s. These incentive constraints, together with the constraints
x ≥ 0,

∑
s∈S xs = 1, which ensure that x is a probability distribution, form a linear

feasibility program that defines the set of CE. The problem of computing a maximum
social welfare CE can be formulated as the LP

max wTx (P )

Ux ≥ 0, x ≥ 0,
∑
s∈S

xs = 1



Another solution concept of interest is coarse correlated equilibrium (CCE). Whereas
CE requires that each player has no profitable deviation even if she takes into account
the signal she receives from the intermediary, CCE only requires that each player has
no profitable unconditional deviation.

Definition 2. A correlated distribution x is a coarse correlated equilibrium (CCE) if it
satisfies the following incentive constraints: for each player p and each of his actions
j ∈ Sp, we have

∑
(i,s−p)∈S [u

p
is−p
− upjs−p

]xis−p
≥ 0.

We write these incentive constraints in matrix form asCx ≥ 0. ThusC is an (
∑
p |Sp|)×

M matrix. By definition, a CE is also a CCE.
The problem of computing a maximum social welfare CCE can be formulated as

the LP

max wTx (CP )

Cx ≥ 0, x ≥ 0,
∑
s∈S

xs = 1.

3 The Deviation-Adjusted Social Welfare Problem

Consider the dual of (P ),

min t (D)

UT y + w ≤ t1
y ≥ 0.

We label the (p, i, j)-th element of y ∈ RN (corresponding to row (p, i, j) of U ) as
ypi,j . This is an LP with a polynomial number of variables and an exponential number
of constraints. Given a separation oracle, we can solve it in polynomial time using
the ellipsoid method. A separation oracle needs to determine whether a given (y, t) is
feasible, and if not output a hyperplane that separates (y, t) from the feasible set. We
focus on a restricted form of separation oracles, which outputs a violated constraint for
infeasible points.2 Such a separation oracle needs to solve the following problem:

Problem 1. Given (y, t) with y ≥ 0, determine if there exists an s such that (Us)T y +
ws > t; if so output such an s.

The left-hand-side expression (Us)
T y + ws is the social welfare at s plus the term

(Us)
T y. Observe that the (p, i, j)-th entry ofUs is ups−u

p
js−p

if sp = i and is zero other-

wise. Thus (Us)T y =
∑
p

∑
j∈Sp

ypsp,j

(
ups − u

p
js−p

)
. We now reexpress (Us)T y+ws

in terms of deviation-adjusted utilities and deviation-adjusted social welfare.

2 This is a restriction because in general there exist separating hyperplanes other than the vio-
lated constraints. For example Papadimitriou and Roughgarden [2008]’s algorithm for comput-
ing a sample CE uses a separation oracle that outputs a convex combination of the constraints
as a separating hyperplane.



Definition 3. Given a game, and a vector y ∈ RN such that y ≥ 0, the deviation-
adjusted utility for player p under pure profile s is

ûps(y) = ups +
∑
j∈Sp

ypsp,j

(
ups − u

p
js−p

)
.

The deviation-adjusted social welfare is ŵs(y) =
∑
p û

p
s(y).

By construction, the deviation-adjusted social welfare ŵs(y) =
∑
p u

p
s +∑

p

∑
j∈Sp

ypsp,j

(
ups − u

p
js−p

)
= (Us)

T y + ws. Therefore, Problem 1 is equivalent
to the following deviation-adjusted social welfare problem.

Definition 4. For a game representation, the deviation-adjusted social welfare problem
is the following: given an instance of the representation and rational vector (y, t) ∈
QN+1 such that y ≥ 0, determine if there exists an s such that the deviation-adjusted
social welfare ŵs(y) > t; if so output such an s.

Proposition 1. If the deviation-adjusted social welfare problem can be solved in poly-
nomial time for a game representation, then so can the problem of computing the max-
imum social welfare CE.

Let us consider interpretations of the dual variables y and the deviation-adjusted so-
cial welfare of a game. The dual (D) can be rewritten as miny≥0 maxs w̃s(y). By weak
duality, for a given y ≥ 0 the maximum deviation-adjusted social welfare maxs w̃s(y)
is an upper bound on the maximum social welfare CE. So the task of the dual (D) is
to find y such that the resulting maximum deviation-adjusted social welfare gives the
tightest bound.3 At optimum, y corresponds to the concept of “shadow prices” from
optimization theory; that is, ypij equals the rate of change in the social welfare objec-
tive when the constraint (p, i, j) is relaxed infinitesimally. Compared to the maximum
social welfare CE problem, the maximum deviation-adjusted social welfare problem
replaces the incentive constraints with a set of additional penalties or rewards. Specifi-
cally, we can interpret y as a set of nonnegative prices, one for each incentive constraint
(p, i, j) of (P ). At strategy profile s, for each incentive constraint (p, i, j) we impose a
penalty equal to ypij times the amount the constraint (p, i, j) is violated by s. Note that
the penalty can be negative, and is zero if sp 6= i. Then w̃s(y) is equal to the social
welfare of the modified game.

Practical computation. The problem of computing the expected utility (EU) given
a mixed strategy profile has been established as an important subproblem for both the
sample NASH problem and the sample CE problem, both in theory [Daskalakis et al.,
2006; Papadimitriou & Roughgarden, 2008] and in practice [Blum et al., 2006; Jiang
et al., 2011]. Our results suggest that the deviation-adjusted social welfare problem is
of similar importance to the optimal CE problem. This connection is more than theo-
retical: our algorithmic approach can be turned into a practical method for computing
optimal CE. In particular, although it makes use of the ellipsoid method, we can easily

3 An equivalent perspective is to view y as Lagrange multipliers, and the optimal deviation-
adjusted SW problem as the Lagrangian relaxation of (P ) given the multipliers y.



substitute a more practical method, such as simplex with column generation. In con-
trast, Papadimitriou and Roughgarden [2008]’s algorithmic approach for reduced forms
makes two nested applications of the ellipsoid method, and is less likely to be practical.

3.1 The Coarse Deviation-Adjusted Social Welfare Problem

For the optimal social welfare CCE problem, we can form the dual of (CP )

min t (1)

CT y + w ≤ t1
y ≥ 0

Definition 5. We label the (p, j)-th element of y as ypj . Given a game, and a vector
y ∈ R

∑
p |Sp| such that y ≥ 0, the coarse deviation-adjusted utility for player p under

pure profile s is ũps(y) = ups +
∑
j∈Sp

ypj (u
p
s − u

p
js−p

). The coarse deviation-adjusted
social welfare is w̃s(y) =

∑
p ũ

p
s(y).

Proposition 2. If the coarse deviation-adjusted social welfare problem can be solved in
polynomial time for a game representation, then the problem of computing the maximum
social welfare CCE is in polynomial time for this representation.

The coarse deviation-adjusted social welfare problem reduces to the deviation-adjusted
social welfare problem. To see this, given an input vector y for the coarse deviation-
adjusted social welfare problem, we can construct an input vector y′ ∈ QN for the
deviation-adjusted social welfare problem with y′pij = ypj for all p ∈ N and i, j ∈ Sp.

4 The Deviation-Adjusted Social Welfare Problem for Specific
Representations

In this section we study the deviation-adjusted social welfare problem and its variants
on specific representations. Depending on the representation, the deviation-adjusted so-
cial welfare problem is not always solvable in polynomial time. Indeed, Papadimitriou
and Roughgarden [2008] showed that for many representations the problem of optimal
CE is NP-hard. Nevertheless, for such representations we can often identify tractable
subclasses of games. We will argue that the deviation-adjusted social welfare problem
is a more useful formulation for identifying tractable classes of games than the separa-
tion problem formulation of Papadimitriou and Roughgarden [2008], as the latter only
applies to reduced-form-based representations.

4.1 Reduced Forms

Papadimitriou and Roughgarden [2008] gave the following reduced form characteriza-
tion of representations.



Definition 6 ([Papadimitriou & Roughgarden, 2008]). Consider a game G = (N ,
{Sp}p∈N , {up}p∈N ). For p = 1, . . . , n, let Pp = {C1

p . . . C
rp
p } be a partition of S−p

into rp classes. The set P = {P1, . . . , Pn} of partitions is a reduced form of G if
ups = ups′ whenever (1) sp = s′p and (2) both s−p and s′−p belong to the same class in
Pp. The size of a reduced form is the number of classes in the partitions plus the bits
required to specify a payoff value for each tuple (p, k, `) where 1 ≤ p ≤ n, 1 ≤ k ≤ rp
and ` ∈ Sp.

Intuitively, the reduced form imposes the condition that p’s utility for choosing an ac-
tion sp depends only on which class in the partition Pp the profile of the others’ ac-
tions belongs to. Papadimitriou and Roughgarden [2008] showed that several compact
representations such as graphical games and anonymous games have natural reduced
forms whose sizes are (roughly) equal to the sizes of the representation. We say such
a compact representation has a concise reduced form. Intuitively, such a reduced form
describes the structure of the game’s utility functions.

Let Sp(k, `) denote the set of pure strategy profiles s such that sp = ` and s−p is
in the k-th class Ckp of Pp, and let up(k,`) denote the utility of p for that set of strat-
egy profiles. Papadimitriou and Roughgarden [2008] defined the following Separation
Problem for a reduced form.

Definition 7 ([Papadimitriou & Roughgarden, 2008]). Let P be a reduced form for
gameG. The Separation Problem forP is the following: Given rational numbers γp(k, `)
for all p ∈ {1, . . . , n}, k ∈ {1, . . . , rp}, and ` ∈ Sp, is there a pure strategy profile s
such that

∑
p,k,`:s∈Sp(k,`) γp(k, `) < 0? If so, find such s.

Since s ∈ Sp(k, `) implies sp = `, the left-hand side of the above expression is equiv-
alent to

∑
p

∑
k:s∈Sp(k,sp) γp(k, sp). Furthermore, since s belongs to exactly one class

in Pp, the expression is a sum of exactly n summands.
Papadimitriou and Roughgarden [2008] proved that if the separation problem can

be solved in polynomial time, then a CE that maximizes a given linear objective in the
players’ utilities can be computed in time polynomial in the size of the reduced form.
How does Papadimitriou and Roughgarden [2008]’s sufficient condition relate to ours,
provided that the game has a concise reduced form? We show that the class of reduced
form games for which our deviation-adjusted social welfare problem is polynomial-
time solvable contains the class for which the separation problem is polynomial-time
solvable.

Proposition 3. Let P be a reduced form for game G. Suppose the separation problem
can be solved in polynomial time. Then the deviation-adjusted social welfare problem
can be solved in time polynomial in the size of the reduced form.

We now compare the the deviation-adjusted social welfare problem with the opti-
mal social welfare problem for these representations. We observe that the deviation-
adjusted social welfare problem can be formulated as an instance of the optimal social
welfare problem on another game with the same reduced form but different payoffs.
Can we claim that the existence of a polynomial-time algorithm for the optimal social
welfare problem for a representation implies the existence of a polynomial-time algo-
rithm for the social welfare problem (and thus the optimal CE problem)? This is not



necessarily the case, because the representation might impose certain structure on the
utility functions that are not captured by the reduced forms, and the polynomial-time
algorithm for the optimal social welfare problem could depend on the existence of such
structure. The deviation-adjusted social welfare problem might no longer exhibit such
structure and thus might not be solvable using the given algorithm.

Nevertheless, if we consider a game representation that is “completely character-
ized” by its reduced forms, the deviation-adjusted social welfare problem is equivalent
to the decision version of the optimal social welfare outcome problem for that repre-
sentation. To make this more precise, we say a game representation is a reduced-form-
based representation if there exists a mapping from instances of the representation to
reduced forms such that it maps each instance to a concise reduced form of that instance,
and if we take such a reduced form and change its payoff values arbitrarily, the resulting
reduced form is a concise reduced form of another instance of the representation.

Corollary 1. For a reduced-form-based representation, if there exists a polynomial-
time algorithm for the optimal social welfare problem, then the optimal social welfare
CE problem and the max-min welfare CE problem can be solved in polynomial time.

Of course, this can be derived using the separation problem for reduced forms without
the deviation-adjusted social welfare formulation. On the other hand, the deviation-
adjusted social welfare formulation can be applied to representations without concise
reduced forms. In fact, we will use it to show below that the connection between the
optimal social welfare problem and the optimal CE problem applies to a wider classes
of representations than just reduced-form-based representations.

4.2 Linear Reduced Forms

One class of representations that does not have concise reduced forms are those that
represent utility functions as sums of other functions, such as polymatrix games and the
hypergraph games of Papadimitriou and Roughgarden [2008]. In this section we char-
acterize these representations using linear reduced forms, showing that linear-reduced-
form-based representations satisfy a property similar to Corollary 1.

Roughly speaking, a linear reduced form has multiple partitions for each agent,
rather than just one; an agent’s overall utility is a sum over utility functions defined on
each of that agent’s partitions.

Definition 8. Consider a game G = (N , {Sp}p∈N , {up}p∈N ). For p = 1, . . . , n, let
Pp = {Pp,1, . . . , Pp,tp}, where Pp,q = {C1

p,q . . . C
rpq
p,q } is a partition of S−p into rpq

classes. The set P = {P1, . . . , Pn} is a linear reduced form of G if for each p there
exist up,1, . . . , up,tp ∈ RM such that for all s, ups =

∑
q u

p,q
s , and for each q ≤ tp,

up,qs = up,qs′ whenever (1) sp = s′p and (2) both s−p and s′−p belong to the same class
in Pp,q . The size of a reduced form is the number of classes in the partitions plus the bits
required to specify a number for each tuple (p, q, k, `) where 1 ≤ p ≤ n, 1 ≤ q ≤ tp,
1 ≤ k ≤ rpq and ` ∈ Sp.

We write up,q(k,`) for the value corresponding to tuple (p, q, k, `), and for k = (k1, . . . , ktp)

we write up(k,`) ≡
∑
q u

p,q
(kq,`)

.



Example 1 (polymatrix games). In a polymatrix game, each player’s utility is the sum
of utilities resulting from her bilateral interactions with each of the n − 1 other play-
ers: ups =

∑
p′ 6=p e

T
spA

pp′esp′ where App
′ ∈ R|Sp|×|Sp′ | and esp ∈ R|Sp| is the

unit vector corresponding to sp. The utility functions of such a representation require
only

∑
p,p′∈N |Sp| × |Sp′ | values to specify. Polymatrix games do not have a concise

reduced-form encoding, but can easily be written as linear-reduced-form games. Es-
sentially, we create one partition for every matrix game that an agent plays, with each
class differing in the action played by the other agent who participates in that matrix
game, and containing all the strategy profiles that can be adopted by all of the other
players. Formally, given a polymatrix game, we construct its linear reduced form with
Pp = {Pp,q}q∈N\{p}, and Pp,q = {C`p,q}`∈Sq

with C`p,q = {s−p|sq = `}. ut

Most of the results in Section 4.1 straightforwardly translate to linear reduced forms.

Corollary 2. For a linear-reduced-form-based representation, if there exists a polynomial-
time algorithm for the optimal social welfare problem, then the optimal social welfare
CE problem and the max-min welfare CE problem can be solved in polynomial time.

Graphical Polymatrix Games A polymatrix game may have graphical-game-like
structure: player p’s utility may depend only on a subset of the other player’s actions. In
terms of utility functions, this corresponds to App

′
= 0 for certain pairs of players p, p′.

As with graphical games, we can construct the (undirected) graph G = (N , E) where
there is an edge {p, p′} ∈ E if App

′ 6= 0 orAp
′p 6= 0. We call such a game a graphical

polymatrix game. This can also be understood as a graphical game where each player
p’s utility is the sum of bilateral interactions with her neighbors.

A tree polymatrix game is a graphical polymatrix game whose corresponding graph
is a tree. Consider the optimal CE problem on tree polymatrix games. Since such a
game is also a tree graphical game, Papadimitriou and Roughgarden [2008]’s optimal
CE algorithm for tree graphical games can be applied. However, this algorithm does not
run in polynomial time, because the representation size of tree polymatrix games can
be exponentially smaller than that of the corresponding graphical game (which grows
exponentially in the degree of the graph). Nevertheless, we give an polynomial-time
algorithm for the deviation-adjusted social welfare problem for such games, which then
implies the following theorem.

Theorem 1. Optimal CE in tree polymatrix games can be computed in polynomial time.

4.3 Representations with Action-Specific Structure

The above results for reduced forms and linear reduced forms crucially depend on
the fact that the partitions (i.e., the structure of the utility functions) depend on p
but do not depend on the action chosen by player p. There are representations whose
utility functions have action-dependent structure, including congestion games [Rosen-
thal, 1973], local effect games [Leyton-Brown & Tennenholtz, 2003], and action-graph
games [Jiang et al., 2011]. For such representations, we can define a variant of the re-
duced form that has action-dependent partitions. However, unlike both the reduced form



and linear reduced form, the deviation-adjusted utilities no longer satisfy the same par-
tition structure as the utilities. Intuitively, the deviation-adjusted utility at s has con-
tributions from the utilities of the strategy profiles when player p deviates to different
actions. Whereas for linear reduced forms these deviated strategy profiles correspond to
the same class as s in the partition, we now consider different partitions for each action
to which p deviates. As a result the deviation-adjusted social welfare problem has a
more complex form that the optimal social welfare problem.

Singleton Congestion Games Ieong et al. [2005] studies a class of games called sin-
gleton congestion games and showed that the optimal PSNE can be computed in poly-
nomial time. Such a game can be formulated as an instance of congestion games where
each action contains a single resource, or an instance of symmetric AGGs where the
only edges are self edges.

Formally, a singleton congestion game is specified by (N ,A, {fα}α∈A) where
N = 1, . . . , n is the set of players, A the set of actions, and for each action α ∈ A,
fα : [n] → R. The game is symmetric; each player’s set of actions Sp ≡ A. Each
strategy profile s induces an action count c(α) = |{p|sp = α}| on each α: the number
of players playing action α. Then the utility of a player that chose α is fα(c(α)). The
representation requires O(|A|n) numbers to specify.

Before attacking the optimal social welfare CCE problem, we first note that the op-
timal social welfare problem can be solved in polynomial time by a relatively straight-
forward dynamic-programming algorithm which is a simplified version of Ieong et al.
[2005]’s algorithm for optimal PSNE in singleton congestion games. Can we lever-
age the algorithm for the optimal social welfare problem to solve the coarse deviation-
adjusted social welfare problem? Our task here is slightly more complicated: in general
the coarse deviation-adjusted social welfare problem no longer has the same symmetric
structure due to the fact that y can be asymmetric. However, when y is player-symmetric
(that is, ypj = yp

′

j for all pairs of players (p, p′)), then we recover symmetric structure.

Lemma 1. Given a singleton congestion game and player-symmetric input y, the coarse
deviation-adjusted social welfare problem can be solved in polynomial time.

Therefore if we can guarantee that during a run of ellipsoid method for (1) all input
queries y to the separation oracle are symmetric, then we can apply Lemma 1 to solve
the problem in polynomial time. We observe that for any symmetric game, there must
exist a symmetric CE that optimizes the social welfare. This is because given an optimal
CE we can create a mixture of permuted versions of this CE, which must itself be a CE
by convexity, and must also achieve the same social welfare by symmetry. However,
this argument in itself does not guarantee that the y we obtain by the method above
will be symmetric. Instead, we observe that if we solve (1) using a ellipsoid method
with a player-symmetric initial ball, and use a separation oracle that returns a player-
symmetric cutting plane, then the query points y will be player-symmetric. We are able
to construct such a separation oracle using a symmetrization argument.

Theorem 2. Given a singleton congestion game, the optimal social welfare CCE can
be computed in polynomial time.
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