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Abstract

Games of incomplete information, or Bayesian games, are an important game-
theoretic model and have many applications in economics. We propose Bayesian
action-graph games (BAGGs), a novel graphical representation for Bayesian games.
BAGGs can represent arbitrary Bayesian games, and furthermore can compactly
express Bayesian games exhibiting commonly encountered types of structure in-
cluding symmetry, action- and type-specific utility independence, and probabilistic
independence of type distributions. We provide an algorithm for computing ex-
pected utility in BAGGs, and discuss conditions under which the algorithm runs in
polynomial time. Bayes-Nash equilibria of BAGGs can be computed by adapting
existing algorithms for complete-information normal form games and leveraging
our expected utility algorithm. We show both theoretically and empirically that our
approaches improve significantly on the state of the art.

1 Introduction

In the last decade, there has been much research at the interface of computer science and game
theory (see e.g. [19, 22]). One fundamental class of computational problems in game theory is
the computation of solution concepts of a finite game. Much of current research on computation
of solution concepts has focused on complete-information games, in which the game being played
is common knowledge among the players. However, in many multi-agent situations, players are
uncertain about the game being played. Harsanyi [10] proposed games of incomplete information (or
Bayesian games) as a mathematical model of such interactions. Bayesian games have found many
applications in economics, including most notably auction theory and mechanism design.

Our interest is in computing with Bayesian games, and particularly in identifying sample Bayes-Nash
equilibrium. There are two key obstacles to performing such computations efficiently. The first
is representational: the straightforward tabular representation of Bayesian game utility functions
(the Bayesian Normal Form) requires space exponential in the number of players. For large games,
it becomes infeasible to store the game in memory, and performing even computations that are
polynomial time in the input size are impractical. An analogous obstacle arises in the context of
complete-information games: there the standard representation (normal form) also requires space
exponential in the number of players. The second obstacle is the lack of existing algorithms for
identifying sample Bayes-Nash equilibrium for arbitrary Bayesian games. Harsanyi [10] showed
that a Bayesian game can be interpreted as an equivalent complete-information game via “induced
normal form” or “agent form” interpretations. Thus one approach is to interpret a Bayesian game
as a complete-information game, enabling the use of existing Nash-equilibrium-finding algorithms
(e.g. [24, 9]). However, generating the normal form representations under both of these complete-
information interpretations causes a further exponential blowup in representation size.

Most games of interest have highly-structured payoff functions, and thus it is possible to overcome
the first obstacle by representing them compactly. This has been done for complete information
games through (e.g.) the graphical games [16] and Action-Graph Games (AGGs) [1] representations.
In this paper we propose Bayesian Action-Graph Games (BAGGs), a compact representation for
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Bayesian games. BAGGs can represent arbitrary Bayesian games, and furthermore can compactly
express Bayesian games with commonly encountered types of structure. The type profile distribution
is represented as a Bayesian network, which can exploit conditional independence structure among
the types. BAGGs represent utility functions in a way similar to the AGG representation, and like
AGGs, are able to exploit anonymity and action-specific utility independencies. Furthermore, BAGGs
can compactly express Bayesian games exhibiting type-specific independence: each player’s utility
function can have different kinds of structure depending on her instantiated type. We provide an
algorithm for computing expected utility in BAGGs, a key step in many algorithms for game-theoretic
solution concepts. Our approach interprets expected utility computation as a probabilistic inference
problem on an induced Bayesian Network. In particular, our algorithm runs in polynomial time
for the important case of independent type distributions. To compute Bayes-Nash equilibria for
BAGGs, we consider the agent form interpretation of the BAGG. Although a naive normal form
representation would require an exponential blowup, BAGGs can act as a compact representation
of the agent form. Computational tasks on the agent form can be done efficiently by leveraging our
expected utility algorithm for BAGGs. We have implemented our approach by adapting two Nash
equilibrium algorithms, the simplicial subdivision algorithm [24] and Govindan and Wilson’s global
Newton method [9]. We show empirically that our approach outperforms the existing approaches of
solving for Nash on the induced normal form or on the normal form representation of the agent form.

We now discuss some related literature. There has been some research on heuristic methods for
finding Bayes-Nash equilibria for certain classes of auction games using iterated best response (see
e.g. [21, 25]). Such methods are not guaranteed to converge to a solution. Howson and Rosenthal
[12] applied the agent form transformation to 2-player Bayesian games, resulting in a complete-
information polymatrix game. Our approach can be seen as a generalization of their method to
general Bayesian games. Singh et al. [23] proposed a incomplete information version of the graphical
game representation, and presented efficient algorithms for computing approximate Bayes-Nash
equilibria in the case of tree games. Gottlob et al. [7] considered a similar extension of the graphical
game representation and analyzed the problem of finding a pure-strategy Bayes-Nash equilibrium.
Like graphical games, such representations are limited in that they can only exploit strict utility
independencies. Oliehoek et al. [20] proposed a heuristic search algorithm for common-payoff
Bayesian games, which has applications to cooperative multi-agent problems. Bayesian games can
be interpreted as dynamic games with a initial move by Nature; thus, also related is the literature
on representations for dynamic games, including multi-agent influence diagrams (MAIDs) [17]
and temporal action-graph games (TAGGs) [14]. Compared to these representations for dynamic
games, BAGGs focus explicitly on structure common to Bayesian games; in particular, only BAGGs
can efficiently express type-specific utility structure. Also, by representing utility functions and
type distributions as separate components, BAGGs can be more versatile (e.g., a future direction
is to answer computational questions that do not depend on the type distribution, such as ex-post
equilibria). Furthermore, BAGGs can be solved by adapting Nash-equilibrium algorithms such as
Govindan and Wilson’s global Newton method [9] for static games; this is generally more practical
than their related Nash equilibrium algorithm [8] that directly works on dynamic games: while both
approach avoids the exponential blowup of transforming to the induced normal form, the algorithm
for dynamic games has to solve an additional quadratic program at each step.

2 Preliminaries
2.1 Complete-information Games

We assume readers are familiar with the basic concepts of complete-information games and here we
only establish essential notation. A complete-information game is a tuple (N, {Ai}i∈N , {ui}i∈N )
where N = {1, . . . , n} is the set of agents; for each agent i, Ai is the set of i’s actions. We denote
by ai ∈ Ai one of i’s actions. An action profile a = (a1, . . . , an) ∈

∏
i∈N Ai is a tuple of the

agents’ actions. Agent i’s utility function is ui :
∏
j∈N Aj → R. A mixed strategy σi for player i

is a probability distribution over Ai. A mixed strategy profile σ is a tuple of the n players’ mixed
strategies. We denote by ui(σ) the expected utility of player i under the mixed strategy profile σ. We
adopt the following notational convention: for any n-tuple X we denote by X−i the elements of X
corresponding to players other than i.

A game representation is a data structure that stores all information needed to specify a game. A
normal form representation of a game uses a matrix to represent each utility function ui. The size of
this representation is n

∏
j∈N |Aj |, which grows exponentially in the number of players.
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2.2 Bayesian Games

We now define Bayesian games and discuss common types of structure.
Definition 1. A Bayesian game is a tuple (N, {Ai}i∈N ,Θ, P, {ui}i∈N ) where N = {1, . . . , n} is
the set of players; each Ai is player i’s action set, and A =

∏
iAi is the set of action profiles;

Θ =
∏
i Θi is the set of type profiles, where Θi is player i’s set of types; P : Θ → R is the type

distribution and ui : A×Θ→ R is the utility function for player i.

As in the complete-information case, we denote by ai an element of Ai, and a = (a1, . . . , an) an
action profile. Furthermore we denote by θi an element of Θi, and by θ a type profile. The game
is played as follows. A type profile θ = (θ1, . . . , θn) ∈ Θ is drawn according to the distribution P .
Each player i observes her type θi and, based on this observation, chooses from her set of actions Ai.
Each player i’s utility is then given by ui(a, θ), where a is the resulting action profile.

Player i can deterministically choose a pure strategy si, in which given each θi ∈ Θi she deterministi-
cally chooses an action si(θi). Player i can also randomize and play a mixed strategy σi, in which her
probability of choosing ai given θi is σi(ai|θi). That is, given a type θi ∈ Θi, she plays according to
distribution σi(·|θi) over her set of actions Ai. A mixed strategy profile σ = (σ1, . . . , σn) is a tuple
of the players’ mixed strategies.

The expected utility of i given θi under a mixed strategy profile σ is the expected value of i’s utility
under the resulting joint distribution of a and θ, conditioned on i receiving type θi:

ui(σ|θi) =
∑
θ−i

P (θ−i|θi)
∑
a

ui(a, θ)
∏
j

σj(aj |θj). (1)

A mixed strategy profile σ is a Bayes-Nash equilibrium if for all i, for all θi, for all ai ∈ Ai,
ui(σ|θi) ≥ ui(σ

θi→ai |θi), where σθi→ai is the mixed strategy profile that is identical to σ except
that i plays ai with probability 1 given θi.

In specifying a Bayesian game, the space bottlenecks are the type distribution and the utility functions.
Without additional structure, we cannot do better than representing each utility function ui : A×Θ→
R as a table and the type distribution as a table as well. We call this representation the Bayesian
normal form. The size of this representation is n×

∏n
i=1(|Θi| × |Ai|) +

∏n
i=1 |Θi|.

We say a Bayesian game has independent type distributions if players’ types are drawn independently,
i.e. the type-profile distribution P (θ) is a product distribution: P (θ) =

∏
i P (θi). In this case the

distribution P can be represented compactly using
∑
i |Θi| numbers.

Given a permutation of players π : N → N and an action profile a = (a1, . . . , an), let aπ =
(aπ(1), . . . , aπ(n)). Similarly let θπ = (θπ(1), . . . , θπ(n)). We say the type distribution P is symmetric
if |Θi| = |Θj | for all i, j ∈ N , and if for all permutations π : N → N , P (θ) = P (θπ). We say a
Bayesian game has symmetric utility functions if |Ai| = |Aj | and |Θi| = |Θj | for all i, j ∈ N , and if
for all permutations π : N → N , we have ui(a, θ) = uπ(i)(a

π, θπ) for all i ∈ N . A Bayesian game
is symmetric if its type distribution and utility functions are symmetric. The utility functions of such
a game range over at most |Θi||Ai|

(
n−2+|Θi||Ai|
|Θi||Ai|−1

)
unique utility values.

A Bayesian game exhibits conditional utility independence if each player i’s utility depends on the
action profile a and her own type θi, but does not depend on the other players’ types. Then the utility
function of each player i ranges over at most |A||Θi| unique utility values.

2.2.1 Complete-information interpretations

Harsanyi [10] showed that any Bayesian game can be interpreted as a complete-information game,
such that Bayes-Nash equilibria of the Bayesian game correspond to Nash equilibria of the complete-
information game. There are two complete-information interpretations of Bayesian games.

A Bayesian game can be converted to its induced normal form, which is a complete-information game
with the same set of n players, in which each player’s set of actions is her set of pure strategies in the
Bayesian game. Each player’s utility under an action profile is defined to be equal to the player’s
expected utility under the corresponding pure strategy profile in the Bayesian game.

Alternatively, a Bayesian game can be transformed to its agent form, where each type of each player
in the Bayesian game is turned into one player in a complete-information game. Formally, given a
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Bayesian game (N, {Ai}i∈N ,Θ, P, {ui}i∈N ), we define its agent form as the complete-information
game (Ñ , {Ãj,θj}(j,θj)∈Ñ , {ũj,θj}(j,θj)∈Ñ ), where Ñ consists of

∑
j∈N |Θj | players, one for every

type of every player of the Bayesian game. We index the players by the tuple (j, θj) where j ∈ N
and θj ∈ Θj . For each player (j, θj) ∈ Ñ of the agent form game, her action set Ã(j,θj) is Aj , the
action set of j in the Bayesian game. The set of action profiles is then Ã =

∏
j,θj

A(j,θj). The utility

function of player (j, θj) is ũj,θj : Ã→ R. For all ã ∈ Ã, ũj,θj (ã) is equal to the expected utility of
player j of the Bayesian game given type θj , under the pure strategy profile sã, where for all i and all
θi, sãi (θi) = ã(i,θi). Observe that there is a one-to-one correspondence between action profiles in
the agent form and pure strategies of the Bayesian game. A similar correspondence exists for mixed
strategy profiles: each mixed strategy profile σ of the Bayesian game corresponds to a mixed strategy
σ̃ of the agent form, with σ̃(i,θi)(ai) = σi(ai|θi) for all i, θi, ai. It is straightforward to verify that
ũi,θi(σ̃) = ui(σ|θi) for all i, θi. This implies a correspondence between Bayes Nash equilibria of a
Bayesian game and Nash equilibria of its agent form.
Proposition 2. σ is a Bayes-Nash equilibrium of a Bayesian game if and only if σ̃ is a Nash
equilibrium of its agent form.

3 Bayesian Action-Graph Games

In this section we introduce Bayesian Action-Graph Games (BAGGs), a compact representation of
Bayesian games. First consider representing the type distributions. Specifically, the type distribution
P is specified by a Bayesian network (BN) containing at least n random variables corresponding to
the n players’ types θ1, . . . , θn. For example, when the types are independently distributed, then P
can be specified by the simple BN with n variables θ1, . . . , θn and no edges.

Now consider representing the utility functions. Our approach is to adapt concepts from the AGG
representation [1, 13] to the Bayesian game setting. At a high level, a BAGG is a Bayesian game on
an action graph, a directed graph on a set of action nodes A. To play the game, each player i, given
her type θi, simultaneously chooses an action node from her type-action set Ai,θi ⊆ A. Each action
node thus corresponds to an action choice that is available to one or more of the players. Once the
players have made their choices, an action count is tallied for each action node α ∈ A, which is the
number of agents that have chosen α. A player’s utility depends only on the action node she chose
and the action counts on the neighbors of the chosen node.

We now turn to a formal description of BAGG’s utility function representation. Central to our model
is the action graph. An action graph G = (A, E) is a directed graph where A is the set of action
nodes, and E is a set of directed edges, with self edges allowed. We say α′ is a neighbor of α if there
is an edge from α′ to α, i.e., if (α′, α) ∈ E. Let the neighborhood of α, denoted ν(α), be the set of
neighbors of α.

For each player i and each instantiation of her type θi ∈ Θi, her type-action set Ai,θi ⊆ A is the set
of possible action choices of i given θi. These subsets are unrestricted: different type-action sets
may (partially or completely) overlap. Define player i’s total action set to be A∪i =

⋃
θi∈Θi

Ai,θi .
We denote by A =

∏
iA
∪
i the set of action profiles, and by a ∈ A an action profile. Observe that

the action profile a provides sufficient information about the type profile to be able to determine the
outcome of the game; there is no need to additionally encode the realized type distribution. We note
that for different types θi, θ′i ∈ Θi, Ai,θi and Ai,θ′i may have different sizes; i.e., i may have different
numbers of available action choices depending on her realized type.

A configuration c is a vector of |A| non-negative integers, specifying for each action node the
numbers of players choosing that action. Let c(α) be the element of c corresponding to the action
α. Let C : A 7→ C be the function that maps from an action profile a to the corresponding
configuration c. Formally, if c = C(a) then c(α) = |{i ∈ N : ai = α}| for all α ∈ A. Define
C = {c : ∃a ∈ A such that c = C(a)}. In other words, C is the set of all possible configurations.
We can also define a configuration over a subset of nodes. In particular, we will be interested in
configurations over a node’s neighborhood. Given a configuration c ∈ C and a node α ∈ A, let
the configuration over the neighborhood of α, denoted c(α), be the restriction of c to ν(α), i.e.,
c(α) = (c(α′))α′∈ν(α). Similarly, let C(α) denote the set of configurations over ν(α) in which at
least one player plays α. Let C(α) : A 7→ C(α) be the function which maps from an action profile to
the corresponding configuration over ν(α).
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Definition 3. A Bayesian action-graph game (BAGG) is a tuple (N,Θ, P, {Ai,θi}i∈N,θi∈Θi
,

G, {uα}α∈A) where N is the set of agents; Θ =
∏
i Θi is the set of type profiles; P is the type

distribution, represented as a Bayesian network; Ai,θi ⊆ A is the type-action set of i given θi;
G = (A, E) is the action graph; and for each α ∈ A, the utility function is uα : C(α) → R.

Intuitively, this representation captures two types of structure in utility functions: firstly, shared
actions capture the game’s anonymity structure: if two action choices from different type-action sets
share an action node α, it means that these two actions are interchangeable as far as the other players’
utilities are concerned. In other words, their utilities may depend on the number of players that chose
the action node α, but not the identities of those players. Secondly, the (lack of) edges between
nodes in the action graph expresses action- and type-specific independencies of utilities of the game:
depending on player i’s chosen action node (which also encodes information about her type), her
utility depends on configurations over different sets of nodes.

Lemma 4. An arbitrary Bayesian game given in Bayesian normal form can be encoded as a BAGG
storing the same number of utility values.

Proof. Provided in the supplementary material.

Bayesian games with symmetric utility functions exhibit anonymity structure, which can be expressed
in BAGGs by sharing action nodes. Specifically, we label each Θi as {1, . . . , T}, so that each
t ∈ {1, . . . , T} corresponds to a class of equivalent types. Then for each t ∈ {1, . . . , T}, we have
Ai,t = Aj,t for all i, j ∈ N , i.e. type-action sets for equivalent types are identical.

3.1 BAGGs with function nodes

In this section we extend the basic BAGG representation by introducing function nodes to the action
graph. The concept of function nodes was first introduced in the (complete-information) AGG setting
[13]. Function nodes allow us to exploit a much wider variety of utility structures in BAGGs.

In this extended representation, the action graph G’s vertices consist of both the set of action nodesA
and the set of function nodes F . We require that no function node p ∈ F can be in any player’s action
set. Each function node p ∈ F is associated with a function fp : C(p) → R. We extend c by defining
c(p) to be the result of applying fp to the configuration over p’s neighbors, fp(c(p)). Intuitively, c(p)
can be used to describe intermediate parameters that players’ utilities depend on. To ensure that the
BAGG is meaningful, the graph restricted to nodes in F is required to be a directed acyclic graph. As
before, for each action node α we define a utility function uα : C(α) → R.

Of particular computational interest is the subclass of contribution-independent function nodes
(also introduced by [13]). A function node p in a BAGG is contribution-independent if ν(p) ⊆ A,
there exists a commutative and associative operator ∗, and for each α ∈ ν(p) an integer wα, such
that given an action profile a = (a1, . . . , an), c(p) = ∗i∈N :ai∈ν(p) wai . A BAGG is contribution-
independent if all its function nodes are contribution-independent. Intuitively, if function node p is
contribution-independent, each player’s strategy affects c(p) independently.

A very useful kind of contribution-independent function nodes are counting function nodes, which
set ∗ to the summation operator + and the weights to 1. Such a function node p simply counts the
number of players that chose any action in ν(p).

Let us consider the size of a BAGG representation. The representation size of the Bayesian network
for P is exponential only in the in-degree of the BN. The utility functions store

∑
α |C(α)| values. As

in similar analysis for AGGs [15], estimations of this size generally depend on what types of function
nodes are included. We state only the following (relatively straightforward) result since in this paper
we are mostly concerned with BAGGs with counting function nodes.

Theorem 5. Consider BAGGs whose only function nodes, if any, are counting function nodes. If the
in-degrees of the action nodes as well as the in-degrees of the Bayesian networks for P are bounded
by a constant, then the sizes of the BAGGs are bounded by a polynomial in n, |A|, |F|,

∑
i |Θi| and

the sizes of domains of variables in the BN.

This theorem shows a nice property of counting function nodes: representation size does not grow
exponentially in the in-degrees of these counting function nodes. The next example illustrates the
usefulness of counting function nodes, including for expressing conditional utility independence.
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Example 6 (Coffee Shop game). Consider a symmetric Bayesian game involving n players; each
player plans to open a new coffee shop in a downtown area, but has to decide on the location. The
downtown area is represented by a r × k grid. Each player can choose to open a shop located within
any of the B ≡ rk blocks or decide not to enter the market. Each player has T types, representing
her private information about her cost of opening a coffee shop. Players’ types are independently
distributed. Conditioned on player i choosing some location, her utility depends on: (a) her own
type; (b) the number of players that chose the same block; (c) the number of players that chose any of
the surrounding blocks; and (d) the number of players that chose any other location.

The Bayesian normal form representation of this game has size n[T (B + 1)]n. The game can be
expressed as a BAGG as follows. Since the game is symmetric, we label the types as {1, . . . , T}. A
contains one action O corresponding to not entering and TB other action nodes, with each location
corresponding to a set of T action nodes, each representing the choice of that location by a player
with a different type. For each t ∈ {1, . . . , T}, the type-action sets Ai,t = Aj,t for all i, j ∈ N and
each consists of the action O and B actions corresponding to locations for type t. For each location
(x, y) we create three function nodes: pxy representing the number of players choosing this location,
p′xy representing the number of players choosing any surrounding blocks, and p′′xy representing the
number of players choosing any other block. Each of these function nodes is a counting function
node, whose neighbors are action nodes corresponding to the appropriate locations (for all types).
Each action node for location (x, y) has three neighbors, pxy , p′xy , and p′′xy . Since the BAGG action
graph has maximum in-degree 3, by Theorem 5 the representation size is polynomial in n, B and T .

4 Computing a Bayes-Nash Equilibrium

In this section we consider the problem of finding a sample Bayes-Nash equilibrium given a BAGG.
Our overall approach is to interpret the Bayesian game as a complete-information game, and then to
apply existing algorithms for finding Nash equilibria of complete-information games. We consider
two state-of-the-art Nash equilibrium algorithms, van der Laan et al’s simplicial subdivision [24]
and Govindan and Wilson’s global Newton method [9]. Both run in exponential time in the worst
case, and indeed recent complexity theoretic results [3, 6, 4] imply that a polynomial-time algorithm
for Nash equilibrium is unlikely to exist.1 Nevertheless, we show that we can achieve exponential
speedups in these algorithms by exploiting the structure of BAGGs.

Recall from Section 2.2.1 that a Bayesian game can be transformed into its induced normal form or
its agent form. In the induced normal form, each player i has |Ai||Θi| actions (corresponding to her
pure strategies of the Bayesian game). Solving such a game would be infeasible for large |Θi|; just to
represent an Nash equilibrium requires space exponential in |Θi|.
A more promising approach is to consider the agent form. Note that we can straightforwardly adapt
the agent-form transformation described in Section 2.2.1 to the setting of BAGGs: now the action set
of player (i, θi) of the agent form corresponds to the type-action set Ai,θi of the BAGG. The resulting
complete-information game has

∑
i∈N |Θi| players and |Ai,θi | actions for each player (i, θi); a

Nash equilibrium can be represented using just
∑
i

∑
θi
|Ai,θi | numbers. However, the normal form

representation of the agent form has size
∑
j∈N |Θj |

∏
i,θi
|Ai,θi |, which grows exponentially in n

and |Θi|. Applying the Nash equilibrium algorithms to this normal form would be infeasible in terms
of time and space. Fortunately, we do not have to explicitly represent the agent form as a normal
form game. Instead, we treat a BAGG as a compact representation of its agent form, and carry out
any required computation on the agent form by operating on the BAGG. A key computational task
required by both Nash equilibrium algorithms in their inner loops is the computation of expected
utility of the agent form. Recall from Section 2.2.1 that for all (i, θi) the expected utility ũi,θi(σ̃) of
the agent form is equal to the expected utility ui(σ|θi) of the Bayesian game. Thus in the remainder
of this section we focus on the problem of computing expected utility in BAGGs.

4.1 Computing Expected Utility in BAGGs

Recall that σθi→ai is the mixed strategy profile that is identical to σ except that i plays ai given θi.
The main quantity we are interested in is ui(σθi→ai |θi), player i’s expected utility given θi under

1There has been some research on efficient Nash-equilibrium-finding algorithms for subclasses of games,
such as Daskalakis and Papadimitriou’s [5] PTAS for anonymous games with fixed numbers of actions. One
future direction would be to adapt these algorithms to subclasses of Bayesian games.
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the strategy profile σθi→ai . Note that the expected utility ui(σ|θi) can then be computed as the sum
ui(σ|θi) =

∑
ai
ui(σ

θi→ai |θi)σi(ai|θi).

One approach is to directly apply Equation (1), which has (|Θ−i| × |A|) terms in the summation.
For games represented in Bayesian normal form, this algorithm runs in time polynomial in the
representation size. Since BAGGs can be exponentially more compact than their equivalent Bayesian
normal form representations, this algorithm runs in exponential time for BAGGs.

In this section we present a more efficient algorithm that exploits BAGG structure. We first formulate
the expected utility problem as a Bayesian network inference problem. Given a BAGG and a mixed
strategy profile σθi→ai , we construct the induced Bayesian network (IBN) as follows.

We start with the BN representing the type distribution P , which includes (at least) the random
variables θ1, . . . , θn. The conditional probability distributions (CPDs) for the network are unchanged.
We add the following random variables: one strategy variable Dj for each player j; one action
count variable for each action node α ∈ A, representing its action count, denoted c(α); one function
variable for each function node p ∈ F , representing its configuration value, denoted c(p); and one
utility variable Uα for each action node α. We then add the following edges: an edge from θj to Dj

for each player j; for each player j and each α ∈ A∪j , an edge from Dj to c(α); for each function
variable c(p), all incoming edges corresponding to those in the action graph G; and for each α ∈ A,
for each action or function node m ∈ ν(α) in G, an edge from c(m) to Uα in the IBN.

The CPDs of the newly added random variables are defined as follows. Each strategy variable
Dj has domain A∪j , and given its parent θj , its CPD chooses an action from A∪j according to the
mixed strategy σθi→aij . In other words, if j 6= i then Pr(Dj = aj |θj) is equal to σj(aj |θj) for all
aj ∈ Aj,θj and 0 for all aj ∈ A∪j \ Aj,θj ; and if j = i we have Pr(Dj = ai|θj) = 1. For each
action node α, the parents of its action-count variable c(α) are strategy variables that have α in their
domains. The CPD is a deterministic function that returns the number of its parents that take value α;
i.e., it calculates the action count of α. For each function variable c(p), its CPD is the deterministic
function fp. The CPD for each utility variable Uα is a deterministic function specified by uα.

It is straightforward to verify that the IBN is a directed acyclic graph (DAG) and thus represents a
valid joint distribution. Furthermore, the expected utility ui(σti→ai |θi) is exactly the expected value
of the variable Uai conditioned on the instantiated type θi.

Lemma 7. For all i ∈ N , all θi ∈ Θi and all ai ∈ Ai,θi , we have ui(σθi→ai |θi) = E[Uai |θi].

Standard BN inference methods could be used to compute E[Uai |θi]. However, such standard
algorithms do not take advantage of structure that is inherent in BAGGs. In particular, recall that
in the induced network, each action count variable c(α)’s parents are all strategy variables that
have α in their domains, implying large in-degrees for action count variables. Applying (e.g.) the
clique-tree algorithm would yield large clique sizes, which is problematic because running time scales
exponentially in the largest clique size of the clique tree. However, the CPDs of these action count
variables are structured counting functions. Such structure is an instance of causal independence in
BNs [11]. It also corresponds to anonymity structure for complete-information game representations
like symmetric games and AGGs [13]. We can exploit this structure to speed up computation of
expected utility in BAGGs. Our approach is a specialization of Heckerman and Breese’s method
[11] for exploiting causal independence in BNs, which transforms the original BN by creating new
nodes that represent intermediate results, and re-wiring some of the arcs, resulting in an equivalent
BN with small in-degree. Given an action count variable c(α) with parents (say) {D1 . . . Dn}, for
each i ∈ {1 . . . n− 1} we create a node Mα,i, representing the count induced by D1 . . . Di. Then,
instead of having D1 . . . Dn as parents of c(α), its parents become Dn and Mα,n−1, and each Mα,i’s
parents are Di and Mα,i−1. The resulting graph has in-degree at most 2 for c(α) and the Mα,i’s. The
CPDs of function variables corresponding to contribution-independent function nodes also exhibit
causal independence, and thus we can use a similar transformation to reduce their in-degree to 2. We
call the resulting Bayesian network the transformed Bayesian network (TBN) of the BAGG.

It is straightforward to verify that the representation size of the TBN is polynomial in the size of the
BAGG. We can then use standard inference algorithms to compute E[Uα|θi] on the TBN. For classes
of BNs with bounded treewidths, this can be computed in polynomial time. Since the graph structure
(and thus the treewidth) of the TBN does not depend on the strategy profile and only depends on the
BAGG, we have the following result.
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Figure 1: GW, varying
players.
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Theorem 8. For BAGGs whose TBNs have bounded treewidths, expected utility can be computed in
time polynomial in n, |A|, |F| and |

∑
i Θi|.

Bayesian games with independent type distributions are an important class of games and have many
applications, such as independent-private-value auctions. When contribution-independent BAGGs
have independent type distributions, expected utility can be efficiently computed.
Theorem 9. For contribution-independent BAGGs with independent type distributions, expected
utility can be computed in time polynomial in the size of the BAGG.

Proof. Provided in the supplementary material.

Note that this result is stronger than that of Theorem 8, which only guarantees efficient computation
when TBNs have constant treewidth.

5 Experiments

We have implemented our approach for computing a Bayes-Nash equilibrium given a BAGG by
applying Nash equilibrium algorithms on the agent form of the BAGG. We adapted two algorithms,
GAMBIT’s [18] implementation of simplicial subdivision and GameTracer’s [2] implementation of
Govindan and Wilson’s global Newton method, by replacing calls to expected utility computations
of the complete-information game with corresponding expected utility computations of the BAGG.
We ran experiments that tested the performance of our approach (denoted by BAGG-AF) against
two approaches that compute a Bayes-Nash equilibrium for arbitrary Bayesian games. The first
(denoted INF) computes a Nash equilibrium on the induced normal form; the second (denoted NF-
AF) computes a Nash equilibrium on the normal form representation of the agent form. Both were
implemented using the original, normal-form-based implementations of simplicial subdivision and
global Newton method. We thus studied six concrete algorithms, two for each game representation.

We tested these algorithms on instances of the Coffee Shop Bayesian game described in Example 6.
We created games of different sizes by varying the number of players, the number of types per player
and the number of locations. For each size we generated 10 game instances with random integer
payoffs, and measured the running (CPU) times. Each run was cut off after 10 hours if it had not yet
finished. All our experiments were performed using a computer cluster consisting of 55 machines
with dual Intel Xeon 3.2GHz CPUs, 2MB cache and 2GB RAM, running Suse Linux 11.1.

We first tested the three approaches based on the Govindan-Wilson (GW) algorithm. Figure 1 shows
running time results for Coffee Shop games with n players, 2 types per player on a 2× 3 grid, with
n varying from 3 to 7. Figure 2 shows running time results for Coffee Shop games with 3 players,
2 types per player on a 2× x grid, with x varying from 3 to 10. Figure 3 shows results for Coffee
Shop games with 3 players, T types per player on a 1× 3 grid, with T varying from 2 to 8. The data
points represent the median running time of 10 game instances, with the error bars indicating the
maximum and minimum running times. All results show that our BAGG-based approach (BAGG-AF)
significantly outperformed the two normal-form-based approaches (INF and NF-AF). Furthermore,
as we increased the dimensions of the games the normal-form based approaches quickly ran out of
memory (hence the missing data points), whereas BAGG-NF did not.

We also did some preliminary experiments on BAGG-AF and NF-AF running the simplicial subdivi-
sion algorithm. Figure 4 shows running time results for Coffee Shop games with n players, 2 types
per player on a 1× 3 grid, with n varying from 3 to 6. Again, BAGG-AF significantly outperformed
NF-AF, and NF-AF ran out of memory for game instances with more than 4 players.
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