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Abstract

Design decisions for TAC SCM agents are usually evaluated
empirically by running complete agents against each other.
While this approach is sufficient for many purposes, it be dif-
ficult to use it for running large-scale, controlled experiments
to evaluate particular aspects of an agent’s design. This is true
both for technical reasons (availability of other agent code,
the trouble of setting up a TAC server, etc.) and especially be-
cause results can depend heavily on the experimenter’s choice
of opponent agents. This paper introduces a novel model of
the TAC SCM scheduling problem for use in such empiri-
cal evaluations. The model aims to reduce the experimental
variability caused by the experimenter’s choice of opponent
agents, replacing markets with stochastic processes that sim-
ulate them. These stochastic processes are designed by using
machine learning to distill typical agent behaviors from real
game logs taken from the TAC SCM finals. After describing
the operation of our model, we validate it by showing that its
predictions of opponent behavior are highly consistent with
further game logs that were not used for building the model.
Finally, we apply our model to investigate the performance
of several integer/linear programming approaches for solving
the delivery and scheduling subproblems in TAC SCM.

Introduction
Supply Chain Management (SCM) is a problem with great
industrial importance. Supply chains describe the multi-
stage process of converting raw materials into finished prod-
ucts for end users, usually with many manufacturing phases
along the way. These different phases involve a variety
of different stakeholders, such as suppliers, manufacturers,
warehousers, transportation companies and retailers. Each
stakeholder faces a variety of difficult problems, ranging
from the computational (How could I best use a given set
of goods if I were able to procure them? If I won a given set
of contracts from my customers, how would I satisfy them
using the inventory I have at hand?) to the game-theoretic
(How can I expect other members of the supply chain to be-
have? How should I respond to these beliefs? How will
others’ future beliefs be shaped by my actions?)

The Trading Agent Challenge SCM (TAC SCM) game
was established to promote study of automated approaches
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to solving these sorts of supply chain management problems
(Collins et al. 2005). TAC SCM consists of a stochastic
simulation of a relatively simple multi-period business envi-
ronment that is nevertheless rich enough to give rise to some
of the complexity inherent in more elaborate settings.

Designing an agent for TAC SCM can be understood as
providing answers to two broad questions—how to model
the environment (in particular, other agents’ behavior, since
other parameters of the simulation are given) and what deci-
sions to take based on this model. A decision (made “daily”
in the simulation) can be decomposed into four parts: com-
ponent ordering, customer bidding, production scheduling,
and delivery scheduling (Collins et al. 2005). All four prob-
lems are interrelated, with changes to each problem’s so-
lution affecting the solutions of the others. However, be-
cause TAC SCM agents face strict time constraints, a dom-
inant approach from the literature has been to treat these
decision subproblems as largely separate, allowing the in-
terdependence of these subproblems to be expressed pri-
marily through summary statistics (Benisch et al. 2004a;
Pardoe & Stone 2006b; Dahlgren & Wurman 2004; Keller,
Duguay, & Precup 2004).

In the early days of TAC, researchers tended to focus
much of their energy on building good agents and explaining
their designs. Recently, agent designs have begun to stabi-
lize, and indeed there are signs of convergence to agreement
about certain high-level ingredients of a successful TAC de-
sign. This has led to an increased focus on a more “scien-
tific” study of TAC, with researchers identifying an abstract
issue that arises in the competition, attempting to isolate that
issue experimentally, and reporting the results along with
some general conclusions (see, among others, Wellman et
al. (2006), Benisch et al. (2004b), Kiekintveld et al. (2004),
Pardoe & Stone (2006a), Vetsikas & Selman (2003)).

Our paper attempts to be guided by this scientific sensibil-
ity in studying the scheduling components of a TAC agent’s
design. We decided to focus on scheduling for several rea-
sons. First, this is one of the key computational problems
faced by an agent designer; for example, in our own (lim-
ited) past efforts to design a TAC agent, we found that ad-
dressing it consumed much of our time. Second, schedul-
ing problems have widely been recognized as important in
the artificial intelligence and operations research literatures,
and have been studied extensively outside the TAC context.



Finally, while it is possible to identify a small set of “state-
of-the-art” approaches for solving the problem, we are not
aware of any work that compares these approaches directly
in the context of the TAC SCM problem. Indeed, it is easy
to see why such work has not been done: this would in-
volve a great deal of implementation effort, and in the end
its conclusions would depend on other elements of the agent
design and on parts of the environment (e.g., the designs of
the other competing agents) that had not varied.

We have attempted to get around these problems by de-
signing a reusable test suite that can be used to empirically
test scheduling approaches for TAC SCM. In what follows,
we describe our modeling choices, validate our model us-
ing data from the logs of actual TAC SCM competitions,
and then apply the model to gather some preliminary results
comparing several approaches based on linear programming
and stochastic programming.

Model
Evaluations of candidate solutions to the problems posed
by TAC SCM have usually consisted of implementing a
particular agent design. The resulting agents are then pit-
ted against a variety of other agents to assess the suit-
ability of the implemented design (Pardoe & Stone 2006b;
Benisch et al. 2006b; Dahlgren & Wurman 2004; Keller,
Duguay, & Precup 2004). While this approach is useful for
drawing conclusions about complete agents, it is difficult
to use it to draw more general results about particular ap-
proaches to the decision subproblems outside of the particu-
lar agent context that it was tested in, due to the complicated
multi-agent nature of the competition.

One way to reduce the variability caused by multi-agent
interactions in the customer and component markets is to
simulate the majority of the TAC SCM server, but to replace
any agent interaction with a stochastic process learned from
log data. In TAC SCM, all the agents communicate back
and forth with the two markets, as shown in Figure 1. The
actions of an agent, such as bidding on a customer RFQ, will
impact the other agents. In our model, drawn in Figure 2, the
markets are replaced with processes that are independent of
agent actions. Since the processes are not effected by the
agents, there is no way for one agent’s actions to impact any
other agent, and so given these processes a single agent may
be separated and studied in isolation.

This model attempts to retain “typical” market character-
istics without the need to run a large set of individual agents.
This retains some of the uncertainty of the complex multi-
agent system, but makes the response of the decision mod-
ule easier to experiment with and reduces variance. This can
be especially useful if we want to study particular situations
that infrequently occur, such as the impact of component
scarcity on manufacturing scheduling.

TAC SCM is uncharacteristic of practical supply chain
scenarios in that all agents abruptly begin at the same mo-
ment without any inventory, and similarly because that in-
ventory abruptly loses all value at a commonly-known time.
These two discontinuities have a significant impact on agent
strategies and payoffs, and have been extensively studied,
e.g., (Pardoe & Stone 2004; 2006b; Ketter et al. 2004;

Benisch et al. 2004a; Eriksson, Finne, & Janson 2006). In
our work, however, we are interested in modeling and study-
ing a system’s steady-state behavior. When using game logs,
we therefore study only data from days 40–200, an inter-
val that we observed to exhibit a qualitatively steady mean-
winning price.
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Figure 1: TAC SCM
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Figure 2: Proposed Model

Our model, summarized by the pseudo-code in Figure 3,
generates RFQs in exactly the same way as the TAC SCM
server, using the same distributions for determining due
dates, late penalties, quantities, and reserve prices. It also
mimics the server in considering delivery instructions: when
the agent instructs that a particular customer order should be
delivered, the model checks to make sure that delivering it is
feasible with respect to the goods’ shopkeeping unit (SKU)
inventories, then evaluates the profits that the agent receives,
appropriately subtracting late penalties. Orders that exceed
the maximum allowable number of late days are removed
from the list of outstanding orders, and the appropriate de-
faulting fee is removed from the agent’s balance.

There is another area of multi-agent interaction that still
needs to be modeled—the component market. This paper
focuses on the customer market, which is described in the
next section. Afterward, we also give a simple component
market model. A more sophisticated approach would prob-
ably do better here; we intend to elaborate our model in this
direction in future work.

Modeling Bidding
As identified above, one of the areas of multi-agent interac-
tions that we will try to replace with a stochastic model is the



Initialize order = ∅
Initialize the PC inventory, skuInv = {0, ..., 0}
Initialize the component inventory,
compInv = {0, ...0}
Initialize balance = 0

FOR t UNTIL T

Get new set of customer RFQs Rfq

Deliver any ordered component ready on
day t− 1, determined with the component
ordering model

Give agent Rfq, Order, SkuInv, CompInv

Ask agent for deliveries Del

Ask agent for manufacturing decisions
Man

Ask agent for component orders CompOrd

Ask agent for RFQ bids bid

FOREACH d ∈ Del

IF d is feasible
Deliver d
Subtract goods from skuInv
Add profit to balance
END IF

END FOR
FOREACH m ∈ Man

IF m is feasible
Add goods to skuInv
Subtract components from compInv
END IF

END FOR
FOREACH b ∈ Bid

Use a model of customer bidding to
determine winning probability
IF b is the winning bid for r
Order = Order ∪ {r}
END IF

END FOR
FOREACH o ∈ Order

IF o is canceled on day t
Order = Order \ {o}
Subtract defaulting penalty from balance
END IF

END FOR

END FOR

Figure 3: Model Pseudo Code

customer market. Ultimately, we wish to construct a princi-
pled way of determining the probability that an agent will
win with a given bid amount for a given RFQ. In this section
we describe the method that we propose for modeling that
probability.

This model is called a Customer Market Process (CMP).
We define this as the process that controls the distribution
of winning RFQs for a particular day, and we wish to find
one that is consistent with log data. More formally, we are
attempting to model p(B|θt), where B is a random variable
that represents the price of a winning order and θt is our
distribution parameters for day t. A bid for an RFQ is more
likely to win if more of the mass of the probability density
function is at a higher price than the bid. (Remember, in
an RFQ market, the lowest bid wins.) Let w be a binary
variable such that w = 1 iff the agent wins the RFQ. Then
the chance of winning an RFQ with a bid of b per unit on
day t is

p(w|b, θt) =
∫ ∞

b

p(x|θt)dx. (1)

This is the amount of probability mass higher than the placed
bid. We will model this probability distribution as a lin-
ear dynamic system (LDS) and learn it from data using a
Kalman filter.

Before explaining the details of our model, we remark that
learning the CMP is similar to the problem of offer accep-
tance prediction (determining how likely it is for an bid to
win an order) that all TAC SCM agents have to face with
the additional demand of being a generative model. For in-
stance, CMieux’s price forecasting component fills this role
(Benisch et al. 2006a). However this approach differs from
ours in that it attempts to predict the future price of a product
using a least-squares regression approach. This amounts to
learning a distribution that has its mean at the predicted price
and a constant variance, whereas we propose to learn a prob-
ability distribution in which both the mean and variance vary
with time. TAC SCM 2006 winner TacTex-06’s offer accep-
tance predictor is closer to our LDS model as it attempts to
learn the function that maps the current bid to winning dis-
tribution using a particle filtering approach (Pardoe & Stone
). In this paper we use the simpler and computationally more
efficient Kalman filtering approach; below, we show that it
is sufficient to achieve excellent performance.

We now justify and describe our model of the customer
bidding problem as an LDS, after which we will describe
how these models can be learned. We begin from the as-
sumption that winning bid amounts are normally distributed,
which is justified by the log data being tightly clustered
around a single mean. This means that Equation (1) involves
the normal cumulative distribution function which is easy to
approximate using Taylor expansions. Assuming that the
distribution is normal also allows us to work with simple
summary statistics for each day.

In order to simplify the problem we will make the follow-
ing assumptions:

1. θt is a linear function of θt−1 with additive, unbiased, nor-
mal noise;



2. the distribution of winning bids for a given day and SKU
is normal.
These assumptions mean that the problem can now be

modeled as an LDS. LDS models may be seen as an ex-
tension of Hidden Markov Models (HMMs) with continu-
ous latent variables. In this case, the latent variables, also
called hidden states, are the parameters θ. Such models are
widely used because their linearity and normality assump-
tions make it simple to perform parameter estimation, infer-
ence and prediction.

The process may be summarized in the following equa-
tions, following (Roweis & Ghahramani 1997), with nota-
tion defined below.

θt+1 = Aθt + wt (2)
yt = Cθt + vt (3)
wt ∼ N (0, Q) (4)
vt ∼ N (0, R) (5)

Let yt be a vector of observations, in our case the sample
means and sample standard deviations from TAC SCM logs.
Let 〈A,C, Q,R, θ0, V0〉 be the parameters of the LDS. A is
the state transition matrix, summarizing how the mean of the
winning bid distribution changes between time steps. The
matrix C is the observation matrix, or emission matrix, and
governs how the latent variable affects our observations. The
Q and R matrices govern how noisy state transitions and
observations are respectively.

For a given LDS, we can perform inference (also known
as filtering) on θt with a Kalman filter (Kalman 1960). For
a given set of observations and known system dynamics (in-
cluding the prior latent variable and covariance θ0 and V0),
we can estimate the hidden state by the following set of
equations.

θ̂t = Aθt−1 (6)

V̂t = AVtA
∗ + Q (7)

Kt = V̂tC
∗(CV̂tC

∗ + R)−1 (8)

θt = x̂t + Kt(yt − Cθ̂t) (9)

Vt = V̂t − KtCV̂t (10)

Vt represents the covariance of the state, θ̂t refers to the
estimation of latent variables at time t given observations
y1:t−1, and ∗ is transposition (used instead of ·T to avoid
notational confusion). Essentially, lines 6 and 7 represent
prediction of the new state based on the old state and the
dynamics, and lines 8, 9, and 10 represent the correction
based on the actual observations proportional to the predic-
tion error, (yt − Cθ̂t). With the ability to infer the hidden
state variables, we can calculate the likelihood of a particular
model

p(θ0)
T∏

t=1

p(θt|θt−1)
T∏

t=1

p(yt|θt). (11)

Because the likelihood for a long time series is usually small,
we use the log likelihood as a measure of model ‘goodness’.

The estimation of the system dynamics was performed us-
ing an EM algorithm (as was done, for example, by Ghahra-
mani & Hinton (1996); EM is due to Dempster, Laird, &

Independent Full
16 -35000 -50000
32 -34000 -94000
48 -34000 -144000

Table 1: Test Set Log Likelihoods

Rubin (1977)). The EM algorithm needs to be given an ini-
tial model, and this is one of the ways that we can make
design choices about how we construct the initial model.

Model Validation
Once we have learned a model using EM, we need to val-
idate it against game logs in order to be confident that we
are accurately modeling the interactions that we seek to re-
place. The LDS models are validated by comparing both
training and test set1 log-likelihoods. Kalman filters are
used to calculate the log likelihoods of several different LDS
models. The first set of LDS models that assume that the
processes for different SKUs are independent, with one, two
or three hidden state variables per SKU. The resulting block-
diagonal matrices, with slight perturbations, are used as ini-
tial points for a second learning phase that relaxes the inde-
pendence assumption, leading to the models that this paper
will refer to as ‘full’. In the latter case the hidden state for
the processes are 16, 32, and 48 dimensional, respectively.

We observed experimentally that dropping the SKU inde-
pendence assumption leads to over-fitting, and using a hid-
den state with dimensionality higher than two does not in-
crease test set likelihood (Table 1). Figure 4 shows the per-
formance of a Kalman filter predicting the next day’s win-
ning price for a single the independent SKU model on a sin-
gle game, and Figure 6 shows the same using the full SKU
model. We see that the independent model leads to much
more accurate predictions, where as the full model leads to
predictions that are less responsive to local trends. When we
zoom in on days 100 to 140 in Figure 5 and Figure 7, we can
see that the winning price predictions for the full model has
a much larger error than the independent model.

Therefore, for the remainder of this work, we use 16 inde-
pendent LDSs with two-dimensional hidden states to gener-
ate the distribution of winning bids. Observe that this model
assumes (contrary to intuition) that there is not a link be-
tween bidding behavior across different SKUs. The fact that
this is our best model is probably due to the relatively small
amount of training data that we used. We expect that if we
had trained on a larger dataset, the full model would have
outperformed the independent model.

The independent model has a mean winning price predic-
tion error (the mean difference between the predicted mean

1The training set was drawn from the 2006 finals and semi-
finals: games 5605, 6167, 5561, 8589, 5123, 6168, 5606, 8590,
5124, 5562, 5079, 6169, 8591, 5563, 5607, 6170, 5125, 5080,
6171, 8592, 5564, 5608, 5126, 6172, 8593, 5609 and 6173. The
test set was also drawn from the 2006 finals: games 8594, 6174,
5610, 6175, 5611 and 5612. Learning a model from this training
set took roughly 5 hours on a 100 CPU cluster



Figure 4: Independent SKU Mean Prediction

Figure 5: Zoom on Independent Mean Prediction from Fig-
ure 4

Figure 6: Mean Prediction

Figure 7: Zoom on Mean Prediction from Figure 6



winning price and the actual mean winning price) of 57.0
on the test set, and this is a error low enough that the model
seems to be faithful to the underlying market data.

Component procurement
As described above, modeling the component market was
not a focus of our work; nevertheless, we have included a
simple model here. This model was motivated by structural
similarity to TAC SCM (rather than functional similarity as
determined by validating against log data). A future direc-
tion we intend to pursue is designing a time-series model
for component requests that is representative of data drawn
from TAC SCM game logs.

The available component capacity is simulated by a ran-
dom walk similar to the one governing daily capacity in TAC
SCM. To account for the effects of other agents, the nomi-
nal capacity is one sixth of the size of the nominal capacity
in TAC (92 components per day as opposed to 550 compo-
nents), and the size of the random steps in the random walk
has been increased.

The supplier modules receive a set of component requests
from the customer. Each day, a supplier module faces a 1-0
knapsack problem to determine which orders it should de-
liver, where it is trying to maximize the number of compo-
nents delivered subject to component inventory constraints.
If there is daily unused manufacturing capacity, then com-
ponents will be manufactured and added to the inventory if
there are current outstanding component orders, and insuf-
ficient inventory to satisfy them. This model does not favor
late orders, and so large numbers of small orders will cause
large orders to starve.

As our model is designed to investigate scheduling ques-
tions, it is unnecessary to model component prices; there-
fore, we have not done so.

Application: Comparing Scheduling
Techniques

Of course, a model is only useful if it can be used to an-
swer interesting experimental questions. Our main interest
in building this model was to use it ourselves in future work,
to investigate different existing optimization techniques for
solving TAC’s scheduling problems, and ultimately to build
novel optimization algorithms tailored to TAC. We imagine
that our model will also be useful to other researchers in the
field for various other purposes. So far, we have only per-
formed some initial experiments, and so we do not wish to
make conclusive claims about the merits of different opti-
mization approaches. Even so, we find the results that fol-
low suggestive and thought-provoking; they certainly indi-
cate the sorts of uses to which our model may be put.

In this section we will describe experiments that com-
pared the following three algorithms, based on integer linear
programming (ILP) and stochastic integer linear program-
ming (SILP).

Myopic is an ILP, summarized in Figure 8, that maxi-
mizes the revenue that it can immediately obtain by deliver-
ies for the current day. The myopic program solves sixteen
1-0 knapsack problems, one for each of the SKUs, where the

MAXIMIZE delivery profit

SUBJECT TO

Deliveries must all have sufficient
inventory to satisfy them

Figure 8: Myopic pseudocode

MAXIMIZE
∑Horizondelivery profit + expected

RFQ profit - storage costs

SUBJECT TO

Each day, deliveries must all have
sufficient inventory to satisfy them

Each day, manufacturing must require fewer
cycles than the cycle cap

Each day, manufacturing must require fewer
components than inventory

Each order and RFQ must be delivered once
in the horizon, or defaulted on

Figure 9: SILP pseudocode

knapsack capacities are the SKU inventories and the items
are orders. Because the optimization problem only considers
deliveries that are possible on the current day, manufacturing
decisions have no impact on the optimization. This means
that the delivery problem for each of the 16 SKUs become
independent. Production scheduling is decided greedily in a
second phase by determining how many of each SKU will
need to be manufactured to satisfy the current outstanding
orders, and then trying to build as many of each as possible,
subject to component and cycle constraints.

SILP optimizes profit for an n-day rolling horizon
expected-profit problem, sketched in Figure 9, for delivery
and production scheduling (Benisch et al. 2004b). SILPs are
a well known approach to optimization when some of the
parameters of the problem are random according to some
known distribution. In our particular formulation the co-
efficients for any terms in the objective function involving
uncertain quantities, namely RFQs, are replaced with their
expectations. The constraints are written by assuming that
any uncertain quantities are in fact certain.

SAA is a sample average approximation (SAA) SILP,
summarized in Figure 10, that has k samples and an n-day
horizon. Rather than taking expectations in the objective
function or the constraints, a set of samples are taken from
the probability distribution, and each has an associated set
of decision variables to optimize over. In order to have a co-
herent plan for the current day, they all have the same set of
decision variables for the first day. This approach has been
well studied in operations research (see Shapiro (2001) for
examples), and has also been implemented in the TAC SCM
context (Benisch et al. 2004b).

Time limitations are an important practical constraint in
many real problems, particularly those that involve trading
in markets. (TAC SCM has a 15 second limit per day on



MAXIMIZE delivery profit for first
day - storage costs for first day +∑Samples ∑Horizondelivery profit + expected
RFQ profit - storage costs

SUBJECT TO

Each day and sample, deliveries must all
have sufficient inventory to satisfy them

Each day and sample, manufacturing must
require fewer cycles than the cycle cap

Each day and sample, manufacturing must
require fewer components than inventory

Each order and RFQ must be delivered once
in the horizon, or defaulted on, in every
sample

Figure 10: SAA pseudocode

calculations.) Thus, an important element of an algorithm’s
empirical performance is the quality of solutions it is able
to find within a limited amount of time. We therefore stud-
ied this property of the three algorithms’ anytime behavior,
though we varied the time limit in some experiments below.
All three algorithms were implemented in Java with CPLEX
10.1. CPLEX was told to emphasize feasibility over opti-
mality, and used time as a termination condition (rather than
relative or absolute optimality gap). Upon termination, the
best feasible solution found during the ILP search was re-
turned and used as a decision.

None of these algorithms deal with customer bidding or
with component ordering. In order to be able to compare the
three scheduling approaches in a more controlled manner,
we used the same simple heuristic algorithms for bidding
and ordering for each approach.

First we describe the heuristic algorithm used for cus-
tomer bidding. We used 16 independent Kalman filters to
track the SKU LDSs from the model. These filters were al-
lowed to fully observe the sample mean and standard devia-
tion of the winning bids from the previous day, and predict
the bid for each SKU that achieves a winning probability
of 0.90 (which might not be possible due to RFQ reserve
prices). This policy was set to bid aggressively for RFQs
determined to be valuable. The set of RFQs was sorted
in ascending order according to late penalty, and then bids
were greedily placed, for the previously determined amount,
on each RFQ subject to a capacity constraint based on the
daily manufacturing cycle capacity. Specifically, the bidder
bids until the total aggregate quantity offered exceeds 250
PCs. This capacity constraint was established to avoid over-
committing to orders, and the particular threshold was deter-
mined by comparing the number of orders that the myopic
algorithm defaulted on during a small set of tests.

For the component ordering algorithm we used a simple
heuristic that orders a constant number of components each
day. This amount is 75 for each CPU and 150 for the other
parts. This orders components uniformly for each PC SKU,
and is designed provide parts for 300 PCs, which is smaller
than the RFQ bidding limit. In order to prevent inventories

from bloating a maximum inventory size of 3000, or roughly
ten days of production, is maintained.

The delivery schedule optimization for myopic only con-
siders deliveries possible on the current day. The decision
for customer bidding, therefore, has no effect on the current
day’s delivery scheduling decision. However, production
scheduling is effected by the delivery schedule, as the num-
ber of order outstanding is dependent on which orders were
already scheduled to be delivered. Figure 11 summarizes the
precedence order, showing that the delivery schedule must
be solidified before deciding on the production schedule,
and that customer bidding and component ordering have no
precedence restrictions.

?> =<89 :;Cust. Bidder ?> =<89 :;Comp. Orderer

?> =<89 :;Prod. Scheduler oo ?> =<89 :;Deliv. Scheduler

Figure 11: Subproblem Precedence Order for Myopic

In both SILP and SAA, production scheduling and deliv-
ery scheduling are decided upon in a unified optimization
program, and so are solved simultaneously. However, be-
cause delivery and production schedules extend into the fu-
ture, the customer bidding does impact production and de-
livery planning, and so customer bidding must precede the
schedule optimization. The precedence ordering is summa-
rized in Figure 12, and we can see that component ordering
has no precedence restrictions.

?> =<89 :;Cust. Bidder
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?> =<89 :;Comp. Orderer

?> =<89 :;Prod. Scheduler oo //?> =<89 :;Deliv. Scheduler

Figure 12: Subproblem Precedence Order for SAA and SILP

Results
The first set of experiments investigate the relationship be-
tween time and number of samples in three-day-horizon
SAA and the quality of the plan returned. Experiments were
run for each combination of using 2, 4, 6, and 8 samples, and
given 10, 14, and 18 seconds for each sample. 100 simula-
tion runs of 30 days were performed for each. In each case
we used the same 100 scenarios; this blocked experiment de-
sign reduces variance. In all experiments, we measured the
quality of a plan as the amount of profit that it made. Profit
is defined as total revenue achieved minus late penalties, de-
fault penalties, and storage costs.

The results shown in Figure 13 and Table 2 indicate that
solution quality, given a sample number, remained constant.
This, along with the standard deviation data found in Ta-
ble 3, suggests that time-truncated approximations are quite
sensible, and that small increases of the time limit do not



Samples 10s 14s 18s
2 23.04 23.04 23.04
4 23.04 23.04 23.05
6 23.04 23.05 23.04
8 23.03 23.03 23.03

Table 2: Mean Profit, Number of Samples used by SAA vs.
Time (Millions of Currency Units)

Samples 10s 14s 18s
2 1.76 1.76 1.76
4 1.75 1.75 1.75
6 1.74 1.75 1.75
8 1.74 1.74 1.74

Table 3: Standard Deviation, Number of Samples used by
SAA vs. Time (Millions of Currency Units)

Figure 13: Bottom surface: Mean Profit
Top surface: Mean Profits plus one Standard Deviation

Algorithm µ σ
Myopic 1.5E7 2.2E6
SILP, 10s 2.3E7 1.8E7
SILP, 50s 2.3E7 1.8E7
SAA, 1 samples 2.3E7 1.8E6
SAA, 5 samples 2.3E7 1.7E6

Table 4: Profit for 3 day horizon planning

significantly impact solution quality. Table 2 also shows that
the number of samples considered had no significant impact
on solution quality. We feel confident in asserting that for
the number of samples that can be reasonably solved in TAC
SCM, the number of samples seems not to be a major factor
impacting the solution quality for SAA.

Figure 14: Algorithm Quality Comparison

Figure 14 shows the total profit achieved by our three dif-
ferent algorithms, including various time/sample limits for
SILP and SAA (SAA was given 10 seconds per sample).
While both the SAA and SILP approaches perform better
than myopic, we see that there is no significant advantage
to giving the SILP algorithm more time, or picking SAA or
SILP over the other.

A more detailed breakdown of where each algorithm in-
curs loss, found in Table 5, shows that the myopic algo-
rithm is completely unaffected by additional time, and this
is because the myopic optimization is simple enough to be
solved in under 10 seconds. The SILP displays minor fluctu-
ations in mean late penalties, defaulting penalties, and stor-
age costs, when more time is given but these are not sig-
nificant. CPLEX logs indicate that good integer solutions
(close to the objective value achieved in the linear program
formed by relaxing integer constraints) are usually found be-
fore 10 seconds, and the remainder of the time is spend on
relatively minor objective improvements. This accounts for
why truncating the optimization process early yields a good
approximation. SAA exhibits a more pronounced improve-
ment when given more time. Table 5 also shows an increase
in the mean late penalty and a decrease in both the storage
costs and defaulting penalty. This suggests that, given more
samples, orders that were previously decided to be undeliv-



Algorithm Late Pen. Default Pen. Storage
Myopic 36000 948000 52000
SILP, 10s 3300 495000 24000
SILP, 50s 3300 495000 24000
SAA, 1 samples 2400 489000 24000
SAA, 5 samples 2800 486000 25000

Table 5: Mean Loss for 3 day horizon planning

erable in the one sample SAA program were instead deliv-
ered late in the 5 sample SAA program.

In the version of this work that was originally submitted
for review, we used a different component ordering strat-
egy that maintained a minimum inventory level, as opposed
to the constant ordering policy used in this paper. This ap-
proach produced a counterintuitive result in which the my-
opic algorithm significantly outperformed both the SAA and
SILP approaches. This demonstrates the importance of rea-
sonable choices for the customer bidding and component or-
dering components. As mentioned above, in future work we
intend to learn a component procurement model from data.

Conclusion

This paper introduced a novel model of the TAC SCM
scheduling problem for use in empirical evaluations. This
was done by replacing areas of multi-agent interaction with
stochastic processes in order to give more control to the ex-
perimenter. The stochastic processes were learned from, and
validated against, game logs taken from the 2006 TAC SCM
finals using time-series machine learning techniques. This
model was used to investigate ILP and SILP approaches in
a time-constrained setting, investigating the trade off be-
tween optimization complexity and approximation quality.
Some preliminary experimental results collected using our
scheduling model showed that very early truncation of the
optimization process usually resulted in good quality solu-
tions. These results also indicated that considering many
samples in an SAA approach in a time-limited setting had
no effect on solution quality.

Future directions of work include designing and imple-
menting an improved optimization algorithm for scheduling
in TAC SCM. This will include testing alternate formula-
tions of the objective function and constraints, and perform-
ing more detailed investigations into approximation quality
in a time-constrained setting. In addition, we plan to incor-
porate component ordering and customer bidding into the
optimization framework, and develop a more sophisticated
and integrated approach. Another area of work is imple-
menting a model for component procurement that can be
validated by comparing its results to those found in game
logs. Furthermore, we intend to do more work on the bid-
ding model, investigating the idea that using priors on pa-
rameters during estimation for the LDSs could lead to more
accurate models with higher likelihoods.

References
Benisch, M.; Greenwald, A.; Grypari, I.; Lederman, R.;
Naroditskiy, V.; and Tschantz, M. 2004a. Botticelli: a sup-
ply chain management agent designed to optimize under
uncertainty. SIGecom Exch. 4(3):29–37.
Benisch, M.; Greenwald, A.; Naroditskiy, V.; and
Tschantz, M. C. 2004b. A stochastic programming ap-
proach to scheduling in TAC SCM. In EC ’04: Proceed-
ings of the 5th ACM conference on Electronic commerce,
152–159. New York, NY, USA: ACM Press.
Benisch, M.; Sardinha, A.; Andrews, J.; and Sadeh, N.
2006a. CMieux: adaptive strategies for competitive supply
chain trading. Proceedings of the 8th international confer-
ence on Electronic commerce: The new e-commerce: in-
novations for conquering current barriers, obstacles and
limitations to conducting successful business on the inter-
net 47–58.
Benisch, M.; Sardinha, A.; Andrews, J.; and Sadeh, N.
2006b. CMieux: adaptive strategies for competitive sup-
ply chain trading. In ICEC ’06: Proceedings of the 8th
international conference on Electronic commerce, 47–58.
New York, NY, USA: ACM Press.
Collins, J.; Arunachalam, R.; Sadeh, N.; Ericsson, J.;
Finne, N.; and Janson, S. 2005. The supply chain manage-
ment game for the 2006 trading agent competition. Tech-
nical Report CMU-ISRI-05-132, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213.
Dahlgren, E., and Wurman, P. R. 2004. PackaTAC: a con-
servative trading agent. SIGecom Exch. 4(3):38–45.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1):1–38.
Eriksson, J.; Finne, N.; and Janson, S. 2006. Evolution
of a supply chain management game for the trading agent
competition. AI Commun. 19(1):1–12.
Ghahramani, Z., and Hinton, G. E. 1996. Parameter es-
timation for linear dynamical systems. Technical Report
CRG-TR-96-2, University of Toronto.
Kalman, R. E. 1960. A new approach to linear filtering and
prediction problems. Transactions of the ASME–Journal of
Basic Engineering 82(Series D):35–45.
Keller, P. W.; Duguay, F.-O.; and Precup, D. 2004.
RedAgent-2003: An autonomous market-based supply-
chain management agent. In AAMAS ’04: Proceedings of
the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, 1182–1189. Washington,
DC, USA: IEEE Computer Society.
Ketter, W.; Kryzhnyaya, E.; Damer, S.; McMillen, C.;
Agovic, A.; Collins, J.; and Gini, M. 2004. Analysis and
design of supply-driven strategies in TAC-SCM. In AA-
MAS04TADA, 44–51.
Kiekintveld, C.; Wellman, M.; Singh, S.; Estelle, J.; Vorob-
eychik, Y.; Soni, V.; and Rudary, M. 2004. Distributed
feedback control for decision making on supply chains.



Fourteenth International Conference on Automated Plan-
ning and Scheduling.
Pardoe, D., and Stone, P. An Autonomous Agent for Sup-
ply Chain Management.
Pardoe, D., and Stone, P. 2004. TacTex-03: A supply chain
management agent. SIGecom Exchanges: Special Issue on
Trading Agent Design and Analysis 4(3):19–28.
Pardoe, D., and Stone, P. 2006a. Predictive planning for
supply chain management. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling.
Pardoe, D., and Stone, P. 2006b. TacTex-2005: A cham-
pion supply chain management agent. In Proceedings of
the Twenty-First National Conference on Artificial Intelli-
gence, 1489–94.
Roweis, S., and Ghahramani, Z. 1997. A unifying re-
view of linear Gaussian models. Technical report, Univer-
sity of Toronto, 6 King’s College Road, Toronto M5S 3H5,
Canada.
Shapiro, A. 2001. Monte Carlo simulation approach to
stochastic programming. In WSC ’01: Proceedings of the
33nd conference on Winter simulation, 428–431. Washing-
ton, DC, USA: IEEE Computer Society.
Vetsikas, I., and Selman, B. 2003. A principled study of
the design tradeoffs for autonomous trading agents. Pro-
ceedings of the second international joint conference on
Autonomous agents and multiagent systems 473–480.
Wellman, M. P.; Jordan, P. R.; Kiekintveld, C.; Miller, J.;
and Reeves, D. M. 2006. Empirical game-theoretic anal-
ysis of the TAC market games. In AMAS-06 Workshop on
Game-Theoretic and Decision-Theoretic Agents.


