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Abstract
In auction theory, agents are typically presumed to have per-
fect knowledge of their valuations. In practice, though, they
may face barriers to this knowledge due to transaction costs
or bounded rationality. Modeling and analyzing such settings
has been the focus of much recent work, though a canonical
model of such domains has not yet emerged. We begin by
proposing a taxonomy of auction models with valuation un-
certainty and showing how it categorizes previous work. We
then restrict ourselves to single-good sealed-bid auctions, in
which agents have (uncertain) independent private values and
can introspect about their own (but not others’) valuations
through possibly costly and imperfect queries. We investi-
gate second-price auctions, performing equilibrium analysis
for cases with both discrete and continuous valuation distri-
butions. We identify cases where every equilibrium involves
either randomized or asymmetric introspection. We contrast
the revenue properties of different equilibria, discuss steps
the seller can take to improve revenue, and identify a form of
revenue equivalence across mechanisms.

Introduction
Imagine deciding to bid for a particular car at an auction, and
trying to determine what price you would be prepared to pay.
You would probably start out very uncertain—is the new car
worth more than $10,000? $15,000? $18,526? You would
probably have actions available to you that could increase
your level of certainty, such as test driving the car, checking
online reviews, and so on. But these actions would consume
quite a lot of effort: pretty quickly you might feel compelled
to make up your mind one way or the other, even if you were
not yet entirely certain of your valuation.

Similarly, imagine the problem of submitting a bid on be-
half of your new startup company in an online advertise-
ment auction. The value of a customer’s click on your ad
would not be obvious: at the moment of entering the ad you
might not yet have accurate information about demograph-
ics, conversion rates, and so on. As before, it would be pos-
sible to collect additional information that would allow you
to make a better decision; also as before, the cost of gath-
ering such information would probably lead you to submit
your bid even despite some residual uncertainty about your
valuation.

Both of these scenarios illustrate a fact that most canoni-
cal models of auctions fail to capture: bidders are often un-
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certain about their own valuations. While it is often possible
for bidders to introspect (or otherwise gather information) in
order to reduce this uncertainty, doing so is costly. Further-
more, such introspection is usually imperfect, in the sense
that it does not entirely eliminate uncertainty. Bidders must
be prepared to place bids despite residual uncertainty. In
this paper, we explore the problem of building formal game-
theoretic models to describe such settings.

In what follows, we define terminology and then offer
a taxonomy of auction models in which bidders are uncer-
tain about their valuations. We use this taxonomy to survey
related work from the literature. We propose a novel auc-
tion model that aims to capture settings like those described
above. Applying this model to the special case of second-
price auctions, we offer several theoretical results, identify-
ing equilibria and making revenue comparisons.

Terminology
It is common in auction theory to refer to an agent’s type,
meaning both the agent’s private information (or signal) and
the agent’s valuation. Even in the classical literature there
are settings in which this is not reasonable, such as common
values: here agents all have the same valuation for the good,
but they are uncertain about what it is and all have (poten-
tially) different private signals. We will follow Bergemann
and Morris (2006) in dividing type into belief type (private
information) and payoff type (valuation).

We must also be careful with the notions of ex ante, ex
interim and ex post. Over the course of an auction, an agent
might receive several signals, updating his beliefs after each.
In such settings, it isn’t immediately clear which belief type
ex interim should refer to. We will use ex interim to refer
to all of them (so ex interim individually rational becomes a
stronger condition: no sequence of signals should cause an
agent to strictly prefer to drop out of the auction), while ex
ante refers to taking an expectation with respect to an agent’s
beliefs given no private information. By ex post we refer to
taking an expectation conditioned on all agents’ final belief
types (so ex post efficiency means maximizing the expected
social welfare). We will introduce ex interim perfect to refer
to perfect knowledge of a single agent’s valuation, and ex
post perfect to refer to such knowledge of all agents’ valu-
ations (so ex post perfect efficiency means maximizing the
actual social welfare).
Definition 1 (Deliberation) An action that updates an
agent’s beliefs.



Parameter Possible values

Valuation distribution: Independent, common, interdependent
Secrecy: Secret, non-secret

Perfection: Perfect certainty, residual uncertainty
Volatility: Volatile, non-volatile

Costliness: Costly, free
Limitations: Limited, unlimited
Separability: Separable, inseparable

Table 1: The features of our taxonomy

Because so-called “deliberative agents” must make deci-
sions about how to deliberate and how to bid conditioned
on the results of that deliberation, the underlying game is
extensive-form. We distinguish two types of deliberation.
Definition 2 (Introspection) A deliberation where the sig-
nal provides information about the deliberator’s valuation.

Definition 3 (Strategic deliberation; Larson and Sand-
holm (2001b)) A deliberation where the signal depends on
another agent’s valuation.

Taxonomy
Deliberating agents have been studied under a variety of as-
sumptions, models and names. In order to survey the litera-
ture, we first introduce a unifying taxonomy with a number
of free parameters (see Table 1).
Definition 4 (Valuation distribution) If all agents’ valua-
tions are independent, we call the setting independent value.
If every agent has the same valuation, we call the setting
common value. We call all other cases interdependent value.

Definition 5 (Secret) In secret settings, the only delibera-
tions agents can perform are introspections.

Notably, researchers have studied independent non-secret
values (for example, Larson (2006)).
Definition 6 (Perfection) A setting with perfect certainty
requires agents to discover their exact valuation. Otherwise,
the setting allows residual uncertainty.

One example of a perfect setting is when agents must
solve a constrained optimization problem (e.g., vehicle
scheduling and routing), to discover how to use the good
and thus its value. Without a feasible solution, the agent
can’t consume the good. The seller can also impose perfec-
tion by requiring bidders to commit to such a solution while
bidding.
Definition 7 (Volatile) In volatile settings, deliberation can
change an agent’s underlying valuation.

Like perfection, this can be motivated by the example of
agents solving a constrained optimization problem. Feasi-
ble solutions tell the agent how to use the good and thus its
value. By finding another solution, the agent might be able
to update this value. Perfection is a special case of volatility
where agents’ valuations are 0 until they perform a perfect
introspection.
Definition 8 (Costly) Performing costly deliberations costs
an agent some utility. Costly settings involve costly deliber-
ations.

Definition 9 (Limited) Limited settings have hard con-
straints about when any particular deliberation is possible.

For example, agents might be limited as to how many de-
liberations are possible during a particular stage.

Definition 10 (Separability) Where no deliberations are
possible once the mechanism begins. (This is a special case
of limited settings.)

All sealed-bid mechanisms are trivially separable. Some
staged auctions are also separable. (For example, in some
auctions for antiques, bidders are only free to examine the
goods until the English auction begins.)

Because the problem of deliberation is equivalent whether
the source of the information is internal or external, there
is an equivalence between costly deliberation (with secrecy
and non-volatility) and costly communication to a proxy.

Previous work
The earliest work on modeling agents with valuation uncer-
tainty is probably Wilson’s (1967) work on common val-
ues. This problem has been extensively studied since then,
but primarily in settings in which agents are not delibera-
tive. Another related literature considers tractably express-
ing bidder preferences in multi-good auctions (Ausubel &
Milgrom, 2002; Blumrosen & Nisan, 2005; Nisan & Segal,
2005; Sandholm & Boutilier, 2006).

We are specifically interested in deliberative agents. We
will classify the existing work on this topic according to
our taxonomy, though the classification isn’t always precise:
some of the existing work spans and contrasts classes, and
some results are more general than their authors state.

A number of researchers have considered the problem
of deliberative agents in settings requiring perfect certainty.
Parkes (2005) stated that handling residual uncertainty “ap-
pears beyond the scope of current methods (either ana-
lytic or computational), even for simple auctions such as
an ascending-price auction for a single item.” His paper fo-
cused on the dual problem to our own: auction and proxy de-
sign with costly communication. Parkes demonstrated that
incremental revelation mechanisms can achieve the same al-
locations as direct mechanisms with lower communication
costs. Cremer et al. (2003) described how to extract full
surplus from agents who commit to participating in the auc-
tion prior to deliberating, using a sequential auction based on
optimal search. Larson and Sandholm (2005) proved that no
(interesting) mechanism exists in which agents have no in-
centive to strategically deliberate or to mislead the seller and
the mechanism does not depend on knowledge of agents’ de-
liberation costs and limits. The proof assumes costly delib-
erations, volatility (or non-volatile, perfect certainty), and
non-secrecy. Larson (2006) described an optimal search
auction in which agents never strategically deliberate or mis-
lead the seller. Larson and Sandholm (2001a; 2001b) pro-
vided a very general model for costly and/or limited deliber-
ations in auctions and showed that under costly deliberation
models and in a number of common auction types (Vickrey,
English, Dutch, first price and (for multiple goods) VCG)
bidders perform strategic deliberation in equilibrium.

There has been a small number of papers analyzing de-
liberative agents in settings that allow residual uncertainty.
(Blumrosen & Nisan, 2002) showed that in auctions with
severely limited communication (equivalent to severely lim-
ited deliberation), social welfare can be improved by using
asymmetric proxies (equivalent to asymmetric deliberation
strategies). Bergemann and Valimaki (2002) showed that
in independent secret settings, VCG is ex post efficient and



Paper Values Secret Perfect Volatile Costly Limits Separable

Cremer et al (2003) ind yes yes no yes no no
Parkes (2005) all yes both no yes no no

Larson & Sandholm (2005) ind no yes yes yes no yes
Larson (2006) ind no yes no yes no no

Larson & Sandholm (2001a) all no no yes no yes both
Larson & Sandholm (2001b) all no no yes yes no both
Blumrosen & Nisan (2002) ind yes no no no yes yes

Bergemann & Valimaki (2002) all partial no no yes no both
Persico (2000) inter partial no no yes yes yes

Larson & Sandholm (2003) all no no yes yes yes yes
Larson & Sandholm (2004) ind no no yes yes yes yes

Compte & Jehiel (2001) ind yes no no yes no both
Sandholm (2000) ind yes no no yes no yes
Rasmusen (2006) ind yes no no yes yes no

Our Paper ind yes no no yes yes yes

Table 2: Classification of previous work on deliberative agents according to our taxonomy

provides ex ante incentives to deliberate. For common value
settings, they showed that no mechanism can achieve both
properties. Larson and Sandholm (2003) demonstrated that
in Vickrey auctions the ratio of computing costs between
the social optimum and the worst case Nash equilibrium is
unbounded, but that this can be improved by mechanism
design. Larson and Sandholm (2004) described an exper-
imental evaluation of deliberations on Vickrey auctions in
non-secret settings. In simulation, no strategic delibera-
tions occurred when agents had symmetric cost functions.
Compte and Jehiel (2001) showed that sellers can get more
revenue from Japanese-like ascending auctions than from
second price auctions. Sandholm (2000) demonstrated that
in second price auctions, bidding one’s true expected valu-
ation is a dominant strategy for risk neutral bidders but not
for risk averse ones. He also demonstrated that second price
auctions do not always have dominant deliberation strate-
gies when deliberation is costly. Rasmusen (2006) presented
residual uncertainty as a motivation for sniping on eBay auc-
tions: buyers don’t have time to deliberate in the last seconds
of an auction, but don’t deliberate earlier because of the cost.
Persico (2000) demonstrated that, when valuations are cor-
related (i.e. secrecy isn’t absolute), the value of information
is greater in first price auctions than in second price auctions,
because bidding strategies are conditioned on beliefs about
opponents’ valuations.

Model
In our work we make the strong assumption of separabil-
ity. Existing work shows that staged auctions are better than
sealed bid for maximizing revenue and minimizing deliber-
ation costs (Compte & Jehiel, 2001; Parkes, 2005; Berge-
mann & Valimaki, 2002). However, separability can arise
when deliberations are too time consuming to occur between
bidding rounds: e.g., the deliberation might involve analysis
of a broadcast spectrum market or drilling control wells in an
offshore oil patch. Furthermore, many other real-world auc-
tions are inherently separable (e.g., sealed-bid). We make a
number of less unusual assumptions: independence, secrecy,
symmetry and non-volatility.

Our setting is a six-tuple: (N, f,Q,A, p, c). N is a set
of agents, each of whom has a valuation vi drawn from dis-
tribution f , which has support on the interval [v, v̄]. Q is
the set of possible introspections, from which each agent i
chooses one, qi ∈ Q; A is the set of possible signals the
agent can receive, according to conditional probability dis-

tribution p(ai|qi, vi); and c(qi, ai) is the cost of the signal
ai ∈ A. Since agents can choose not to deliberate, we as-
sume the existence of a special deliberation q∅ that costs
nothing and is uninformative. No agent (including the seller)
knows how any other agent deliberated. This model restricts
the model of Larson and Sandholm (2001b) to the case of
secrecy, non-volatility and separability. It is without loss of
generality with respect to a number of important features.
Proposition 1 This model is equivalent to one in which sep-
arability holds and agents can perform multiple introspec-
tions.
Proof Sketch. An agent has a choice of deliberations given
the results of previous introspections, yielding a tree struc-
ture (that can include restrictions on what sequences of in-
trospections are possible) with some nodes representing de-
liberation actions and others random signals from Nature.
When the game is separable we can construct new deliber-
ation actions that correspond to deliberation policies in the
original game, making multiple introspections unnecessary.

Proposition 2 This model is equivalent to one in which
agents can start off with useful information.

This can be achieved by adding costless deterministic or
stochastic introspections to the tree before any of an agent’s
action nodes.
Proposition 3 This model is equivalent to one in which the
cost of introspection depends on an agent’s true valuation.

In the latter setting an agent would condition his beliefs
on his observations of these costs, which should be part of
the signal. Thus, for every distinct signal, there is a known
cost.
Proposition 4 Risk neutral agents with residual uncertainty
should always bid as though their expected valuations were
their exact known valuations, as long as independence, se-
crecy and separability hold.
Proof. Having won the good, agent i would be in-
different between the good and a fixed transfer of
E[vi|ai, i wins auction]. However, when independence and
secrecy hold, the event of winning the auction is uninforma-
tive about vi (because all the seller knows about vi was re-
vealed by i). Thus the agent can bid as though vi = E[vi|ai],
once he decides not to perform any more deliberations.
From separability, the agent cannot bid before this point.



Figure 1: Induced valuation distribution of a deliberation

q∗ q∅
q∗ .25− c, .25− c, .25 .25− c, .25, .25
q∅ .25, .25− c, .25 0, 0, .5

Figure 2: Induced normal-form game for two bidders in a
second-price auction who have valuations of 0 or 1 with
equal probability. The third payoff is the seller’s revenue.

Because agents facing residual uncertainty bid as though
their signals informed them of an exact valuation, we can
define an induced valuation distribution: the valuation dis-
tribution an agent acts as though he had, given his delibera-
tion. The induced valuation distribution fq of deliberation q
is defined as

fq(v′i) =
∑

ai∈A p(ai|q)δ(E[vi|ai, q] = v′i),
where δ(e) is the Kronecker delta: δ(e) = 1 iff e is true and
δ(e) = 0 otherwise.

Second price auctions
In this section we find and characterize the equilibria of sec-
ond price auctions for some simple value distributions and
sets of possible introspections. We show cases where there
are two qualitatively different classes of equilibria having
different revenue and efficiency characteristics. Through-
out, we assume (for reasons of simplicity and tractability)
that agents are risk neutral and always follow the dominant
strategy of bidding their expected valuations truthfully (see
Proposition 4). This means that the second price auction is
trivially ex post efficient (for any set of deliberation strate-
gies), though not necessarily ex post perfect efficient.

We begin by the case of two bidders with valuations
equally likely to be either 0 or 1. (We will subsequently
scale up the number of bidders.) They can chose between a
perfect introspection qi = q∗ having fixed cost c or not in-
trospecting, qi = q∅. This yields the induced normal form
game given in Figure 2.

We will only consider the non-trivial values of
0 < c < 0.25: in the other cases information is either free
or prohibitively expensive. This game has a number of
noteworthy features: The value of information for deliber-
ation q∗ depends on the other agent’s deliberation action,
and equilibrium involves either randomization or asymme-
try. These two flavors of equilibria lead to very different
revenues. Under the asymmetric pure strategy equilibria, the
deliberation cost doesn’t affect bidding strategies or revenue.
Under a symmetric mixed strategy equilibrium (each bidder
introspecting with probability p = 1 − 4c), the probabil-
ity of introspection will vary continuously with costs, mean-
ing that revenue will vary with costs as well. Both agents
weakly prefer the pure strategy equilibria, which also max-

imize the social welfare, but face a coordination problem
to reach them. If they follow symmetric strategies, they will
sometimes miscoordinate and so expected social welfare de-
creases. By providing the agents with a correlated signal to
condition their deliberations on, the seller would enable the
agents to coordinate (i.e. correlated equilibrium). In this
particular case, this would also cause the seller’s revenue to
decrease, but that is an artifact of having so few bidders.

We can show that these two sets of equilibria also exist for
versions of this game involving larger numbers of agents.

Lemma 5 In every pure strategy equilibrium of this game
exactly min(n− 1, b− log2(c)c− 1) agents introspect while
the other agents bid their (uninformed) expected valuations.

Proof Sketch. Let k denote the number of agents that intro-
spect. We can write expressions for the expected utility of
any agent given k:

E[ui|k, qi = q∅] =
{

(1/2)(1/2)k k = n− 1
0 o.w.

, and

E[ui|k, qi = q∗] =
{

(1/2)k − c k = n
(1/2)(1/2)k − c o.w.

.

A set of equilibria exist with k agents introspecting iff:
E[ui|k, qi = q∅] ≥ E[ui|k + 1, qi = q∗], and
E[ui|k − 1, qi = q∅] ≤ E[ui|k, qi = q∗].

Solving this system of inequalities for k gives that min(n−
1, b− log2(c)c − 1) agents introspect.

Theorem 6 When introspection is costly, there are symmet-
ric settings where the second price auction has no symmetric
pure strategy Nash equilibrium.

This follows from Lemma 5 since there is no equilibria
for k = n or k = 0.

Lemma 7 This game has a symmetric mixed strategy where
every agent introspects with probability p.

Proof Sketch. Each agent’s expected utility under a sym-
metric mixed strategy profile where they each introspect
with probability p is∑n−1

j=0 B(j;n, p)(pE[ui|j + 1, q∗] + (1− p)E[ui|j, q∅]),
where B(k;n, p) is the binomial distribution. Since the
game is symmetric, it must have a symmetric Nash equi-
librium at some p∗, which much satisfy
E[ui|qi = q∗, p∗] = E[ui|qi = q∅, p∗] .

An analytic expression for the equilibrium can be found by
solving the system of equations for p given a particular n.

Theorem 8 In second price auctions with costly introspec-
tion, the pure strategy equilibria can yield different revenue
from the symmetric equilibria.

Proof Sketch. The seller’s expected revenue under the pure
strategy equilibria is:

E[revenue|k] =

 1− 2−k − k2−k k = n
1− 2−k − k2−k−1 k = n− 1
1− 2−k−1 − k2−k−1 o.w.

.

Under the symmetric (mixed) strategy equilibrium strategy
profile p, the seller’s expected revenue is:∑n

j=0 pj(1− p)(n− j)
(

n
j

)
E[revenue|k = j].

Under the equilibria above, these two quantities are not
equal.
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Figure 5: Exact tnduced normal form of the
two-bidder limited deliberation case. The
peaks (pure equilibria) do not fall on the
q1 = q2 line, so they are not symmetric.

Using these analytic expressions for equilibrium revenue,
we can compare the revenue of the different classes of Nash
equilibria as n varies. The qualitative revenue properties of
the equilibria are consistent with the intuition from two bid-
der example (see Figure ). For pure strategy equilibria, all
costs have the same revenue for low values of n. When n
becomes too large, adding more agents will have no effect
on the number of agents that introspect, causing the revenue
to plateau. Notably, this threshold only increases linearly
for exponential decreases in costs, so that this limit applies
to relatively small numbers of bidders, even when the cost
is orders of magnitude smaller than the agents’ valuations.
For mixed strategy equilibria, the revenue decreases contin-
uously as costs increase. As in the two-bidder case, symmet-
ric mixed strategy equilibria involve a probability of misco-
ordinating which increases with the number of agents. As n
gets large the probability of introspection will tend to 0, and
the expected revenue will tend to the uninformed expected
valuation (though in this case it does so extremely slowly).

Although the second price auction is always ex post effi-
cient, the equilibrium reached will affect the probability of
ex post perfect efficiency (the probability of actually max-
imizing social welfare). Mixed strategy equilibria tend to
have worse probabilities of ex post perfect efficiency (see
Figure 4) because of the risk of miscoordination.

The analytic expression for the probability of ex post per-
fect efficiency of pure strategy equilibria is

ep(k, n) = 1−
(

2−k
∑n−k−1

j=1 2k−n

(
n− k

j

)
j

n−k

)
.

The analytic expression for the probability of ex post per-
fect efficiency of mixed strategy equilibria is

em(p, n) =
∑n

k=0

(
n
k

)
pk(1− p)n−kep(k, n).

Now we consider a new problem: limited but free de-
liberations. Let agents have valuations drawn from a uni-
form distribution on the interval [0, 1]. Agents can per-
form one deliberation of the following type: for any value
on the interval [0, 1], they can discover (by a 1-bit signal)
whether their valuation is above or below it. Since the ac-
tion space of deliberations is continuous (and purely cooper-
ative, though this is a coincidence due to n = 2), we graph
the (continuous) induced normal form in Figure 5. Again,

the only pure strategy equilibria—[q1 = 1/3, q2 = 2/3] and
[q1 = 2/3, q2 = 1/3]—are asymmetric, even though delib-
erations are no longer costly. This finding mirrors those of
Blumrosen and Nisan (2002), that agents benefit from asym-
metry when severe limitations apply (though in this case,
the asymmetric meaning of the 1-bit signal is chosen by the
bidder rather than by the mechanism or proxy). The agents
could again randomize across these two equilibria, though
again this would cause them to lose expected utility through
miscoordination. By ordering the bidders by weakly in-
creasing qi, we can write a expression for the expected utility
of any number of agents under any pure strategy profile (see
Figure 6).

Revenue relationships and bounds
This section contains theoretical results: we will show a lim-
ited application of revenue equivalence, an upper bound on
the revenue of separable auctions with costly deliberation
and an impossibility result.
Theorem 9 In all symmetric, separable IPV settings where
for every deliberation q the induced valuation distribution
fq is differentiable on the interval [v, v̄], all ex post efficient
auctions are revenue equivalent under symmetric equilibria.
Proof. Any convex combination of the induced valuations
will itself be differentiable on the interval [v, v̄]. If all agents
play the same mixed deliberation strategy s, they will all
have the same induced valuation distribution, fs. Fixing this
deliberation strategy profile, the problem of how to bid is
strategically equivalent to how to bid in the same auction if
agents had perfectly-known valuations drawn from distribu-
tion fs. Since the problems are equivalent, the equilibria of
the bidding subgame will be the same and revenue equiva-
lence will apply to any efficient auction for a fixed fs. Since
agents get the same expected utility from s regardless of the
efficient auction used, the same deliberation strategies will
be equilibria for all efficient auctions.

We can also show an extremely general (though loose)
revenue bound, which applies to all separable auction set-
tings and all allocation rules.
Theorem 10 In any ex ante individually-rational, separa-
ble auction, the expected revenue is bounded from above by
v̄−

∑
iE[ci] whereE[ci] is i’s expected cost of deliberation.
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E[ui|q1..n] =
1
2

i−1∑
j=1

(qi − qj)(1− qi)(1− qj)

(
n∏

k=i+1

qk

) i−1∏
k=j+1

qk

 +

∏
k 6=i

qk

{ (1− qi)(1 + qi) + q2
i − qn−1 i = n

(1− qi)(1 + qi − qn) o.w.

 .

Figure 6: The expected utility of agent i in the continuous case

Corollary 10 No budget-balanced, individually-rational,
separable mechanism can have a dominant strategy which
involves an unbounded number of agents performing costly
deliberations.
Proof. There must exist some n where nc > v̄, where c is
the cost of the cheapest deliberation. If more than n agents
are performing a deliberation with cost ≥ c, then the seller’s
expected revenue becomes negative.
Theorem 11 In ex post efficient, separable auctions with in-
dependent private values, the maximum value of information
for any deliberation q falls off exponentially in the number
of agents performing it (denoted by k).
Proof. Suppose we only allowed agents who performed
the deliberation to bid in the auction. For any signal
ai, i’s probability of receiving the good is proportional to
F k−1

q (E[vi|ai]), where Fq(v) is the cumulative induced val-
uation distribution of q. Hence, his expected surplus (and
the value of information for deliberation q) must fall off ex-
ponentially in k. Allowing agents to bid without performing
deliberation q weakly decreases the expected utility of q (by
reducing the probability of receiving the good and increas-
ing the expected payment) and weakly increases the value of
not performing q.

Conclusion
We have expanded on previous work which shows that the
problem of how to deliberate prior to bidding adds a sig-
nificant extra layer of strategic complexity, by demonstrat-
ing that limited and costly deliberation can impose a coor-
dination problem on those agents. We have shown that the
chance of miscoordination has an impact on revenue and on
the probability of efficiency. Also, we have shown that the
issue is present even when the cost of deliberation is small.
Future work on this problem could relaxing assumptions
about distribution, privacy and separability. In particular,
it might be useful to formally model the costs to the seller

(and other bidders) of waiting for slow deliberations, allow-
ing a continuous trade-off of the speed of separable auctions
against the lower deliberation costs and higher revenue of
inseparable auctions. Work could also be done to character-
ize cases deliberation acts both as a source of information
and as a randomizing device.
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Figure 6: The expected utility of agent i in the continuous case

Proof. Let γi(s) be the marginal probability of i receiving
the good given strategy profile s. Let ti(s) be i’s expected
transfer to the seller given s.

E[ui|s] = γi(s)E[vi|s, i wins]− ti(s)− E[ci|si]
ti(s) ≤ (γi(s)v̄ − E[ci|si])∑

i∈N

t(si) ≤
∑
i∈N

(γi(s)v̄ − E[ci|si])

E[revenue|s] ≤ v̄ −
∑

i

E[ci|si]

Although previous work has already shown that Vickrey
auctions don’t necessarily have dominant strategies in the
case where deliberations are costly, this bound allows us to
generalize that finding into a broader impossibility result.

Corollary 11 No budget-balanced, individually-rational,
separable mechanism can have a dominant strategy that in-
volves an unbounded number of agents performing costly
deliberations.

Proof. There must exist some n where nc > v̄, where c is
the cost of the cheapest deliberation. If more than n agents
perform a deliberation with cost ≥ c, then the seller’s ex-
pected revenue becomes negative.

Theorem 12 In ex post efficient, separable auctions with in-
dependent secret values, the maximum value of information
for any deliberation q falls off exponentially in the number
of agents performing it (denoted by k).

Proof. Suppose we only allowed agents who performed de-
liberation q to bid. For any signal ai, i’s probability of re-
ceiving the good is proportional to F k−1

q (E[vi|ai]), where
Fq(v) is the cumulative induced valuation distribution of q.
Hence, i’s expected surplus (and the value of information)
must fall off exponentially in k. Allowing agents to bid with-
out performing deliberation q weakly decreases the expected
utility of q (by reducing the probability of receiving the good
and increasing the expected payment) and weakly increases
the value of not performing q.

Conclusion
We have expanded on previous work that shows that the
problem of how to deliberate prior to bidding adds a sig-
nificant extra layer of strategic complexity to auctions. We
showed that limited and costly deliberation can impose a co-
ordination problem on bidders, that the chance of miscoordi-
nation has an impact on revenue and the probability of effi-
ciency, and that these issues are present even when delibera-
tion costs are small relative to valuations. Future work could
relax assumptions about distribution, secrecy and separabil-
ity. For example, a model could describe the costs to the
seller (and other bidders) of waiting for slow deliberations,
allowing a continuous trade-off of the speed of sealed auc-
tions against the lower deliberation costs and higher revenue
of staged auctions.
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