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Abstract

Intuitively, one might expect that a seller’s revenue from an
auction weakly increases as the number of bidders grows,
as this increases competition. However, it is known that
for combinatorial auctions that use the VCG mechanism, a
seller can sometimes increase revenue by dropping bidders.
In this paper we investigate the extent to which this prob-
lem can occur under other dominant-strategy combinatorial
auction mechanisms. Our main result is that such failures of
“revenue monotonicity” are not limited to mechanisms that
achieve efficient allocations. Instead, they can occur under
any dominant-strategy direct mechanism that sets prices us-
ing critical values, and that always chooses an allocation that
cannot be augmented to make some bidder better off, while
making none worse off.

Introduction
Combinatorial auctions have received considerable attention
in AI, as they constitute a broad and flexible framework for
resource allocation among self-interested agents with com-
plex valuations (Cramton, Shoham, & Steinberg 2006). One
important property for an auction mechanism is that it is a
dominant strategy for selfish bidders to truthfully reveal their
private information to the mechanism. Therefore, there is
quite a lot of work in the literature concerning the design
of truthful mechanisms for combinatorial auctions (Vickrey
1961; Clarke 1971; Groves 1973; Mu’alem & Nisan 2002;
Nisan & Ronen 2000; Lehmann, O’Callaghan, & Shoham
2002; Bartal, Gonen, & Nisan 2003). Yokoo et al. (2006;
2001; 2004) studied the design of truthful mechanisms even
if bidders are capable of submitting multiple bids using
pseudonyms.

Another important class of properties concerns an auc-
tion’s revenue. Goldberg & Hartline (2003) studied the de-
sign of an auction that achieves a constant fraction of the
optimal revenue even on worst case inputs in the unlim-
ited supply (digital good) setting, and Ronen (2001) looked
at the design of a multi-unit auction that is polytime and
approximately optimal on expectation. Aggrawal & Hart-
line (2006) considered the design of auctions that obtain a
constant fraction of the optimal profit with application to
sponsored search, and Blum & Hartline (2005) applied sim-
ilar ideas to an online setting where bidders arrive sequen-
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tially. Monderer & Tennenholtz (2005) gave an upper bound
on the expected revenue from multi-object auctions with
risk-averse bidders, and showed that under some additional
assumptions VCG is asymptotically optimal as the num-
ber of bidders grows. Likhodedov and Sandholm (2005a;
2005b) gave algorithmic methods for finding approximately
optimal combinatorial auctions from the (VCG-like) family
of affine-maximizers.

The VCG mechanism (Vickrey 1961; Clarke 1971;
Groves 1973) has gained substantial attention because it of-
fers dominant strategies to the bidders, allocates goods ef-
ficiently when bidders follow their dominant strategies, and
under reasonable assumptions can also guarantee other de-
sirable properties such as individual rationality and weak
budget balance. However, despite these strong arguments
in its favor, VCG also has some serious drawbacks (see,
e.g., Ausubel & Milgrom (2006)). To name a few, bid-
ders must reveal all their private information; VCG exhibits
counter-intuitive or undesirable behavior when bidders col-
lude, submit pseudonymous bids, or drop out; and in some
cases VCG has poor revenue properties.

In this paper we will consider the last of these
drawbacks—that a seller’s revenue can go down when bid-
ders are added to an auction, contrary to the intuition that
having more bidders should increase competition. Follow-
ing an example due to Ausubel & Milgrom (2006), consider
an auction with three bidders and two goods for sale. Sup-
pose that bidder 2 wants both goods for the price of $2 bil-
lion whereas bidder 1 and bidder 3 are willing to pay $2
billion for the first and the second good respectively. The
VCG mechanism awards the goods to bidders 1 and 3 for
the price of zero, yielding the seller zero revenue. However,
in the absence of either bidder 1 or bidder 3, the revenue of
the auction would be $2 billion.

We say that an auction mechanism is revenue monotonic
if the seller’s revenue is guaranteed to weakly decrease as
bidders are dropped. (We will give a formal definition later.)
We have just seen that VCG does not have this property. In
this paper we investigate the extent to which other dominant
strategy truthful combinatorial auction mechanisms satisfy
revenue monotonicity. Our main result states roughly that
any such mechanism, under some traditional assumptions
and the further assumption of maximality—that the mecha-
nism always chooses an allocation that cannot be augmented
to make some bidder better off, while making none worse off



—is not revenue monotonic.

Preliminaries
Let N = {1, 2, . . . , n} be the universal set of n bidders—
all the potential bidders who exist in the world. Let G be a
set of m goods for sale. The valuation of a bidder i ∈ N
is vi : 2G → R+, a function mapping subsets of goods
to the nonnegative reals. Let v = (v1, . . . , vn) denote the
vector of all bidders’ valuations. We assume free disposal
(vi(s) ≥ vi(s′) : ∀s ⊇ s′) and normalization (vi(∅) =
0). Throughout, all vectors are n-dimensional; since some
potential bidders may not participate, we use the symbol ∅
in the vector as a placeholder for (e.g., the valuation of) each
non-participating bidder. If u is an n-dimensional vector,
then u−i always denotes (u1, . . . , ui−1, ∅, ui+1, . . . , un).

When revealing her valuation, a bidder may not tell the
truth. We denote the declared valuation of a participating
bidder i as v̂i. We let v̂ be the vector whose ith entry is v̂i if
bidder i participates, and is ∅ (a special placeholder symbol)
if bidder i does not participate. Note that if bidder j does not
participate, then v̂ = v̂−j . We do the same with the vector
of true valuations.

Definition 1 (CA Mechanism) A direct Combinatorial
Auction (CA) mechanism M with reserve prices (CA
mechanism) is a tuple (A,P, r,G,N) where

• r : 2G → R+ is a mapping from each s ⊆ G to a non-
negative real number, called the reserve price, such that
r(s) ≥ r(s′),∀s′ ⊆ s, and r(∅) = 0.

• A, the allocation scheme, maps each v̂ to an allocation
vector (a1(v̂), . . . , an(v̂)) of goods, where ∪iai(v̂) ⊆ G,
ai(v̂) ∩ aj(v̂) = ∅ if i 6= j, and ai(v̂) = ∅ if v̂i = ∅.

• P , the payment scheme, maps each v̂ to a vector
(p1(v̂), . . . , pn(v̂)), where pi(v̂) is the payment from bid-
der i to the auctioneer such that pi(v̂) = 0 if v̂i = ∅.
Also, for all i ∈ N, pi(v̂) ≥ r(ai(v̂)).

We refer to ai and pi as bidder i’s allocation and payment
functions. Whenever v̂ can be understood from the context,
we refer to ai(v̂) and pi(v̂) by ai and pi, respectively. If
v̂i(ai) > 0, we say that bidder i “wins”.

Reserve prices ensure that bundles will not be sold below
a certain price, and are set by the auctioneer independently
of the bidders’ valuations. Of course, we can recover an
auction without reserve prices as a special case where the
reserve price for each bundle is 0.

Defining a universal set of potential bidders N may seem
unusual. We do so for two reasons. First, because we intend
to study mechanisms’ performance as bidders are dropped
or added, we must ensure that mechanisms are defined for
subsets of the set of bidders. Second, to make our results
as strong as possible, we allow CA mechanisms to perform
differently based on which bidders participate. Thus, e.g.,
v̂ contains information about which potential bidders are
present and which are absent. Of course, mechanisms also
have the freedom to ignore the bidders’ identities, as most
widely-studied mechanisms do.

We now define a restricted class of valuations.

Definition 2 (Single-minded bidder, following Lehmann
et al. (2002)) Bidder i is single-minded if there exists a set

bi ⊆ G of goods such that vi(s) = vi > 0 if s ⊇ bi and
vi(s) = 0 otherwise.

We call 〈bi, vi〉 the true type for single-minded bidder i.
The type 〈bi, vi〉 can be inferred from the valuation function
vi, and vice versa, and so we use 〈bi, vi〉 and vi interchange-
ably when it is clear that the bidders are single-minded. Let
b = (b1, . . . , bn) and v = (v1, . . . , vn). Extending the nota-
tion used above to the single-minded case, 〈b, v〉 denotes a
vector of types for each bidder, 〈̂bi, v̂i〉 denotes the declared
type of a participating bidder i and 〈̂b, v̂〉 denotes a vector
consisting of declared types for each participating bidder
and ∅ symbols for each non-participating bidder. Observe
that we do not assume that the mechanism knows a single-
minded bidder’s desired bundle.
Definition 3 (DS truthful) A CA mechanism M is domi-
nant strategy (DS) truthful (or truthful) if and only if for any
fixed set of participating bidders, for any participating bid-
der i, it is a best response for i to declare her true valuation
regardless of the declarations of the other participating bid-
ders.

Participation says that bidders who do not win should pay
nothing to the auctioneer. Unlike the property of individual
rationality (IR), participation does not constrain payments
for bidders who win. IR is therefore a stronger condition
than participation but is implied (in mechanisms for single-
minded bidders) when participation and criticality (defined
below) are both assumed.
Definition 4 (Participation) CA mechanism M satisfies
participation if and only if pi = 0 for any bidder i for whom
v̂i(ai) = 0 (i.e. who does not win).

Intuitively, criticality says that any single-minded bidder
i (with declared desired bundle b̂i) wins if her bid on b̂i is
greater than a critical value that depends only on the other
bidders’ declarations and not on her own, and loses if her
bid is less. Furthermore, she has to make a payment equal to
that critical value if she wins.
Definition 5 (Criticality, following Lehmann et al. (2002))
CA mechanism M satisfies criticality if and only if: given
that participating bidders declare single-minded types, and
given any participating bidder i and the declarations (or
placeholders) for all the other bidders, b̂−i and v̂−i, for all
s ⊆ G there exists some finite critical value cvs,i(̂b−i, v̂−i),
such that when i’s declared type is 〈̂bi, v̂i〉 then

• if v̂i > cv
bbi,i

(̂b−i, v̂−i) then ai ⊇ b̂i and pi =

cv
bbi,i

(̂b−i, v̂−i) (i.e. i wins at least b̂i and pays exactly

cv
bbi,i

(̂b−i, v̂−i)), and

• if v̂i < cv
bbi,i

(̂b−i, v̂−i) then ai 6⊇ b̂i (i.e., i loses).

Note that the definition does not specify whether bidder
i wins or loses in the case when v̂i = cv

bbi,i
(̂b−i, v̂−i).

Also, the definition requires that the mechanism produces
the same critical values for a bidder, given the same dec-
larations for all the other bidders. For notational simplic-
ity, whenever b̂ is understood implicitly we drop it and write
cvi(v̂−i) instead of cv

bbi,i
(̂b−i, v̂−i).



The revenue of an auction mechanism is the sum over all
the payments made by the bidders to the auctioneer. Infor-
mally, an auction mechanism is revenue monotonic if, when
a bidder drops out, the auctioneer never collects more money
as a result.

Definition 6 (Revenue Monotonicity (RM)) CA mecha-
nism M is revenue monotonic (RM) if and only if for all v̂
in the equilibrium of the mechanism and for all bidders j,∑

i∈N
pi(v̂) ≥

∑
i∈N\{j}

pi(v̂−j).

Maximality states that a mechanism chooses an allocation
that cannot be augmented to make some bidder better off,
while making none worse off.

Definition 7 (Maximality) CA mechanism M satisfies
maximality if and only if, for all declarations v̂ = 〈b, v〉 in
which participating bidders declare single-minded values,
the following holds. Let N = {i ∈ N | ai(v̂) ⊇ b̂i} de-
note the set of winning bidders under the declaration v̂ and
let A = {∪b̂i|i ∈ N} denote the minimum set of allocated
items that yields the same set of winning bidders. Then there
does not exist any bidder i ∈ N and any bundle s ⊆ G \ A
for which s = b̂i and v̂i > r(s).

Maximality corresponds to the game-theoretic notion of
strong Pareto efficiency (see e.g., Osborne & Rubinstein;
Myerson (1994; 1997)): the mechanism chooses some al-
location that cannot be modified in a way that makes all
agents at least as happy as before and some agent strictly
happier. This is a much less restrictive condition than the
standard mechanism design notion of Pareto efficiency (see
e.g., Mas-Colell, D.Whinston, & R.Green (1995)): that the
mechanism selects an allocation that maximizes the sum of
the agents’ utilities. (Note that every Pareto efficient allo-
cation is maximal, but not vice versa.) To avoid confusion,
we have defined the term “maximality”, and will use “effi-
ciency” only in the latter sense. Finally, observe that Defini-
tion 7 does not require bidders to be single-minded; rather, it
only describes how the mechanism would behave if bidders
expressed single-minded types.

RM Failure Example
Ultimately, our goal in this paper will be to investigate
whether broad families of mechanisms satisfy revenue
monotonicity. Our example in the introduction already
showed that VCG does not satisfy this property. Before
moving on to our theoretical results, we show that another
widely-studied mechanism also fails RM, even though it
does not have an efficient allocation rule.

Lehmann, O’Callaghan, & Shoham (2002) introduced an
approximately efficient DS truthful direct CA mechanism
for single-minded bidders; we call this mechanism LOS.
Like VCG, LOS satisfies participation, maximality and crit-
icality. Let ppgi = vi/|bi|, bidder i’s declared price per
good. LOS ranks bids in a list L in decreasing order of
ppg, and then greedily allocates bids starting from the top
of L. Thus, each bidder i’s bid bi is granted if it does not
conflict with any previously allocated bids. If i’s bid is allo-
cated she is made to pay |bi| ∗ vinext/|binext| where inext

is the first bidder following i in L whose bid was denied but
would have been allocated if i’s bid were not present. Bid-
der i pays zero if she does not win or if there is no bidder
inext. This mechanism can accommodate reserve prices by
including them as bids placed by the seller.

Consider three bidders {1, 2, 3} and two goods {g1, g2}.
Let the true type of bidder 1, 2 and 3 be 〈{g1}, v1〉,
〈{g1, g2}, v2〉 and 〈{g2}, v3〉, respectively. Now consider
the following conditions on the bidders’ valuations: (1)
v1 > v3 > v2/2; (2) v2 > 0; (3) v1 > v2 > v3; (4)
v2 < 2v3. It is possible to assign values to the vi’s in a way
that satisfies all conditions: e.g., v1 = 5, v2 = 4 and v3 = 3.

We will now demonstrate that the auctioneer’s revenue
under LOS can be increased by dropping a bidder, any time
that the bidders and their valuations are as described above.
From condition 1, ppg1 > ppg3 > ppg2 and therefore bid-
ders 1 and 3 win. Each pays zero, so the total revenue is zero.
To see this, note that the next bidder in the list after bidder
1 whose bid conflicts with b1 is bidder 2. However, bidder
2 would not win even if bidder 1 were not present, since
b2 also conflicts with b3. Therefore bidder 1 pays zero. The
same is true for bidder 3, and thus she also pays zero. There-
fore the total revenue is zero. By dropping bidder 1, bidder 3
wins and would be made to pay ppg2 = v2/2. Since v2 > 0
(condition 2) bidder 3 would pay more than zero in this case
and so revenue monotonicity fails.

It turns out that under conditions 3 and 4, the auctioneer
would also gain revenue by dropping either bidder 1 or 3 un-
der VCG. We leave this to the reader to verify; the argument
is essentially the one given in the introduction.

Impossibility Theorem
In what follows we investigate whether there exists any
DS truthful mechanism that satisfies participation, criticality
and maximality and is revenue monotonic. We first prove a
useful lemma that roughly describes conditions under which
an increase in one single-minded bidder’s declared value for
a bundle weakly decreases another single-minded bidder’s
critical value.
Lemma 8 Let M be a A mechanism that satisfies criticality
and maximality. Let 〈̂b, v̂〉 be an arbitrary vector of declared
single-minded types for all participating bidders and place-
holders (∅) for non-participating bidders. Suppose that for
two participating bidders i and k, (1) b̂i ∩ b̂k = ∅ and (2)
∀j ∈ N \ {i, k}, b̂i ∩ b̂j 6= ∅ and b̂k ∩ b̂j 6= ∅. For all v̂∗

k

satisfying v̂k > v̂∗
k > r(̂bk),

cvi(v̂−i) ≤ cvi(v̂ ′
−i), (1)

where v̂∗ is obtained from v̂ by replacing v̂k by v̂∗
k .

Remark. In words, this lemma states that an increase (from
any value greater than r(bk)) in the declared value of bidder
k can only cause bidder i’s critical value to stay the same or
to decrease, assuming that the declared bundles of i and k do
not overlap, the declared bundles of all other bidders over-
lap with both i and k’s declared bundles, and other bidders’
declarations are fixed. The claim is illustrated in Figure 1.
Proof Assume for contradiction that Inequality (1) does not
hold and thus that cvi(v̂−i) > cvi(v̂∗

−i). Since the crit-
ical value for bidder i does not depend on her valuation,
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Figure 1: Illustration of Lemma 8.
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Figure 2: A high-level illustration of Theorem 9: Given
〈{g1}, v1〉, 〈{g1, g2}, v2〉 and 〈{g3}, v3〉—vi’s as con-
structed in the proof of the theorem—(a) bundle {g1} and
bundle {g2} win and the associated bidders (bidders 1 and
3) pay more than the reserve price, (b) bundle {g2} wins and
the associated bidder (bidder 3) pays more than the sum of
payments in part (a)

our assumption that cvi(v̂−i) > cvi(v̂∗
−i) is unaffected by

the value of v̂i. Let v̂i take an arbitrary value satisfying
cvi(v̂−i) > v̂i > cvi(v̂∗

−i). We begin by identifying some
conditions under which bidder k wins in Part 1, and then use
this result to derive our contradiction in Part 2.

Part 1: Since v̂i > cvi(v̂∗
−i), if bidder k had bid 〈̂bk, v̂∗

k 〉
then bidder i would have won (by criticality). By assump-
tions (1) and (2) above, bidder k is the only bidder whose
bundle does not overlap with b̂i; thus by maximality and
the fact that v̂∗

k > r(̂bk), bidder k would also win. By
criticality cvk(v̂∗

−k) ≤ v̂∗
k and since v̂∗

−k = v̂−k therefore
cvk(v̂−k) ≤ v̂∗

k .
Part 2: Since cvk(v̂−k) ≤ v̂∗

k , by the construction of
v̂∗

k we also have v̂k > cvk(v̂−k), and so bidder k wins (by
criticality). By assumptions (1) and (2) in the statement of
the lemma, bidder i is the only bidder whose bundle does
not overlap with b̂k. It follows from our definitions of a CA
mechanism and of criticality that cvi(v̂−i) ≥ r(̂bi). There-
fore, by construction, v̂i > r(̂bi) and so bidder i wins (by
maximality). Therefore, cvi(v̂−i) ≤ v̂i (by criticality), giv-
ing us our contradiction. 2

We can now prove our main theorem.

Theorem 9 Let M be a DS truthful direct CA mechanism
that satisfies participation, criticality, and maximality, and
for which |G| ≥ 2 and N ≥ 3. Then M is not revenue
monotonic.

Remark. A high-level illustration of our argument is given
in Figure 2. Also note that, according to the revelation prin-

(3) maximality;
construction

(2) criticality
(1)
Part 1 of
Lemma 8

Figure 3: Illustration of the proof of Theorem 9: Part 1

(6) criticality

(4) criticality (5) criticality

Figure 4: Illustration of the proof of Theorem 9: Part 2

ciple truthfulness is not a restrictive condition.

Proof Let G = {g1, g2} and let the set of participating bid-
ders be {1, 2, 3}. For notational simplicity we assume that
N = {1, 2, 3}, to avoid long vectors with many ∅ entries;
the following argument extends directly toN of any size and
any given three bidders. It also extends directly to larger sets
of goods (we can just construct valuations where the bidders
only value the first two goods as they do here).

Since M is DS truthful, assume that bidders bid truth-
fully. Let bidders 1, 2 and 3 value the bundles b1 = {g1},
b2 = {g1, g2} and b3 = {g2} respectively (single-minded
preferences). Define v∗

1 = r(b1) + ε′ and v∗
3 = r(b3) + ε′,

for some ε′ > 0. Pick an arbitrary value for v2 such that

v2 > cv2(∅, ∅, v∗
1 + v∗

3 + ε)

for some ε > 0. Then pick v1 and v3 such that

v1 > max{cv1(∅, v2, v∗
3 ), cv1(∅, v2, ∅), v∗

1 }, and

v3 > max{cv3(v∗
1 , v2, ∅), cv3(∅, v2, ∅), v∗

3 }.
From the construction of the vi’s we have that v1 > v∗

1
and v3 > v∗

3 . Then, from Lemma 8 we have

cv1(∅, v2, v3) ≤ cv1(∅, v2, v∗
3 ), and (2)

cv3(v1, v2, ∅) ≤ cv3(v∗
1 , v2, ∅). (3)

In Part 1 we determine the auction’s revenue when bidders
declare the constructed valuations; in Part 2 we show that the



revenue increases when bidder 1 (or, symmetrically, bidder
3) is dropped.

Part 1: Since v1 > cv1(∅, v2, v∗
3 ) (by construction), by

the same argument as in Part 1 of Lemma 8 we can conclude
that cv3(v1, v2, ∅) ≤ v∗

3 (see (1) in Figure 3). Symmetri-
cally, from v3 > cv3(v∗

1 , v2, ∅) we can also conclude that
cv1(∅, v2, v3) ≤ v∗

1 . From v1 > cv1(∅, v2, v∗
3 ) and by us-

ing Inequality (2), we can conclude that v1 > cv1(∅, v2, v3)
and therefore, by criticality, bidder 1 wins (see (2) in Fig-
ure 3). By construction bidder 3 places the only other bid
that does not conflict with b1, and v3 > r(b3). Then
by maximality, bidder 3 also wins (see (3) in Figure 3).
By participation, since bidder 2 loses she must pay zero.
Therefore the revenue of the auction, by criticality, is R =
cv1(∅, v2, v3) + cv3(v1, v2, ∅) ≤ v∗

1 + v∗
3 .

Part 2: If bidder 1 is not present, then only bidders 2
and 3 compete. Since b2 and b3 both include good g2, at
most one of the bidders can win. By construction, v2 >
cv2(∅, ∅, v∗

1 + v∗
3 + ε). Thus if bidder 3 were to bid

〈b3, v∗
1 + v∗

3 + ε〉 then bidder 2 would win (by criticality)
and so bidder 3 would lose. This tells us (again by critical-
ity) that cv3(∅, v2, ∅) ≥ v∗

1 + v∗
3 + ε (see (4) in Figure 4).

Since v3 > cv3(∅, v2, ∅), by criticality, bidder 3 wins (see
(5) in Figure 4) and pays at least v∗

1 +v∗
3 +ε (see (6) in Fig-

ure 4). The revenue of this auction is R−1 = cv3(∅, v2, ∅),
since again by participation bidder 2 pays zero. Therefore,
R−1 = cv3(∅, v2, ∅) ≥ v∗

1 + v∗
3 + ε > v∗

1 + v∗
3 ≥ R.

Therefore M is not revenue monotonic. 2

We could also have obtained the same impossibility re-
sults as in Theorem 9 if we had defined revenue monotonic-
ity over the set of goods instead of over the set of bidders.
However, one might consider this result less surprising, as
it may seem intuitive that adding goods to an auction could
reduce the level of competition between the bidders.

Corollary 10 Let M be a DS truthful CA mechanism that
satisfies participation, criticality, and maximality, and for
which |G| ≥ 3 and N ≥ 3. Then M is not “revenue mono-
tonic on the set of goods”: dropping a good may increase
the revenue.

Proof The claim follows directly from the proof of Theo-
rem 9 with the following modifications: (i) add an extra
good g3 to bidder 1’s bundle b1, and (ii) instead of drop-
ping bidder 1 in Part 2, drop g3—this means that bidder 1’s
valuation for all available bundles will be 0. 2

One might have imagined that maximality would in-
crease the revenue of auction mechanisms by not “leaving
money on the table,” augmenting allocations to award avail-
able goods to the bidders who value them. Instead, we
have shown above that any DS truthful combinatorial auc-
tion mechanism that satisfies maximality—along with some
other, very standard conditions—can sometimes collect no
more than reserve prices despite competition between bid-
ders. Specifically, given the constructed valuations, bidder
2’s losing bid has no effect on the prices paid by winning
bidders 1 and 3, who also offer each other no competition,
as they bid on separate bundles. Thus bidders 1 and 3 each
pay an amount arbitrarily close to a reserve price. On the
other hand, when bidder 1 (or good g3) is dropped then bid-
ders 2 and 3 do compete. Although bidder 3 still wins, she

pays more than before and, given the constructed valuations,
more than the sum of the reserve prices for b1 and b3.

Observe that, given the constructed valuations, the mech-
anism can gain arbitrarily higher revenue in the two-bidder
case than in the three-bidder case, since ε and ε′ can be set to
be arbitrarily large and arbitrarily small, respectively. In the
three-bidder case the mechanism may generate almost the
lowest possible revenue (the sum of the reserve prices) as ε′

can set to be close to zero. Note also that although we have
defined the maximality and criticality properties by describ-
ing a mechanism’s behavior given single-minded bids, our
main theorem covers any mechanism under which single-
minded bidders could participate, and for which maximality
and criticality are guaranteed for such bidders.

Pseudonymous Bidding
Pseudonymous (false-name) bidding has been studied ex-
tensively, e.g. (Yokoo 2006; Yokoo, Sakurai, & Matsubara
2001; 2004). This work is concerned with auctions in which
a bidder may submit multiple bids using pseudonyms. An
auction mechanism is said to be pseudonymous-bid-proof
if truth-telling without using false-name bids is a dominant
strategy for each bidder. Yokoo et al. (2001) proved that
there does not exist any combinatorial auction mechanism
that is pseudonymous-bid-proof and efficient. Observe that
this is a somewhat narrow result, as only Groves mecha-
nisms (e.g., VCG) are both DS truthful and efficient (Green
& Laffont 1977).

There is a connection between pseudonymous-bid-
proofness and revenue monotonicity. From the seller’s per-
spective, pseudonymous bidding is the same as having more
bidders in the auction. If an auction is not revenue mono-
tonic, more bidders can mean less revenue. Our results
are therefore relevant to research on pseudonymous bidding.
Note that, for technical reasons we would not be able to use
the same form of the set up for false-name bidding. (E.g. we
have assumed that mechanisms know bidders’ identities.) If
we make appropriate changes, then we can prove the fol-
lowing corollary which generalizes Yokoo, Sakurai, & Mat-
subara’s (2001) result by replacing their requirement of effi-
ciency by the weaker criterion of maximality. Note that, all
efficient mechanisms are maximal, but others, e.g., the LOS
mechanism (Lehmann, O’Callaghan, & Shoham 2002), are
inefficient but still maximal.

Corollary 11 Let M be a DS truthful CA mechanism which
satisfies participation, criticality, and maximality, and for
which |G| ≥ 2 and |N| ≥ 3. Then M is not pseudonymous-
bid-proof.

Proof Given the valuations constructed in the proof of The-
orem 9, bidder 3 gains by pseudonymously bidding also as
bidder 1, and so truthfulness is not a dominant strategy for
bidder 3. 2

Mechanisms that Satisfy RM
We have shown that there is no RM and DS truthful mech-
anism that satisfies participation, criticality and maximality.
What DS truthful CA mechanisms are revenue monotonic?
We do not have a complete characterization, but we can give
some examples.



Fixed-price mechanisms. A mechanism is RM and DS
truthful if it charges bidders a fixed-price and uses some ar-
bitrary allocation scheme that awards each good to a bidder
who bids at or above the fixed price. This is the mechanism
used by supermarkets. In a CA setting, a possible alloca-
tion scheme is to randomly decide whether a bid at or above
the reserve price should be granted or denied; another is to
have bidders listed in a fixed order and to sell each good to
the first bidder who bids at or above the fixed price. Both
of these mechanisms are clearly revenue monotonic since
dropping a bidder cannot increase revenue; however, they
both fail criticality.

Set protocol (see e.g. (Yokoo 2006; Holzman et al.
2004)). The set protocol is a simple mechanism that of-
fers all goods as one indivisible bundle and uses the sec-
ond price sealed-bid auction to determine the winner and
payment. The critical value for each bidder i is the highest
bid among the rest of the bidders. The set protocol is DS
truthful and satisfies participation and criticality. It is also
revenue monotonic since dropping a bidder can not cause
the second-price bid to increase. Note, however, that the set
protocol does not satisfy maximality; because the winning
bidder may be given goods that she does not value, even if
there exists another bidder who values them and bids above
the reserve price.

Leveled Division Set (LDS) protocol (Yokoo 2006). The
LDS protocol can be seen as an extension to the set proto-
col that allows goods to be sold to more than one bidder.
The mechanism determines a leveled set where each level is
consist of a set of possible ways for dividing goods among
different bidders, under some conditions. The LDS protocol
then utilizes pre-defined reserve prices and chooses a level,
according to the declared valuations, within which it uses
VCG to determine the winners and payments. The LDS pro-
tocol is DS truthful and RM. However, for the same reason
as the set protocol, LDS does not satisfy maximality.

Conclusions and Future Work
In this work, we investigated whether there is any DS truth-
ful mechanism that does not exclude single-minded bidders
and satisfies participation, criticality and maximality and is
revenue monotonic. We showed that no such mechanism ex-
ists; as corollaries, we were able to show similar results con-
cerning pseudonymous-bid-proof mechanisms and mecha-
nisms that yield weakly decreasing revenue when goods are
dropped. In future work, we are interested in investigating
the probability that such RM failures would occur in practi-
cal auctions. In a similar vein, it is also interesting to look
for an auction which is optimal with respect to the above
properties: in other words, what DS truthful mechanism has
all the properties except RM and has the minimum proba-
bility to violate revenue monotonicity? Finally, we aim to
understand sufficient conditions that are reasonable for both
bidders and sellers under which DS truthful mechanisms are
guaranteed to be revenue monotonic.
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