
Computing Pure Nash Equilibria in Symmetric Action Graph Games

Albert Xin Jiang Kevin Leyton-Brown
Department of Computer Science
University of British Columbia
{jiang;kevinlb}@cs.ubc.ca

Abstract
We analyze the problem of computing pure Nash equilibria
in action graph games (AGGs), which are a compact game-
theoretic representation. While the problem is NP-complete
in general, for certain classes of AGGs there exist polyno-
mial time algorithms. We propose a dynamic-programming
approach that constructs equilibria of the game from equi-
libria of restricted games played on subgraphs of the action
graph. In particular, if the game is symmetric and the action
graph has bounded treewidth, our algorithm determines the
existence of pure Nash equilibrium in polynomial time.

Introduction
Game-theoretic models have recently been very influential
in the computer science community. Most of the game the-
oretic literature presumes that simultaneous-action games
will be represented in normal form—i.e., that the game’s
payoff function is a matrix with one entry for each player’s
payoff under each combination of all players’ actions. This
is problematic because quite often games of interest have a
large number of players and a large set of action choices,
and the size of the normal form representation grows ex-
ponentially with the number of players. Fortunately, most
large games of any practical interest have highly structured
payoff functions. For example, if there exist strict pay-
off independencies between players, a game can be more
compactly written as a graphical game (Kearns, Littman, &
Singh 2001). Such a game can be visualized using a graph
whose vertices correspond to agents, and whose edges corre-
spond to dependencies between agents’ utility functions. If
a game’s structure takes the form of anonymity or context-
specific payoff independencies, it can be more compactly
represented as an action graph game (AGG) (Bhat & Leyton-
Brown 2004; Jiang & Leyton-Brown 2006). An AGG can
be visualized using a graph whose vertices correspond to ac-
tions, and whose edges correspond to dependencies between
the utilities of agents who take these actions. AGGs are fully
expressive, i.e. they can represent arbitrary games. AGGs
are always at least as compact as graphical games, and can
be exponentially more compact for certain structured games.

Nash equilibrium is the most important solution concept
in game theory. Such equilibria come in two varieties. When

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

we allow mixed-strategy equilibria, we know that every fi-
nite game has a Nash equilibrium (Nash 1951), and that
computing such an equilibrium is PPAD-complete (Chen &
Deng 2006). Pure-strategy Nash equilibria are not guar-
anteed to exist, although they are often more interesting
than their mixed-strategy cousins; for example, they can be
easier to implement in practice. Various work has consid-
ered approaches for finding such equilibria under various
game representations (Gottlob, Greco, & Scarcello 2003;
Daskalakis & Papadimitriou 2006; Ieong et al. 2005;
Brandt, Fischer, & Holzer 2007).

In this paper, we analyze the problem of finding pure Nash
equilibria in AGGs. While the problem is NP-compete in
general, we identify classes of AGGs for which this prob-
lem is tractable. We propose a dynamic programming ap-
proach that uses tree decomposition techniques to break an
action graph into subgraphs, and constructs equilibria of the
game from equilibria of restricted games on the subgraphs.
In particular, we show that if the AGG is symmetric and
the action graph has bounded treewidth, our algorithm de-
termines the existence of pure equilibria in polynomial time.
Though space does not permit us to provide the results here,
our result can also be extended beyond symmetric games.

Related Work
Gottlob, Greco, & Scarcello (2003) and Daskalakis & Pa-
padimitriou (2006) both analyzed the problem of finding
pure equilibria in graphical games, and proposed dynamic
programming algorithms based on hypertree decomposi-
tion and tree decomposition, respectively. Our dynamic
programming approach for AGGs similarly relies on tree
decomposition, and indeed simplifies to the equivalent of
Daskalakis & Papadimitriou’s algorithm on graphical games
represented as AGGs. However, on general AGGs we face
an additional difficulty, because an agent can deviate from
playing an action in one part of the action graph to another.

Ieong et al. (2005) proposed a dynamic programming al-
gorithm for finding pure equilibria in singleton congestion
games. These games can be represented as AGGs with only
self edges. Ieong et al.’s algorithm builds equilibria from
restricted games played on subsets of actions. Our approach
deals with agents’ deviations (the problem mentioned above)
in a way similar to Ieong et al., using the worst current utility
and best entrant utility of restricted games.

Action Graph Games
Definition 1. An action graph game (AGG) is a tuple
〈N,S, (S, E), u〉, where

• N = {1, . . . , n} is the set of agents,
• S =

∏
i∈N Si is the set of action profiles, where

∏
is the

Cartesian product and Si is agent i’s set of actions. We
denote by si ∈ Si one of agent i’s actions, and s ∈ S an
action profile.

• Agents’ action sets may partially or completely overlap.
S is the set of distinct actions. In other words, Si ⊆ S for
all i, and S =

⋃
i∈N Si.

• G ≡ (S, E) is the action graph, a directed graph with
S as the set of vertices. We say s′ is a neighbor of s if
(s′, s) ∈ E. Let ν(s) denote the set of neighbors of s,
i.e. ν(s) ≡ {s′ ∈ S|(s′, s) ∈ E}. Let ∆ denote the set
of configurations of agents over actions. A configuration
D ∈ ∆ is an |S|-tuple of integers (D[s])s∈S , where D[s]
specifies the number of agents that chose action s ∈ S.
For a subset of actions X ⊂ S, let D[X] denote the re-
striction of D over X , i.e. D[X] = (D[s])s∈X . Similarly,
let ∆[X] denote the set of restricted configurations over
X .

• u is a |S|-tuple (us)s∈S , where each us : ∆[ν(s)] 7→ R
is the utility function for s. Semantically, us(D[ν(s)])
is the utility of an agent who chose action s, when the
configuration over ν(s) is D[ν(s)].

Let U be the set of distinct utilities of the game Γ. For
notational convenience, let ui(s) denote agent i’s utility un-
der action profile s, i.e. ui(s) = usi(D[ν(si)]) where
∀x ∈ ν(si), D[x] = |{j ∈ N |sj = x}|. Let s−i denote
the tuple of actions for agents other than i.

Intuitively, AGGs capture two types of structure in games:

1. Shared actions capture the game’s anonymity structure:
agent i’s utility depends only on her action si and the con-
figuration (i.e. number of players that play each action),
but not on the identities of the players.

2. The (lack of) edges between nodes in the action graph ex-
presses context-specific independencies of utilities of the
game: ∀i ∈ N , if i chose action s ∈ S, then i’s utility
depends only on the configuration over the neighborhood
of s. In other words, the configuration over actions not in
ν(s) does not affect i’s utility.

Definition 2. An AGG is symmetric if all players have iden-
tical action sets, i.e. if Si = S for all i.

Note that in a symmetric AGG, all agents have the same
utility functions, i.e., a symmetric AGG represents a sym-
metric game, in which all agents are identical.

Definition 3. An AGG is k-symmetric if there exists a parti-
tion {N1, . . . , Nk} of N such that for all l ∈ {1, . . . , k}, for
all i, j ∈ Nl, Si = Sj .

Intuitively, k-symmetric AGGs represent games having k
classes of agents; agents within each class are identical.

The following are several properties of the AGG represen-
tation. Due to space constraints we omit the proofs of these
facts and refer the readers to (Jiang & Leyton-Brown 2006).

Figure 1: Action graph for the road game with m = 8.

• AGGs are fully expressive: any game can be represented
as an AGG.

• Symmetric AGGs can represent arbitrary symmetric
games.

• As with other game representations, the size of an AGG
representation is dominated by the size of its utility func-
tions. For all AGGs Γ, let ||Γ|| ≡

∑
s∈S |∆[ν(s)]| de-

note the number of utility values the representation stores,
then ||Γ|| ≤ |S|

(
n−1+I

I
)
≡ |S| (n−1+I)!

(n−1)!I! , where I ≡
maxs∈S |ν(s)| is the maximum in-degree of the action
graph G. If I is bounded by a constant, ||Γ|| = O(|S|nI).

• Any graphical game can be encoded as an AGG in which
all action sets are disjoint. The transformation takes poly-
nomial time and the resulting AGG has the same space
complexity as the graphical game. The converse is not
true: for certain AGGs, the equivalent graphical games
are exponentially larger. In particular, for any symmetric
AGG with at least one edge in its action graph, the equiv-
alent graphical game is a clique and its size is no better
than the normal form.

Example 1. Suppose each of n agents is interested in open-
ing a business, and can choose to locate in any block along
either side of a road of length m. Multiple agents can choose
the same block. Agent i’s payoff depends on the number of
agents who chose the same block as he did, as well as the
numbers of agents who chose each of the adjacent blocks of
land. This game can be compactly represented as a symmet-
ric AGG, whose action graph is illustrated in Figure 1.

Notice that each node has at most four incoming edges,
regardless of the length of the road m. Thus for all m, The
AGG representation of a road game with length m stores
only O(|S|n4) = O(2mn4) payoffs. Also notice that any
pair of agents can potentially affect each other’s payoffs by
choosing adjacent locations. This means that the graphical
game representation of this game is a clique, and its space
complexity is the same as that of the normal form (exponen-
tial in n).

Complexity of Finding Pure Equilibria
An action profile s ∈ S is a pure Nash equilibrium of the
game Γ if for all i ∈ N , for all s′i ∈ Si, ui(si, s−i) ≥
ui(s′i, s−i).

Intuitively, in a pure Nash equilibrium no agent can prof-
itably deviate from her chosen action. An obvious algorithm
for finding pure equilibria of a game is to check every pos-
sible action profile. This algorithm runs in linear time in
the normal form representation of the game. However, since
AGGs can be exponentially more compact than the normal
form, the running time of this algorithm is worst-case expo-
nential in the size of the AGG. Indeed, the problem becomes
NP-complete when the input is an AGG.
Theorem 1. The problem of determining whether a pure
Nash equilibrium exists in an AGG is NP-complete.

Proof Sketch. It is straightforward to see that the problem is
in NP, because given a pure strategy profile it takes polyno-
mial time to verify whether it is a Nash equilibrium. NP-
hardness follows from the fact that any graphical game can
be transformed (in poly-time) to an equivalent AGG of the
same space complexity, and the fact that the problem of
determining the existence of pure equilibrium in graphical
games is NP-hard (Gottlob, Greco, & Scarcello 2003).

Indeed, the problem remains hard even if we restrict the
games to be symmetric. The proof1 (a reduction from 3SAT)
is omitted due to space constraints.

Theorem 2. The problem of determining whether a pure
Nash equilibrium exists in a symmetric AGG is NP-
complete, even when the in-degree of the action graph is at
most 3.

Now we look at classes of AGGs in which |S|, the number
of action nodes, is bounded by some constant. We show that
in this case, the problem of finding pure equilibria can be
solved in polynomial time. While this is a very restricted
class of AGGs, we will use the results of this subsection as
building blocks for our dynamic programming approach to
solve more complex AGGs.

We first look at symmetric AGGs. The following Lemma
allows us to consider only the configurations instead of all
the pure strategy profiles.

Lemma 3. Suppose Γ is a symmetric AGG. If s and s′ in-
duce the same configuration, then s is a pure equilibrium of
Γ iff s′ is a pure equilibrium of Γ.

We say a configuration D is a pure equilibrium of Γ if its
corresponding pure strategies are pure equilibria. Given a
configuration D, we can check whether it is a pure equilib-
rium in polynomial time.

Theorem 4. The problem of determining whether a pure
Nash equilibrium exists in a symmetric AGG with bounded
|S| is in P .

Proof. A polynomial algorithm is to check all configura-
tions. Since |S| is bounded, the number of configurations(
n+|S|−1
|S|−1

)
= O(n|S|−1) is polynomial.

This can be easily extended to k-symmetric AGGs.

Definition 5. Suppose Γ is a k-symmetric AGG with the
partition {N1, . . . , Nk} and the corresponding set of dis-
tinct action sets {S1, . . . , Sk}. Then given a pure strat-
egy profile s, its corresponding k-configuration is a tuple
(Dl)1≤l≤k where Dl is the configuration over Sl induced
by the players in Nl. In other words, for all s ∈ Sl,
Dl[s] = |{i ∈ Nl|si = s}|.

Just as configurations capture all relevant informa-
tion about pure strategy profiles in symmetric games, k-
configurations capture all relevant information about pure
strategy profiles in k-symmetric games. Thus we can de-
termine the existence of pure equilibrium by checking all

1The proof is based on unpublished personal communications
with Vincent Conitzer.

k-configurations. When k is bounded by a constant, there
are polynomial number of k-configurations.

Lemma 5. The problem of determining whether a pure Nash
equilibrium exists in a k-symmetric AGG with bounded |S|
and bounded k is in P .

Proof. A polynomial algorithm is to check all k-
configurations. Since |S| is bounded, for each l ∈
{1, . . . , k} the number of distinct Dl is

(|Nl|+|Sl|−1
|Sl|−1

)
=

O(|Nl||S
l|−1). Therefore the number of distinct k-

configurations is O(nk(|S|−1)), which is polynomial when
k is bounded. For each k-configuration, checking whether it
is a Nash equilibrium takes polynomial time. Therefore the
algorithm runs in polynomial time.

Now consider the full class of AGGs with bounded |S|.
Interestingly, our problem is remains easy to solve.

Theorem 6. The problem of determining whether a pure
Nash equilibrium exists in an arbitrary AGG with bounded
|S| is in P .

Proof. Any AGG Γ is k-symmetric by definition, where k
is the number of distinct action sets. Since Si ⊆ S for all i,
the number of distinct nonempty action sets is at most 2|S|−
2. Since |S| is bounded by a constant, there are a bounded
number of distinct action sets. Thus Γ is k-symmetric with
bounded k, and Lemma 5 applies.

Dynamic Programming
We now consider classes of AGGs in which |S| is not
bounded. Whereas enumerating the configurations works
well for AGGs with bounded |S|, this approach is less effec-
tive in the general case with unbounded |S|: in a symmet-
ric AGG, the number of configurations over S is

(
n+|S|−1
|S|−1

)
,

which is superpolynomial in ||Γ|| when I is bounded.
Our approach is to use dynamic programming to con-

struct pure equilibria of the game from pure equilibria of
games restricted to parts of the action graph. While the NP-
completeness results from the previous section imply that
our approach is unlikely to be tractable for all AGGs, we
identify classes of AGGs for which our approach does yield
a polynomial algorithm.

For a set of actions R ⊂ S, let GR be the action graph
G = (S, E) restricted to the action nodes R. Formally,
GR ≡ (R, {(s, t) ∈ E|s ∈ R, t ∈ R}).

For a set of actions X ⊂ S, define ν(X) ≡ {s ∈ S \
X|∃x ∈ X such that (s, x) ∈ E}: the set of actions not
in X that are neighbors of some action in X . Also define
ν(X) ≡ {x ∈ X|∃s ∈ S \X such that (x, s) ∈ E}, the set
of actions in X that are neighbors of some action not in X .
Let ρ(X) ≡ ν(X)∪ ν(X). Given a configuration D[X], let
#D[X] ≡

∑
x∈X D[x].

Given a pure strategy profile s = (s1, . . . , sn) and a set of
actions R ⊂ S, the restricted strategy profile s|R is a tuple
(N ′, sN ′) where N ′ = {i ∈ N |si ∈ R} is the set of players
that chose actions in R and sN ′ = (si)i∈N ′ is the tuple of
their actions.

Now we introduce the concept of a restricted game on
R ⊂ S, which intuitively is the game played by a subset
N ′ ⊆ N of players when we “restrict” them to the subgraph
GR, i.e. require them to choose their actions from R. Of
course, the utility functions of this restricted game are not
defined until we specify a configuration on ν(R).

Definition 6. Given an AGG Γ, a set of actions R ⊂ S, a
configuration D[ν(R)] and N ′ ⊆ N , we define the restricted
game Γ(N ′, R, D[ν(R)]) to be an AGG with the set N ′ of
players and with GR as the action graph. For each player
i ∈ N ′, her action set is S′

i = Si ∩ R. Each action s ∈ R
has the utility function us|D[ν(R)], which is the same as us

as defined in Γ except that the configuration of nodes outside
R is assigned by D[ν(R)]. Formally, Γ(N ′, R, D[ν(R)]) =〈
N ′,

∏
i∈N ′(Si ∩R), GR,

(
us|D[ν(R)]

)
s∈R

〉
.

It is easy to see that a pure equilibrium on Γ induces a
pure equilibrium on the game restricted to GR.

Lemma 7. Suppose s is a pure equilibrium of Γ, and its re-
stricted profile on R ⊂ S is s|R = (N ′, sN ′). Then sN ′ is a
pure equilibrium of the restricted game Γ(N ′, R, D[ν(R)]),
where D is the configuration induced by s.

We want to use equilibria of restricted games as building
blocks to construct equilibria of the entire game. Of course,
a restricted game on R ⊂ S is not well-defined until we
specify D[ν(R)]. Thus we define a partial solution, which
describes a restricted game as well as a pure equilibrium of
it, as follows.

Definition 7. For R ⊂ S, a partial solution on R is a re-
stricted strategy profile on R∪ ν(R), s|R∪ν(R), such that its
restriction on R, s|R = (N ′, sN ′), is a pure equilibrium of
the restricted game Γ(N ′, R, D[ν(R)]).

We say a partial solution s|R∪ν(R) can be extended if there
exists a pure strategy profile s∗ such that s∗ is a pure equi-
librium of Γ and s∗|R∪ν(R) = s|R∪ν(R).

In order to combine partial solutions to form a partial
solution on a larger subgraph, we need to make sure that
the result is a valid restricted strategy profile. We say two
partial solutions s′|X and s′′|Y are consistent if there ex-
ists a pure strategy profile s such that s|X = s′|X and
s|Y = s′′|Y . It is straightforward to see that two partial
solutions s′|X = (N ′, s′N ′) and s′′|Y = (N ′′, s′′N ′′) are
consistent iff for all i ∈ N ′ ∩N ′′, s′i = s′′i .

However, if we simply combine two consistent partial so-
lutions that describe equilibria of restricted games on two
disjoint sets X, Y ∈ S, the result would not necessarily in-
duce an equilibrium of the restricted game on X ∪ Y . This
is because an agent who was playing an action in X might
profitably deviate by playing an action in Y , and vice versa.

We could deal with this problem by keeping track of all
pure equilibria of each restricted game, and determine case-
by-case whether two equilibria can be combined (by check-
ing whether agents could profitably deviate from one re-
stricted game to the other). But as we combine the restricted
games to form larger restricted games and eventually the un-
restricted game on the entire action graph G, the number of
equilibria we would have to store could grow exponentially.

Perhaps we don’t need to keep track of all partial solu-
tions. Imagine we had a function ch that summarized them,
i.e. it mapped each partial solution to a characteristic from
a finite set C which is smaller than the set of partial solu-
tions. For this characteristic function to be useful, it need to
be equilibrium-preserving, defined as follows.

Definition 8. For X ⊂ S, a function ch() that maps
partial solutions to their characteristics is equilibrium-
preserving if for all pairs of partial solutions s|X , s′|X ,
if ch(s|X) = ch(s′|X) then (s|X can be extended) ⇔
(s′|X can be extended).

Intuitively, an equilibrium-preserving characteristic func-
tion ch() induces a partition of the set of partial solu-
tions into equivalence classes. All partial solutions with
the same characteristic behave the same way, so we only
need to consider the set of all distinct characteristics. For
X ⊂ S, we define AX ⊂ C to be the set of char-
acteristics of partial solutions on X . Formally, AX =
{ch(s|X∪ν(X)) | s|X∪ν(X) is a partial solution on X}.

Given such a function ch, a dynamic-programming algo-
rithm for determining the existence of pure equilibria of Γ
is:

1. Partition S into X = {X1, . . . , Xm} such that the size of
each Xi is bounded by a constant.

2. For each Xi ∈ X , compute AXi , the set of characteristics
of partial solutions on Xi.

3. While |X | ≥ 2:

(a) Take X, Y ∈ X . Remove them from X .
(b) Compute AX∪Y from AX and AY .
(c) Add X ∪ Y to X .

4. Now X has only one member, S.
5. Return TRUE iff AS is not empty.

Since a partial solution on S is by definition a pure equi-
librium of Γ, there exists a pure equilibrium of Γ if and only
if AS is not empty. For this algorithm to run in polynomial
time, the function ch() must satisfy the following properties:

Property 1: At all times during the algorithm, for all X ∈
X , the size of AX is polynomial. This is necessary since
all restricted strategy profiles could potentially be partial
solutions, and so AX could potentially be the set of all
possible characteristics for X .

Property 2: For each Xi of bounded size, AXi
can be com-

puted in polynomial time.
Property 3: AX∪Y can be computed from AX and AY in

polynomial time.

The NP-Completeness results from the previous section
imply that we will not find a ch() that satisfies the above for
general AGGs unless P=NP. Nevertheless, in the following
sections we show that for certain classes of AGGs there ex-
ist ch()’s that do satisfy the above properties, meaning that
our dynamic programming algorithm determines the exis-
tence of pure Nash equilibrium in polynomial time for those
classes of AGGs.

Symmetric AGGs
Now we focus on applying our dynamic programming ap-
proach to symmetric AGGs. Since in this case all players
have the same action set S, we can identify a symmetric
AGG by the tuple 〈n, G = (S, E), u〉. Similarly, given a
symmetric AGG Γ, X ⊂ S, a configuration D[ν(X)] and
n′ ≤ n, we define the restricted game Γ(n′, X,D[ν(X)]) =〈
n′, GX ,

(
ux|D[ν(X)]

)
x∈X

〉
. Lemma 3 tells us that we only

need to consider configurations instead of strategy profiles.
Likewise, for the subgraph restricted to X ⊂ S, instead
of restricted strategy profiles we only need to consider re-
stricted configurations D[X]. The following lemma is anal-
ogous to Lemma 7.

Lemma 8. If D∗ is a pure equilibrium of Γ, then
D∗[X] is a pure equilibrium of the restricted game
Γ(#D∗[X], X,D∗[ν(X)]).

We now adapt the relevant concepts introduced in the pre-
vious section to symmetric AGGs, so that we use configura-
tions instead of strategy profiles. A partial solution on X ⊆
S is a configuration D[X ∪ ν(X)] such that D[X] is a pure
equilibrium of the restricted game Γ(#D[X], X,D[ν(X)]).
The following Lemma shows that it is simple to check
whether D[X] and D′[Y] are consistent.

Lemma 9. Given X, Y ⊆ S, D[X] is consistent with D′[Y]
iff

1. for all s ∈ X ∩ Y , D[s] = D′[s], and
2. Let n′ = #D[X] + #D′[Y \X], then n′ ≤ n. Further-

more, if X ∪ Y = S then n′ = n.

For two configurations D[X], D′[Y] that are consistent
with each other, we define D[X] ∪D′[Y] to be the (unique)
configuration on X ∪ Y that is consistent with both D[X]
and D′[Y].

Recall that a partial solution on X can be combined with
a partial solution on Y to form a partial solution on X ∪ Y
if they are consistent, and if no player who plays an action
in X can profitably deviate to an action in Y and vice versa.

Definition 9. Given a restricted game Γ′ and an equilib-
rium D∗ of Γ′, the worst current utility WCU(D∗,Γ′) is the
utility of the worst-off player, or ∞ if Γ′ has 0 players. The
best entrance utility BEU(D∗,Γ′) is the best payoff a player
outside of Γ′ can get by playing an action in Γ′, assuming
the current players in Γ′ play D∗. If Γ′ already has all n
players, BEU(D∗,Γ′) = −∞.

We observe that since all agents in a symmetric game
are identical, to check whether agents could profitably de-
viate from one restricted game Γ′ currently in equilib-
rium D′ to another restricted game Γ′′ in equilibrium D′′,
we just need to check whether WCU(D′,Γ′) is greater
than BEU(D′′,Γ′′). In other words, WCU(D′,Γ′) and
BEU(D′,Γ′) can be used as sufficient statistics for checking
existence of profitable deviations out of and into restricted
game Γ′. This allows us to use the following characteristic
function.

Lemma 10. Consider the characteristic function ch that
maps a partial solution D[X∪ν(X)] to ch(D[X∪ν(X)]) =

(D[ρ(X)],#D[X], WCU(D[X],Γ′), BEU(D[X],Γ′))
where Γ′ = Γ(#D[X], X,D[ν(X)]). Then ch is
equilibrium-preserving.

Intuitively, we need #D[X] and D[ν(X)] to identify the
restricted game on X , so that we can solve the restricted
game in polynomial time when |X| is bounded (Theorem
4). We need D[ρ(X)] and #D[X] to check if the partial
solutions on X with this characteristic are consistent with
partial solutions on another subgraph. Finally we need WCU
and BEU to check whether agents can profitably deviate into
or out of the restricted game Γ′.

The following lemma shows how sets of characteristics
from two disjoint subsets of S can be combined together.

Lemma 11. Suppose X ′ and X ′′ are disjoint subsets of
S, and X ′ ∪ X ′′ = X . For all D[ρ(X)], B ≤ n,
and Uc, Ue ∈ U , (D[ρ(X)], B, Uc, Ue) ∈ AX iff there
exists some D′[ρ(X ′)], D′′[ρ(X ′′)], B′, B′′ ≤ B, and
U ′

c, U
′′
c , U ′

e, U
′′
e ∈ U such that

1. (D′[ρ(X ′)], B′, U ′
c, U

′
e) ∈ AX′ ,

2. (D′′[ρ(X ′′)], B′′, U ′′
c , U ′′

e) ∈ AX′′ ,
3. D′[ρ(X ′)] is consistent with D′′[ρ(X ′′)],
4. D[ρ(X)] is consistent with D′[ρ(X ′)] ∪D′′[ρ(X ′′)],
5. B = B′ + B′′,
6. Uc = min{U ′

c, U
′′
c }, and Ue = max{U ′

e, U
′′
e },

7. U ′
c ≥ U ′′

e , and U ′′
c ≥ U ′

e.

Let us now consider the size of AX . Since
WCU(D′,Γ′), BEU(D′,Γ′) ∈ U for all D′ and Γ′,
each has at most |U| ≤ ||Γ|| distinct values. Also
#D[X] ∈ {0, . . . , n} by definition. Furthermore, ρ(X) ⊆
X ∪ ν(X). So the number of distinct characteristics
(D[ρ(X)],#D[X], WCU(D[X],Γ′), BEU(D[X],Γ′)) can
be much smaller than the number of corresponding partial
solutions D[X∪ν(X)], especially if |ρ(X)| � |X∪ν(X)|.
However, as X gets larger ρ(X) could also grow. |ν(X)| is
|X|I in the worst case, so the number of possible configu-
rations over ν(X) is superpolynomial in ||Γ|| in the worst
case. Since AX could potentially include every distinct tu-
ple (D[ρ(X)], B, Uc, Ue), the size of AX is superpolyno-
mial in the worst case. Indeed, Theorem 2 showed that we
will not find a poly-time algorithm for general symmetric
AGGs unless P = NP. However, if the action graph G has
certain structure and we could combine the restricted games
in a way such that |ρ(X)| remains small as X grows, then
∀X , |AX | would remain polynomial in ||Γ||, and our algo-
rithm would run in polynomial time.

Action Graphs with Bounded Treewidth
One way to characterize this kind of structure is the concept
of treewidth, introduced by Robertson & Seymour (1986).

Given G = (S, E), define H(G) to be the hypergraph
(S, E) with E = {{s} ∪ ν(s)|s ∈ S}. In other words, for
each action s ∈ S, there is a hyperedge containing s and its
neighbors. Duplicate hyperedges are removed.

Let G′ be the primal graph of the hypergraph H(G). G′

is a undirected graph on the same set of vertices, and there
is an edge between two nodes if they are in some hyperedge
in H(G). G′ = (S, {{u, v}|∃h ∈ E such that u, v ∈ h}).

?>=<89:;A
**

oo // ?>=<89:;B
jjOO

��?>=<89:;E

		

oo // ?>=<89:;D

		

oo // ?>=<89:;C oo // ?>=<89:;F

		

oo // ?>=<89:;G

		

Figure 2: An action graph.

?>=<89:;A

@@
@@

@@
?>=<89:;B

@@
@@

@@

~~
~~

~~

?>=<89:;E ?>=<89:;D ?>=<89:;C ?>=<89:;F ?>=<89:;G

Figure 3: The primal graph.

X1={A,B,C}

X3={C,D,E} X2={B,C,D,F} X4={C,F,G}

Figure 4: Tree decomposition of Figure 3.

Thus for each s ∈ S, s and its neighbors in G form a clique
in G′. In the Bayes net literature G′ is also known as the
moral graph of G. For example, Figure 2 shows the action
graph G of a symmetric AGG. Its hypergraph H(G) has the
same set of vertices and the hyperedges {A,B}, {A,B,C},
{D,E}, {C,D,E}, {F,G}, {C,F,G}, and {B,C,D,E}.
Figure 3 shows G’s primal graph G′.

Definition 10. A tree decomposition of an undirected graph
G′ = (V,E) is a pair (X , T) with T = (I, F) a tree (where
I and F are the nodes and edges of the tree respectively),
and X = {Xi|i ∈ I} a family of subsets of V , one for each
node of T , such that

•
⋃

i∈I Xi = V ,
• for all edges {v, w} ∈ E there exists an i ∈ I with v ∈ Xi

and w ∈ Xi, and
• for all i, j, k ∈ I: if j is on the path from i to k in T , then

Xi ∩Xk ⊆ Xj .

The width of a tree decomposition is maxi∈I |Xi| − 1. The
treewidth tw(G′) of a graph G′ is the minimum width over
all tree decompositions of G′.

Let ({Xi|i ∈ I}, T = (I, F)) be a tree decomposition of
the primal graph G′, with width w. Figure 4 shows a tree
decomposition of the primal graph G′ from Figure 3. Each
node i ∈ I of the tree is labeled with Xi.

Let the treewidth tw(Γ) of an AGG Γ be the treewidth of
und(G), the undirected version of its action graph G (ex-
cluding self-edges). Then tw(Γ) ≤ tw(G′) because the
nodes in the two graphs are the same, and the set of edges
of und(G) is a subset of the set of edges of G′. Our algo-
rithm in this subsection is based on a tree decomposition of
the primal graph G′, and its running time directly depends
on tw(G′). Nevertheless, in Theorem 15 we will link the
complexity of our algorithm with tw(Γ).

The following is a well-known property of tree decompo-
sitions.

Lemma 12 (e.g. Kloks (1994)). If X is a clique in G′, then
∃i ∈ I such that X ⊆ Xi.

Since s and its neighbors in G form a clique in G′, this
implies that for all s ∈ S, ∃i ∈ I such that {s}∪ν(s) ⊆ Xi.
Assign each s ∈ S to such a node i of the tree. Let Ri be
the set of actions assigned to i ∈ I . Then Ri ∪ ν(Ri) ⊆ Xi

and {Ri|i ∈ I} is a partition of S. Intuitively, this is why
we work with a tree decomposition on the primal graph G′

instead of a tree decomposition on the action graph: a tree
decomposition on G′ guarantees that we are able to partition
S into {Ri|i ∈ I} such that for each Ri, all actions that
affect the restricted game on Ri are associated with the node
i of the tree decomposition. For our tree decomposition in

Figure 4, R1 = {A,B}, R2 = {C}, R3 = {D,E} and
R4 = {F,G}.

Pick an arbitrary node r ∈ I to be the root of T . We say
node j is a descendant of node i (equivalently i is an ancestor
of j) if i is on the path from r to j. Define Yi = {v ∈ Rj |j =
i or j is a descendant of i}. Then Yr ≡ S. Intuitively, when
we combine the restricted games associated with node i and
its descendants in T , we would get a restricted game on Yi.
For each node i ∈ I with children c1, . . . , cm ∈ I , for each
j ≤ m, define Zi,j = Ri ∪ Yc1 ∪ . . . ∪ Ycj

. This implies
that Zi,m ≡ Yi. For our tree decomposition in Figure 4,
if we let node 1 to the the root, then Y3 = R3, Y4 = R4,
Y2 = R2 ∪ R3 ∪ R4 = {C,D,E, F, G}, and Y1 = S.
Since node 2 has two children c1 = 3 and c2 = 4, then
Z2,1 = R2 ∪ Y3 = {C,D,E} and Z2,2 = Y2.

Lemma 13. For all i ∈ I , the following holds in the action
graph G: ρ(Yi) ⊆ Xi.

The fact that D[Xi] contains at least as much infor-
mation as D[ρ(Yi)], together with Lemma 10, implies
that the characteristic function ch(D[Yi ∪ ν(Yi)]) =
(D[Xi],#D[Yi], WCU(D[Yi],Γ′), BEU(D[Yi],Γ′)) is
equilibrium-preserving. This is the characteristic function
we use. We adapt our dynamic programming algorithm in
the previous section so that {Ri|i ∈ I} is the initial partition
of S, and the order in which the partitions are combined is
“guided” by the tree decomposition, from the leafs to the
root.

1. For each Ri, compute ARi . This can be done by enumer-
ating all possible configurations D[Xi] and keeping ones
that constitutes a pure equilibrium of the restricted game
on Ri.

2. Initialize the set Done ⊆ S to contain the leaves of the
tree T .

3. While ∃i ∈ I \ Done such that {j|j is a child of v} ⊆
Done:

(a) Let AZi,0 := ARi

(b) Let c1, . . . , cm be the children of i.
(c) For j = 1 to m , let

AZi,j
:= {(D[Xi], B + B′,min{Uc, U

′
c},max{Ue, U

′
e})

|(D[Xi], B, Uc, Ue) ∈ AZi,j−1 ,

(D′[Xcj], B
′, U ′

c, U
′
e) ∈ AYcj

,

D[Xi] and D′[Xcj
] are consistent,

B + B′ ≤ n,

B + B′ = n if (i = r and j = m)

Uc ≥ U ′
e, U

′
c ≥ Ue}

(d) AYi := AZi,m

(e) Add i to Done.

4. Return TRUE iff AYr
is nonempty.

In each iteration of step 3 of the algorithm, we com-
bine characteristics from restricted games on Ri and
Yc1 , . . . , Ycm

to form a new set of characteristics on the
restricted game on Yi. For the tree decomposition in Fig-
ure 4 with node 1 being the root, our algorithm would
start from the leaves 3 and 4, then compute AZ2,1 =
AR2∪Y3 = A{C,D,E} by combining AR2 and AR3 , then
compute AY2 = A{C,D,E,F,G} by combining AZ2,1 and
AR4 , and finally compute AY1 by combining AR1 and AY2 .

Theorem 14. Deciding the existence of pure equilibrium in
a symmetric AGG with bounded treewidth is in P.

Proof. Suppose the treewidth of the AGG is bounded by a
constant w. Then a tree decomposition of the action graph
having width at most w can be constructed in time exponen-
tial only in w, i.e. polynomial time (see e.g. (Kloks 1994)).
Daskalakis & Papadimitriou (2006) showed that given such
a tree decomposition, we can construct a tree decomposition
of the primal graph G′ having width at most (w + 1)I − 1
in polynomial time.

It is straightforward to check that given a tree decomposi-
tion of G′, our algorithm above correctly computes AYi by
applying Lemma 11. Since Yr ≡ S, the algorithm correctly
determines the existence of pure equilibrium in Γ. The run-
ning time of the algorithm is polynomial in the size of the
AYi

’s. The size of AYi
is bounded by n||Γ||2|∆[Xi]|. Since

the tree decomposition has width at most (w + 1)I − 1,
|∆[Xi]| ≤

(
n+(w+1)I

(w+1)I
)
. The latter is the number of ordered

combinatorial compositions of n into (w + 1)I + 1 nonneg-
ative integers. An equivalent way of counting this number is
as follows:

1. break n into w + 1 nonnegative integers,
2. then break each of the first w integers into I nonnegative

parts, and the last one into I + 1 nonnegative parts.

There are
(
n+w

w

)
different ways of carrying out step 1. Since

each integer in step 2 is at most n, there are at most
(
n+I
I

)
ways of breaking each integer. Therefore

(
n+(w+1)I

(w+1)I
)
≤(

n+w
w

)(
n+I
I

)w+1
. Since w is a constant, this is polynomial

in ||Γ||. Hence our algorithm runs in polynomial time.

Road games (Example 1) have treewidth 2 for all m. Thus
by Theorem 15 the existence of pure equilibria can be deter-
mined in polynomial time for these games.

Finding All Pure Equilibria
So far we have focused on the problem of deciding the ex-
istence of pure equilibria. Our dynamic programming ap-
proach can also be used to find these equilibria if they exist.
After the bottom-up pass of the tree decomposition as dis-
cussed above, a top-down pass would then make sure that
each AXi

contains exactly the set of extendable partial so-
lutions. Although the number of pure equilibria of an AGG

could be exponential in the representation size ||Γ||, the re-
sulting set of AXi along with the tree decomposition con-
stitutes a succinct description (Daskalakis & Papadimitriou
2006) of the set of pure equilibria of the game. Given a
symmetric AGG with bounded treewidth, such a succinct
description can be computed in polynomial time. We omit
detailed discussion due to space constraints.

Conclusions and Future Work
In this paper we analyzed the problem of computing pure
Nash equilibria in AGGs. We proposed a dynamic program-
ming algorithm and showed that for symmetric AGGs with
bounded treewidth, our algorithm determines the existence
of pure Nash equilibria in polynomial time.

Our approach for symmetric AGGs can be extended to
general AGGs. Our approach can also be extended to the
computation of the socially optimal equilibrium if one ex-
ists, as well as the computation of related solution concepts
such as pure-strategy ε-Nash equilibrium and strict equilib-
rium. We will discuss these topics in detail in a future paper.

References
Becker, A., and Geiger, D. 2001. A sufficiently fast algorithm
for finding close to optimal clique trees. Artificial Intelligence
125(1-2):3–17.
Bhat, N., and Leyton-Brown, K. 2004. Computing Nash equilib-
ria of action-graph games. In UAI.
Brandt, F.; Fischer, F.; and Holzer, M. 2007. Symmetries and the
complexity of pure Nash equilibrium. In STACS.
Chen, X., and Deng, X. 2006. Settling the complexity of 2-player
Nash-equilibrium. In FOCS.
Daskalakis, C., and Papadimitriou, C. 2006. Computing pure
Nash equilibria via Markov random fields. In ACM-EC.
Gottlob, G.; Greco, G.; and Scarcello, F. 2003. Pure Nash equi-
libria: Hard and easy games. In TARK.
Ieong, S.; McGrew, R.; Nudelman, E.; Shoham, Y.; and Sun, Q.
2005. Fast and compact: A simple class of congestion games. In
AAAI.
Jiang, A. X., and Leyton-Brown, K. 2006. A polynomial-time
algorithm for Action-Graph Games. In AAAI.
Kearns, M.; Littman, M.; and Singh, S. 2001. Graphical models
for game theory. In UAI.
Kloks, T. 1994. Treewidth: Computations and Approximations.
Berlin: Springer-Verlag.
Nash, J. 1951. Non-cooperative games. Annals of Mathematics
54:286–295.
Robertson, N., and Seymour, P. 1986. Algorithmic aspects of
tree-width. J. Algorithms 7:309–322.

