
Extensibility, Modularity, and Quality-Adaptive
Streaming towards Collaborative Video Authoring

by

Jean-Sébastien Légaré

B. Sc. Computer Science, McGill University, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University of British Columbia

(Vancouver)

March 2010

c© Jean-Sébastien Légaré 2010

Abstract

Video capture devices and online video viewing sites are proliferating. Content can

be produced more easily than ever but the tasks required to compose and produce

interesting videos are still very involving. Unfortunately, very little support is given

for groups of amateurs to meet and collaborate to creation of new media. Existing

video sharing sites do have some support for collaboration, but their best-effort

mode of content delivery makes it impossible to support many of the desirable

features usually available in local editors, such as advanced navigation support and

fast-startup.

Quality-adaptive streaming is interesting as it allows content to be distributed,

and allows clients of varying capabilities to view the same encoded video source,

the so-called “Encode once, stream anywhere”. This becomes even more impor-

tant as the gap between low-end and high-end devices widens. In previous work

we presented a Quality Adaptive Streaming system called QStream which has none

of these limitations, but lacks the editing features. There are several media frame-

works on the desktop that can provide the modules and pipelines necessary to build

an editor, but they too are non-adaptive, and have multiple incompatibilities with

QStream. This thesis presents Qinematic, a content creation framework that is

quality-adaptive, and that borrows concepts from popular media frameworks for

extensibility and modularity.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

List of Algorithms . vii

Glossary . viii

Acknowledgements . x

1 Introduction . 1
1.1 Goals . 4

1.1.1 High Level Overview of System Features 4

2 Design . 6
2.1 Quality Adaptation . 6

2.1.1 Requirements . 7

2.2 Qinematic Targeted Features . 9

2.2.1 Call for an Extensible Pipeline 9

2.2.2 Qvid Timeline and Priority-Progress 11

2.2.3 Leveraging the Timeline 14

2.3 Summary . 15

iii

3 Implementation . 16
3.1 Program Structure . 16

3.2 Structured Flow of Media . 18

3.2.1 Elements and Pads . 19

3.3 Qinematic Elements . 20

3.3.1 The Clip Element . 20

3.3.2 The Sequence Element 22

3.3.3 XFade, the Cross-Fade Element (Lap-Dissolve) 24

3.4 Pipeline Assembly . 34

3.4.1 Construction . 35

3.4.2 Destruction . 39

3.4.3 Qinematic Events . 40

3.4.4 Qinematic Buffers . 45

3.5 Summary . 47

4 Related Work . 49

5 Conclusions . 53

Bibliography . 55

Appendix A: Qinematic in Action . 57
A.1 Obtaining the Code . 57

A.1.1 File Organization . 57

A.2 Building Qinematic . 59

A.3 Running Qinematic . 62

iv

List of Tables

A.1 Input Configuration of the Qinematic Player 65

v

List of Figures

2.1 Organization of the Qvid Player 10

2.2 Qvid Player Timeline . 14

3.1 Section of a Simple Qinematic Pipeline 20

3.2 Example Arrangement of Nested Clips 21

3.3 Section of Pipeline Combining CLIP and SEQ Elements 22

3.4 Sequencing Multiple Video Sources 23

3.5 Schedule for the Cross-Fade (XFADE) Element 26

3.6 Example Pipeline Definition File 36

3.7 Example Usage of the <ref> Element 37

3.8 Relations Between Element States 41

3.9 Structure of the QineBuffer . 45

3.10 Structure of the QineImage . 46

A.1 Essential Steps to Compile QStream and Qinematic 58

A.2 Sample Definitions File for the QinePipeInfo 59

A.3 Demonstration Pipeline . 64

A.4 Qinematic Player Window . 65

vi

List of Algorithms

3.1 Scheduling Start Times for the SEQ Element 25

3.2 XFADE_RECV_BUFFER() . 30

3.3 XFADE_REMEMBER_FRAME() 31

3.4 XFADE_SET_FORGET_DEADLINE() 32

3.5 XFADE_READY_IMAGE() . 33

vii

Glossary

This is the list of acronyms that are used throughout the thesis, sorted alphabetically

by their short form. The full text of the acronym is only printed next to the very

first occurrence of the acronym in the text.

API Application Programming Interface

DOM Document Object Model

GUI Graphical User Interface. In the case of Qinematic and Qvid, the GUI

consists of the user controls for playback of video and the video area.

JSON Javascript Object Notation, a lightweight data-interchange format, easy

for humans to read and write, easy for machines to parse and generate,

and based on a subset of the JavaScript Programming Language,

Standard ECMA-262 3rd Edition - December 1999 (see

http://www.json.org)

MF Microsoft Media Foundation

NPAPI Netscape Plugin Application Programming Interface

PTS Presentation TimeStamp, the time at which a video image is to be

presented on the screen.

SAX Simple API for XML, SAX provides a mechanism for reading data from

an XML document. It is a popular alternative to the Document Object

Model (DOM). SAX Parsers functions as stream parsers that receive

viii

http://www.json.org

events that are fired when various features are encountered in the

document (attributes, element start tag, element end tag, etc.).

SNR Signal-to-Noise ratio, a measure of how clear a signal is received. SNR

scalability lets you vary how much data of the original signal is lost.

XFADE Cross-Fade, a transition from one audio or video source to another. Also

called a dissolve.

XML Extensible Markup Language

ix

Acknowledgements

First and foremost, I am infinitely grateful to my supervisor, Buck Krasic, who has

guided me wisely through my research. This project would not have been possible

without all of his research on quality-adaptive streaming and his investments in the

Qvid project. I thank my second reader also, Norm Hutchinson, for his constructive

comments and feedback. I also want to give my gratitude to Noémie and my family,

for their loving moral support and patience. Thanks to my many good friends from

the department for their help, and finally to all others who have provided feedback

on my work, and encouraged me (in no particular order): thank you Aiman, Andy,

Brendan, Debo, Kan, Karol, Mayukh, and Patrick. Last but not least, I want to

thank NSERC and UBC Graduate studies for their financial support.

x

Chapter 1

Introduction

The amount and popularity of user generated video on the Internet is exploding.

For instance, in January 2009 alone, it has been estimated that users in the United

States have viewed over 14.8 billion videos online [3], a 4% increase from the

number of views the month before. Responsible factors undoubtedly include the

increasing ubiquity of devices capable of video capture and manipulation, such as

personal computers, digital cameras, camcorders and small phones, as well as the

proliferation of Internet sites to aid in distribution and sharing of these videos such

as YouTube1, MySpace, etc..

We believe commoditization of video tools and the rise of the Internet as a dis-

tribution vehicle bears striking similarity to evolution of open source software over

the years. As personal computers became commoditized, and Internet access com-

monplace, amateur software developers increasingly adopted methods and tools to

collaboratively develop software projects, and as a result these developers could

participate in projects of greater ambition and quality than they could hope to

achieve on their own. With respect to user generated video, devices and tools

for video generation and authoring are proliferating, but as is the case for software,

the human tasks involved in video production can range tremendously in scale.

The teams behind professional film and television productions easily rival those

behind the largest software projects. As with software, we believe that amateur

video enthusiasts will embrace tools which will allow them to collaborate with like-
1From the number of views in December, this web site’s share of the pie is 91%.

1

minded partners and through teamwork produce more elaborate video projects.

In effect, the combination of video with the instant accessibility of the web

has led to the formation of an entirely new category of websites to create, edit,

and share video creations. Popular examples include Kaltura [7], MediaSilo [8],

but there are many others. Unfortunately, these solutions suffer from a common

problem, namely that their mode of delivery is significantly limited with respect to

reliability, quality and navigation features when compared to other modes of video

delivery, namely downloads or portable storage such as DVDs. Furthermore, most

of them are locked-down into using proprietary technology, often based on Adobe

Flash, to play and stream their content.

To have a streaming editor that supports the same advanced navigation features

that the other modes provide, such as fast-forward, rewind, scrubbing, and instant

start-up we soon find the best-effort model of the above platforms to be insufficient.

The need for these navigation features, and the need to support both high-end and

low-end video-enabled devices, requires the streaming server to adapt its quality of

service to match the capabilities of the client. This is very challenging, considering

that none of the system resources needed, i.e., storage network and CPU/process-

ing, provide such quality guarantees.

In our previous work we have presented a quality-adaptive streaming system,

QStream that narrows the gap between streaming and the other modes of delivery

[14]. The performance of our implementation, comprising navigation functional-

ity, robustness, and quality are to our knowledge unrivalled by any other available

streaming system, and is comparable even to that of the best local video applica-

tions. Our goal is to bring the innovative features of QStream into a platform which

would reconcile video-editing and quality-adaptation.

We have reached the point where we can apply the quality-adaptation tech-

niques of QStream to video-editing. Unfortunately, the initial QStream architec-

ture was oriented towards the case of video playback only. Online video editors

do a lot more than just playing video. They allow cutting videos, combining them,

and applying effects to those videos to create more interesting videos.

As of this writing, there exist several open-source and proprietary frameworks

that can be used to create sophisticated video pipelines with effects, transitions, and

transcoding operations. Examples include GStreamer, DirectShow, and AviSynth

2

[2, 5, 6]. Those frameworks could drive all the necessary construction blocks to

build a video editing platform. Their strength lies in the abundance of elements

that they offer: decoders, encoders, (de)muxers, container format readers, etc., and

their flexibility to connect these elements together. Unfortunately, they suffer from

the same problem as the online video editors cited earlier, namely that they lack the

capacity to adapt to changes in the availability of storage and network bandwidth,

as well as processing resources.

This thesis is about the design and implementation of our system Qinematic.

Qinematic is work in progress, and so this thesis reports on the initial decisions

and experiences taken to reach our ultimate goal of creating a collaborative video

authoring platform. The main contributions of this thesis are threefold:

• The introduction of Qinematic itself and its implementation, a new open-

source prototype framework built to serve as the basis for a quality-adaptive

streaming editor.

• An extension of the static pipeline model of QStream to match the flexibility

and extensibility of existing media frameworks, without sacrificing quality

adaptation.

• A demo application that demonstrates the framework in action, and that can

be used to view new edited content.

3

Qinematic is a prototype framework written in C that provides the scaffolding

necessary to build a quality-adaptive distributed video editor. Qinematic offers

a set of editing operations on video, which are applied to video files according

to a pipeline specification. The end-result of the pipeline can be visualized in a

friendly Graphical User Interface (GUI) offering advanced navigation controls over

the video: videos can be played in forward and reverse at speeds ranging between

1 and 128 times the nominal playback speed, or in “slow-motion” (0.5x). Videos

can also be browsed by scrubbing or moving the playback point back and forth

in time. Furthermore, unlike typical editors Qinematic is designed to work from

remote content streamed on the Internet.

1.1 Goals
Qinematic is the first step towards an extensible and modular quality-adaptive

video editing platform. Our future hope is to see Qinematic evolve into an elabo-

rate editor for distributed video content. Once this is achieved all the ingredients

will be in place to add collaboration in the picture. For the moment we shall discuss

the challenges we have encountered in building our editing framework. The col-

laboration aspect is outside the scope of this thesis, and is considered future work,

however we feel that what we have constructed will lend itself well with related

work in this particular area, for tree based approaches like [17], or on collaborative

Extensible Markup Language (XML) editing approaches.

1.1.1 High Level Overview of System Features

We now present a more technical overview of Qinematic, which can serve as a

summary for the next chapters.

A main feature of Qinematic is that it is Quality Adaptive. That is, Qinematic

can adapt the quality of its output on the client based on the availability of net-

work and CPU resources which vary over time. On the server, quality adaptation

techniques are also used to adjust the stream with respect to the available storage

bandwidth using an optimized on-disk layout of the video files and some priority

information. This will be detailed later in Chapter 2.

Qinematic is an extensible framework written in C and Python. The frame-

4

work borrows design ideas from other popular frameworks, namely GStreamer,

AviSynth, and DirectShow. The difference with those frameworks lies the thread

model used, and the semantics for processing data to conserve quality adaptation.

Those will be detailed in Chapter 3.

Qinematic also uses a descriptive meta-language (using XML) to specify the

content and how it is modified. The edits are specified in this language, and at

the same time read in to be visualized in the Qinematic player. The descriptor

language borrows concepts from SMIL [19] to describe content and timing. For

extensibility, we rely on naming units of the meta-language with registered names

in Qinematic. Names of modules in the description files are mapped to elements

of the C application framework using introspection features2. The language and its

uses in Qinematic will be explained in Section 3.4.

During our investigation, we have also built other components that are not in-

volved directly in the editing, but that are worth mentioning. First, we have con-

structed a web browser plug-in for Mozilla Firefox using Netscape Plugin Applica-

tion Programming Interface (NPAPI) [10] to embed Qinematic in web applications.

We have also created an OpenGL output driver to speed up certain rendering oper-

ations for Qinematic. More information will be provided during discussions later

in Chapter 5.

The rest of the thesis is organized as follows. In Chapter 2, we explain the con-

cepts behind quality adaptation and how the architecture of QStream influenced

Qinematic’s design. Then we shall provide details on the current implementation

in Chapter 3. Chapter 4 provides a description of related work and shows their

differences with Qinematic. Finally, we will conclude the thesis with discussions

and conclusions in Chapter 5. Also, for readers that would like to play with the

framework, Appendix A contains instructions to download, compile and run Qine-

matic.

2We rely on GObject reflection to inspect C elements.

5

Chapter 2

Design

Qinematic strives to create a platform with which teams can collaborate to author

media. The platform must be intuitive and flexible to allow complex media cre-

ations, yet it must be efficient and manage available computer resources wisely

when driving these creations. We believe Qinematic reconciles these two goals

by first adopting architectural concepts like pipelining and pluggable components,

concepts that are widely adopted by other media frameworks. Then, Qinematic

adapts to resource fluctuations by taking these concepts and uniting them with

QStream’s event-driven model paradigms. This chapter gives an overview of how

these two aspects have influenced the design of Qinematic.

2.1 Quality Adaptation
Quality adaptation is the process by which QStream balances the quality of the

video stream to match resource availability. QStream is mainly concerned with

storage, network, and CPU resources to read video from disk, send it over the

network, decode it, and display it to the screen.

Because the availability of all these resources vary in time, for instance be-

cause the bit-rate of the video can change drastically from one scene to another or

because these resources are shared with competing applications, QStream aims to

gracefully adapt to situations where resources would be insufficient to maintain the

maximum quality level.

6

Quality adaptation has several benefits. Firstly, it allows working with the same

high-quality encoded video stream on a wide range of devices varying in capabili-

ties from portable players to high-end desktops.

Furthermore, quality adaptation absorbs sudden variations in resource avail-

ability, which could otherwise result in interruptions of service. This also results in

a viewing experience with fewer perceptible changes in visual quality, and graceful

degradation in worst-case scenarios.

Quality adaptive streaming relies on the application to be written in a specific

way, following 3 basic principles outlined in the next section.

2.1.1 Requirements

Each of the adaptations that QStream provides, i.e., network, CPU, and storage,

rely on the following three general principles.

First, a quality adaptive system should be designed to produce incremental

results, that is, results whose quality can be ameliorated by successive iterations of

work. This provides greater control over the quality of the final results.

The second principle assumes that quality adaptation can be done across mul-

tiple quality dimensions. For example, SPEG [15], the streaming-friendly video

compression format used throughout QStream, allows the quality of the video

stream to be adjusted along two axes of scalability: temporal quality, and spatial

quality (Signal-to-Noise ratio (SNR)). QStream provides ways to prioritize data

across the multiple dimensions with a component called the mapper. The mapper

takes the multidimensional coordinates of each media unit to process and maps

those to a scalar priority value.

The third and last principle is priority-progress execution, which prescribes the

use of timestamps and the priorities obtained from the mapper to perform adapta-

tion. The timestamps are used to subdivide all the data to process in what we call

adaptation windows, which we shall cover in Subsection 2.2.2. Those windows

consist of stages where data are prioritized, and low-priority data can be dropped.

7

Entailment on Program Structure

QStream follows the principles enumerated previously by adopting a programming

model inspired by the paradigms of reactive programming:

Event-loop At the core of QStream we find a single-threaded event loop which

executes prioritized events. The loop can juggle various types of events,

namely application specific events, and external events such as arrival of

data on the network.

Timer and best-effort Events are categorized in two classes, timer-based, and

best-effort. Adaptive operations will generally make use of a timeline to

ensure that they are done by a certain time and will thus create timer events,

which become eligible to run only after a certain release time is past. Best-

effort events are used by operations that should run as soon as possible.

Events of this type are always eligible to run, given that there are no out-

standing timer events and no best-effort events with higher priority.

No event preemption Events should be short-lived, and cannot be preempted.

This avoids unpredictable timing that can be caused by preemption, and

helps avoid the need for locks and synchronization primitives. Long run-

ning operations have to be separated in smaller steps, either by changing

code, or using co-routines. Fine-grained events can complete faster and be

prioritized better.

Partial completion of events Allow for certain operations to be partly completed.

The more time allocated for a task, the better the result. This cascades from

the incremental results principle.

Cancellation of events As time passes and higher priority events arrive, it may

be necessary to cancel execution of events that have expired. Many of the

algorithms in QStream rely on this principle.

Qvid is a quality-adaptive streaming video player which is part of the QStream

framework. Using the concepts enumerated above, Qvid is capable of adapting

video quality according to available CPU, disk, and network resources. It is a com-

plex application written in C, composed of approximately 90’000 lines of code.

8

We have leveraged this code to construct the extensible video platform that is Qine-

matic.

2.2 Qinematic Targeted Features
Our goal was to provide a good subset of features that are provided by local author-

ing applications, while still allowing streaming over the Internet and maintaining

quality adaptation features. In order to have interesting results, we settled for a

realistic list of editing features commonly found in other timeline based editors:

1. Defining clips. It should be possible to split long movies into shorter seg-

ments. Clips are defined as a consecutive series of frames from a video

source.

2. Chaining Clips sequentially. We want to allow forming movies by concate-

nating clips together. Ideally, we would like different clips to come from the

same or different video sources.

3. Adding effects to clips (intra-clip). We want to allow visual effects for every

image inside a clip, such as converting their colours and/or image formats.

4. Adding effects between clips to provide transitions. The most common in-

stance of inter-clip effects is the cross-fade, but in the general sense this

extends to any effect that combines or superimposes in some way frames

from two clips, such as picture-in-picture or overlays for example.

2.2.1 Call for an Extensible Pipeline

The Qvid video player project features a simple video pipeline, which we used

as our code base to create Qinematic. In Qvid, data elements flow through a

fixed number of stages that process the data. The video player is divided into

two monolithic applications, the server and the client which each hold their half of

the pipeline. The server side is responsible for retrieval of the media from disk and

sending it over the Internet, while the client side receives, decodes and displays the

video to the user.

9

Sender

File Input
PPS Server PPS Client

Audio
Decoder

Video
Decoder

Video
Output

Audio
Output

Player Engine

GUI

Receiver

Figure 2.1: Static pipeline organization in the Qvid video player. Each rect-
angle represents a code module driving one piece of the pipeline. The
pipeline is static, i.e., it cannot be reconfigured for different movies.
The thick arrows indicate the direction of travel for the frames in the
pipeline.

In the Qvid architecture, the media pipeline arrangement is static: it cannot be

reconfigured to play different types of movies. The overall organization of Qvid is

schematized in Figure 2.1.

On the server, chunks of the video are first read from disk in the file input mod-

ule, prioritized and sent over the Internet to the client using the Priority-Progress

algorithm, which will be covered later in this chapter. At the client, video chunks

arrive to be decoded and then shown to the screen. The decoding and the display

of the decoded data is orchestrated by logic inside an engine called the “player”.

Also, the user can control the flow of the video using the GUI using several action

buttons, and a progress bar that can be used to “scrub” the video. These controls

allow the user to change the speed, direction, and position of the playback. The

GUI also indicates the state of the engine to the user to provide feedback.

The Qvid player was designed to play a single movie only, from the beginning

to the end. The targeted features for Qinematic call for a more extensible model

that Qvid’s initial model could not provide.

Therefore, in order to implement clips and effects, we exchanged Qvid’s static

model for a dynamic one. In Qinematic, the pipeline is configured dynamically to

reflect the composition of the movie to play, that is the arrangement and sequence

of clips and effects to apply on the video source(s).

10

2.2.2 Qvid Timeline and Priority-Progress

The biggest strength of Qvid is that it can adapt to extreme streaming conditions

and still provide fast start-up times and smooth uninterrupted playback with good

visual quality. This is due to the way Qvid prioritizes its data: it employs a gen-

eral algorithm called Priority-Progress, based on a sliding window approach. The

algorithm is presented in previous work on media-streaming [15, 16] but will be

reviewed briefly in this section.

At a given time the algorithm defines a series of frames eligible for transmis-

sion, denoted as an “adaptation” window. The constituent chunks of video frames

enter and leave the window as it slides forward according to time. The chunks

are prioritized along two dimensions, as discussed earlier, based on their degree of

refinement (spatial layer), and on the temporal importance of the containing frame

(adjusted for current playback speed). Thus, chunks will enter and leave the win-

dow according to time, but they will be enqueued within according to priority, and

transmission will proceed in priority order amongst the eligible chunks. Also, the

algorithm works by priority-drop: when the window position moves forward and a

frame exits the transmission window, any chunks of that frame that are still unsent

are dropped. We say that those dropped chunks are “expired”.

A big aspect of the algorithm lies in the timing of these adaptation windows.

The adaptation window size is expressed in units of time, defined by a left and

a right boundary. The contents of the window are the video data (video frames

layered spatially) with logical timestamps falling within the window boundaries.

The core insight of the algorithm is that the size of an adaptation window directly

relates to a trade-off between responsiveness to interactive navigation actions (start-

up times) and flexibility to smooth transient fluctuations in resource availability.

The priority order processing of the adaptation windows means that for a player

to decode and display any particular frame, the player must wait first for the win-

dow position to reach a point where it knows that no more data will arrive for this

frame. Therefore the size of the windows, i.e., the time between when a frame is

first eligible for transmission (chunks of the frame enter the window), and when

the frame expires (chunks exit the window), will have an impact over the start-up

times. A small window will allow shorter start-up times.

11

On the other hand, small windows are more sensitive to variations as frames

will expire faster, possibly causing frames to be dropped and quality to be uneven.

Remember that chunks in the adaptation windows are processed first in priority

order and then by timestamp. This implies that the algorithm will try to transmit

all frames at an equal level of quality for the duration of a window. Hence, large

window sizes generally increase start-up times but will be better in terms of adapt-

ing to resource fluctuations due to the greater smoothing effects they have on video

quality.

Dynamic Window Scaling

To balance between the goals of shorter start-up times and better quality and robust-

ness, the Priority-Progress algorithm dynamically adjusts the window size, starting

small, and growing it as the stream proceeds. When a window grows, its position

moves faster than the playback speed, without stalling the receiver.

The algorithm employs a technique called bandwidth skimming [13] to grow

the adaptation windows. It borrows a small fraction of the client’s immediate avail-

able bandwidth to build up a buffer of frames (the “skim”) that will be needed later.

In other words, bandwidth skimming allows sacrificing a small fraction of the im-

mediate video quality to smooth out future resource fluctuations.

Because the adaptation window sizes are defined in units of time, the algorithm

can control the amount of bandwidth skimming without knowing anything about

the rate or throughput of the input and the resource. For example, if the window

position is advanced at a rate of 10% faster than the nominal playback speed, then

the window size can grow precisely 10% time units larger, and the reduction in

quality/bit-rate of the video will be 10% (relative to whatever bandwidth was used).

Qvid uses Priority-Progress to execute a skimming plan that works in the face

of arbitrary fluctuations of resource requirements and availability. When the player

engine is requested to start playing a video, Qvid will calculate a timeline that will

use small windows at first to provide quick start-up, and with bandwidth skimming

grow the windows to provide increasingly smooth and robust video quality.

12

Adaptation Timeline

In Qvid (and QStream), the delivery of video will adapt as necessary to network

[15], processor [16], and storage resources [14] due to the adaptation timeline.

The adaptation timeline is a divided in multiple consecutive stages, where each

stage consists of a dynamic time window that grows as the video plays. The size

of each time window will determine how much time the data spends in the corre-

sponding stage before entering the next.

In Qvid, the sequence of stages in the timeline through which a frame passes

is illustrated in Figure 2.2. A video frame first begins processing in the setup

stage, which is when the metadata for the frame is first retrieved from storage. The

algorithm uses the setup stage to smooth out delays of storage access, and to match

the rate of storage requests to recent transmission rates. This avoids consuming

chunks that will be dropped because they expire in the following stages [14].

The following stage is the network transmit stage, or xmit stage, where the

frame is in the Priority-Progress adaptation window. Following transmission, the

decode stage is the time during which frames can be decoded at the receiver (client).

Both the transmit stage and the decode stage have mechanisms to prevent ini-

tiating transmission or decoding of chunks too late. They do so by reserving a

small jitter window at the end of the stage which acts as an expiry interval. Work

towards the next stage can only be initiated before the chunk reaches the jitter win-

dow. QStream allows partially sent chunks to be cancelled, and so chunks whose

transfer or decoding is incomplete by the end of the respective window will be

cancelled, but that incurs an overhead (wasted bandwidth or CPU). The expiry

windows will prevent this problem, given that they are longer than the time taken

to complete the work (transmission or decoding of the chunk, resp.).

The timeline finishes with the end of the decode stage, when decoded frames

are enqueued to be presented to the screen (presentation timestamp). This also

corresponds with the end of the adaptation in the lifetime of frames. After that, the

frames are either shown or are skipped, because they cannot be shown in part or

incrementally (at least, not efficiently).

The timeline in Qvid is used to provide a trade-off between fast start-up, and

quality and robustness by controlling its size (duration). To achieve the goal of

13

Figure 2.2: The Qvid pipeline controls its flow of data using the above time-
line. The figure shows the sequence of windows/stages in the timeline,
as well as each stage’s initial and final size (in seconds). Data flows
from left to right.

perceptually instantaneous start-up time, the pipeline stages use the minimum du-

rations feasible for the first frame of the stream, which by default is the nominal

duration of a single video frame1. The reasoning behind this choice is that if the

server and client have the basic capacity to process the stream in real-time with-

out interruption, then the transmission and decoding stages must be capable of

performing their work as fast as the frames will be presented. From their initial

durations, the windows grow over periods of up to a few minutes until they at-

tain sizes in the order of a few seconds, with the notable exception of the transmit

window which is configured to grow until it reaches around 30 seconds in size.

2.2.3 Leveraging the Timeline

As we have seen earlier, the timeline is what allows Qvid to schedule processing

of the constituent chunks of the video during streaming. It is what regulates the

1At 30 frames per second, this corresponds approximately to 0.033 second

14

times at which the various data enters each stage of the pipeline. The timeline is

also resized during playback to allow fast start-up, and also provide resilience to

resource variations.

In Qinematic, the video pipeline construction is dynamic to allow for various

filters and custom processing of the data units. This is different from Qvid which

has a static, linear pipeline from the server to the client. As we have seen in the

earlier sections, the timeline also contains a static set of stages, closely reflecting

the organization of the processing modules/stages in the Qvid.

In order for Qinematic to benefit from the advantages provided by the timeline,

the timeline must be used in a different way. We will explain in the next chapter

how we proceeded.

2.3 Summary
In this chapter, we have revisited some of the previous work on quality adaptation

to clarify how it influenced the design of Qinematic, and to provide background

for later explanations on the implementation. Qinematic adopts architectural con-

cepts like pipelining and pluggable components, concepts widely adopted by other

media frameworks, and extends the static pipeline model of Qvid. Furthermore,

Qinematic still embraces the QStream model and the Qvid timeline by reusing the

timeline to orchestrate the processing of the video chunks and preserve their quality

adaptation capabilities.

15

Chapter 3

Implementation

The application model of Qinematic is designed to be simple, yet be very flexi-

ble and general enough to provide useful and professional looking video manip-

ulation elements. Qinematic is inspired by other mature frameworks, notably the

GStreamer framework [6], and AviSynth [2], which also provide flexibility and

extensibility in a general fashion.

We believe QStream proved to be an elegant and efficient solution to the prob-

lem of achieving quality-adaptive streaming. For building Qinematic, we decided

to approach the problem by augmenting our existing system with extensibility

and flexibility, rather than from the other end, i.e., extending or porting an ex-

isting framework to support quality adaptation. The quantity of changes required

would have otherwise been impractical, given the number of differences between

QStream and GStreamer or AviSynth: event loops, threading models, pull vs. push

streaming, and closure formats, etc.

3.1 Program Structure
An application using Qinematic has to adopt a specific structure to ensure proper

functioning. The core of Qinematic is built upon QStream’s QSF library, which

provides all the scaffolding necessary to build a quality-adaptive framework, but

imposes a set of ground rules on the layout of Qinematic applications. For exam-

ple, as discussed in Subsection 2.1.1, Qinematic’s mechanisms all revolve around

16

a global event loop which executes timer events and prioritized best-effort events.

Fortunately, applications already built with QStream will require very little modi-

fication to benefit from Qinematic’s features.

Furthermore, because Qinematic is built atop QStream, those applications should

also possess the characteristic traits of quality-adaptive applications, e.g., work

units encapsulated in short non-preemptible events and asynchronous-IO opera-

tions.

Here, we present a global picture of the life cycle of a Qinematic application

by listing some of the application requirements. Some of the steps listed in this

section will be described in further detail later.

1. The Qinematic application first initializes the Qinematic subsystem (via a

single call to qinematic_init())

2. Creation of a Qinematic context (and event loop) (via a simple call to

qine_context_new())

3. Construction of an element pipeline graph (see Subsection 3.4.1)

4. Pipeline activation and user interaction.

5. Tear-down of the pipeline, and event-loop halt (see Subsection 3.4.2)

6. Context deletion via call to qine_context_delete()

The function qinematic_init() initializes all Qinematic dependencies,

loads the Python module (see Subsection 3.4.1), and invokes any registered ini-

tialization functions. Those registration hook functions are in turn responsible to

introduce new element types to the system. Those hook functions are themselves

registered at load time using constructor functions1, hence allowing a very flexible

plug-in infrastructure for static and dynamic libraries.

In item 2, the function qine_context_new() creates the main event loop

(though the details of its initialization are abstracted away from the user) that will

drive the application and returns a context pointer, which essentially constitutes

a handle to that loop. An attachment point is created on the loop, so that the

1See gcc’s __attribute__ ((constructor)) attribute.

17

Qinematic application can add arbitrary information to the loop and context. Given

the event loop handle (available in thread local storage), the qinematic context and

anything attached to it can also be retrieved easily and quickly.

The application logic all happens in item 3 where elements are assembled to-

gether to form the streaming media pipeline. The system does not limit in any

way the number of active pipelines that can coexist, but it should be more common

to find a single, possibly very complex, pipeline. At this point, the event loop is

running and media can start flowing in the application in the form of buffers and

events.

The last 2 items are executed when the application reaches its conclusion. Their

task is to shut down Qinematic activity and reclaim borrowed resources. They have

the reverse effects of the first items.

3.2 Structured Flow of Media
In this section we shall delve into the organization of the media pipelines in Qine-

matic applications, and into a description of the data running through them.

Qinematic features a flexible platform to build complex pipelines for audiovi-

sual streaming applications. Readers familiar with other media frameworks should

recognize many of the design similarities in common with Qinematic. At a very

high level, a Qinematic pipeline could be defined as a graph of communicating

elements or stages which process data units that flow through them. They do so

from an element designated as a source, through any number of other intermediary

elements, until they reach a sink element.

The data units are classified into two categories, buffers and events, that are

distinguishable by their direction of travel in the pipeline as well as their payload.

For now, a brief description of the two will suffice to get a global view of the

system.

The buffers contain data to be processed by the elements and always travel

downstream, i.e., from source to sink. Once an element has finished processing

a buffer, it pushes that buffer to a neighbouring downstream element. Also, Qine-

matic focuses only on image buffers for video data and audio frames for audio data,

but buffer contents can be arbitrary.

18

Events represent control units in the pipeline, and can travel in one direction

or the other, depending on the nature of the event in question. As their name im-

plies, events are used to indicate some sudden change in the flow of the pipeline.

Examples of events are the SEEK event to indicate a change of position in the

stream, or the EOF event, to notify downstream that the end of a stream/file has

been reached. Elements will generally take various actions on receipt of events,

actions which will usually end by passing the event to appropriate neighbour ele-

ments. We shall defer the in-depth discussion on the pipeline creation/destruction

as well as event and buffer propagation to Section 3.4.

3.2.1 Elements and Pads

The pipelines are formed of elements that process multimedia data flowing between

them, and pads that provide communication channels between elements that con-

nect to them. Pads abstract away the differences between neighbouring elements

by allowing them to communicate through a single and very simple programming

interface.

Elements pass processed output to their downstream neighbours, but the nature

of the processing itself is variable. Generally they will be used to alter data, but they

can also act as monitors or profilers of other elements. This concept is well known,

and is being used extensively in many other media frameworks, such as GStreamer

[6], AviSynth [2], and to some degree Microsoft Media Foundation (MF), which

provide statistics gathering elements.

Pads have a direction: they are either source or sink pads. The former type

pushes buffers out, while the latter receives them. Pads are also connected to one

other pad (at most), denoted as a peer. The diagram in Figure 3.1 depicts a portion

of a pipeline containing 3 elements and pads.

Pads are normally attached to elements, so that everything the pad receives is

handed out to the element. An element attached to a pad is said to own the pad. The

element-to-pad relationship is one-to-many, so elements can own as many pads as

they need (but a pad can only have one owner).

Different pads attached to an element can receive data from different neigh-

bours or data of different types (e.g., audio and video). The element on the right

19

Figure 3.1: A section of a Qinematic Pipeline with 3 elements and their pads.
Buffers flow from left to right.

hand side of Figure 3.1, for instance, owns 3 pads, two of which are sink pads.

Pads also have a name which lets elements connect together along named paths.

All of the data processing logic is placed in the code of the elements. The pads

don’t participate in the logic, but they are used as bridges connecting the various

elements and thus determine where buffers get processed.

3.3 Qinematic Elements
As of this writing, several basic elements are provided by Qinematic to allow the

creation of complex video authoring projects. Firstly, movies can be decoded and

played by decoder and output elements. Secondly, clips, or sub-movies can be

created out of other movies, recursively, and can be organized sequentially or over-

lapped in time with control elements. Lastly, Qinematic provides intra-clip trans-

formations, such as filter elements, to apply certain post-processing and/or artistic

effects to video. We will dedicate the rest of this section to describe in further

details these basic elements.

3.3.1 The Clip Element

The Clip element (or CLIP) lets the author define a new shorter movie from a con-

tinuous section of a longer one. It can be used for instance to extract a scene or

shot from longer footage.

The CLIP is given two numeric parameters at construction time, a start-frame

20

Figure 3.2: A setup of nested clips. Frames of Clip2 are a subset of those in
Clip1. When Clip2 is played, only frames 4 to 7 (incl.) from the full
movie should be shown.

and end-frame which define its position and length. Clips can be cut out of the

complete movie or from other clips, as many times as needed. In the latter case,

the clip position (start, end) is relative to the bounds of its source. This makes it

very easy to define new movies out of existing ones.

When a clip is cut out of a longer segment, like Clip2 in Figure 3.2, it will be

placed downstream in the pipeline from that segment (one step further away from

the original content). In Qinematic, it is the seek event that specifies the start

and end points for stream playback. The seek events originate from the sink of the

pipeline, the GUI, and propagate back towards the source. Every time playback is

stopped or started, new start and end bounds are calculated. When a clip receives

a seek event, it translates the playback start and end positions into the coordinate

system of the element upstream2, so that the final positions at the source are relative

to the start and end of the whole video.

The clip element is perhaps the simplest of all existing elements provided by

Qinematic. The clip element intervenes only in the processing of events seek,

2We increment the seek’s start position by the clip’s offset within the upstream element. A
similar approach is taken when playing backwards.

21

Figure 3.3: Section of a pipeline with multiple clips and sequence elements.
The sequence elements play their sources in the order they were con-
nected (illustrated by the numbers).

open_done, and seek_done. On open, the stream duration is set to the length

of the clip, and for seekand seek_done, seek position offsets are updated to

reflect the bounds of the clip. Buffers arriving at the element, on the other hand,

are left untouched and are simply forwarded downstream.

3.3.2 The Sequence Element

The Sequence element (or SEQ) lets the user combine various sources into a con-

tinuous sequence. When played, each source in the sequence will play in turn, with

no perceptible gap nor overlap. In the simplest cases the SEQ is usually connected

to a series of CLIP source elements, but it is also compatible with all other types of

elements that can be used as sources, even other sequence elements. To illustrate

this, Figure 3.3 shows a typical pipeline arrangement for a Seq element.

The challenge with the SEQ consists in orchestrating the start times of the con-

tained clips so that their respective first frames be ready in time on the client. Each

source requires a certain amount of processing before its first frame is to be shown

on screen, mostly because of the time required to process the pre-roll frames and

22

(a) Case 1

(b) Case 2

Figure 3.4: Possible arrangements when sequencing multiple sources. In the
first case, the second source is started shortly before the first one fin-
ishes. For case 2 however, the second source has to be started first to
process the long train of pre-roll frames.

delays to get the start messages across from the client to the servers.

In order to get a video frame to show up on screen, several actions must be

taken on the original encoded frame, including fetching, decoding, sending it to the

display, etc. The time taken to complete some of these steps, for instance decoding,

will vary greatly depending on the number of dependent frames. Because playback

is allowed to start and stop at any frame in Qinematic, the nature (e.g., I,B,P) and

number of dependent frames of the very first frame that is to be shown in a clip

will have great effect on delay between the time the clip is “started” (data being

served) and the time that first frame can be shown to screen. This section presents

the logic used in the SEQ element to correctly determine when the timelines of the

individual sources should be started, given the time at which the first frame should

appear on screen.

23

From the Qvid timeline, the SEQ element infers how much time it should take

for the first frame to be displayed for each of its sources, based on the duration

of that source (in frames), the frame-rate, and the number of pre-roll frames. The

algorithm deals with different forms of interleavings of two sources, as illustrated

in Figure 3.4, or of more than two sources. Algorithm 3.1 orchestrates the start

time for each source.

It is worth mentioning that the current approach composes clips using the same

timeline strategy that is employed for the single clip case. That is, the timelines

work the same for all clips regardless of their interleavings in time: fast start-ups

are provided by small windows at first, which then grow as the clip advances to

provide better robustness and fewer changes in quality. It would not be strictly

necessary to start all the clips with the same timeline strategy, as ideally, the time-

line of one clip could continue from the state of the previous clip. This is an

optimization that is left to future work.

3.3.3 XFade, the Cross-Fade Element (Lap-Dissolve)

Cross-fading two clips consists in playing the media from two clips and having

the first clip fade out when the second clip fades in, by superimposing the last few

frames at the end of the first clip with the first few frames of the beginning of the

second clip. Cross-fades are used mostly to create mood and smooth out transitions

between scenes.

It is often the case that cross-fades implicate one movie clip consisting of a

solid colour, such as black or white, blended with the end or the beginning of a

regular video clip. Those types of cross-fades are commonly designated as fade-

ins or fade-outs. In Qinematic, those cross-fades are not treated specially, except

for the fact that the solid colour frames can be generated on the fly.

Qinematic allows creation of cross-fades via the Cross-Fade (XFADE) element.

The XFADE receives data from two possibly overlapping input streams and is con-

figured at the time of its creation with the duration of the overlap. In the degenerate

case where the duration of the overlap duration is nil, the element behaves like a

SEQelement configured with the same input streams.

The element will pair frames from the two input streams during the overlapping

24

Input:
speed: The playback speed (e.g. 0.5, 1.0, 2.0, ...)
NUM: The number of clips in the sequence.
vid_rate: The frame-rate of the video (same for every clip).
num_ f rames[i]: The number of frames in the i’th clip.
num_dep f rames[i]: The number of dependencies for the 1st frame

of the i’th clip.

Output:
start_o f f set[i]: Time difference between the time the SEQ starts

playing, and the time the i’th clip starts playing.
out put_o f f set[i]: Time difference between the time the SEQ starts

playing and the output time of the first frame (not
counting dep. frames) of the i’th clip of the sequence.

f rame_duration← 1/(vid_rate∗ speed)
min_start_time← +Infinity
Timeline T ← timeline_init(clip_duration, f rame_duration)

for i← 0 to NUM−1 do
clip_duration← num_ f rames[i]∗ f rame_duration
#ndt is the instant in time we want
Position p← pos_init(
T ,ndt=num_dep f rames[i]∗ f rame_duration)
if i == 0 then

out put_o f f set[i]← p.out put
start_o f f set[i]← 0.0

else
out put_o f f set[i]← out put_o f f set[i−1] +
(num_ f rames[i−1]∗ f rame_duration)
start_o f f set[i]← out put_o f f set[i]− p.out put

end
min_start_time← MIN(min_start_time, start_o f f set[i])

end

#At this point, min_start_time is
#either 0.0, or negative
for i← 0 to NUM−1 do

start_o f f set[i]← start_o f f set[i]−min_start_time
out put_o f f set[i]← out put_o f f set[i]−min_start_time

end
Algorithm 3.1: Scheduling Start Times for the SEQ Element

25

Figure 3.5: The frames output by XFADE are either taken from α or β di-
rectly, or “stub” frames that represent the combination of one frame
from each input stream

region and blend them so as to output a single frame from each pair formed. Cur-

rently, the blending operation applied on the pairs is alpha blending, with an alpha

parameter that is a function of the pair’s time distance from the commencement of

the overlap. This specific choice of blending function will result in a smooth visual

transition from the frames of the first to those of the second stream.

For the remainder of Subsection 3.3.3, the following assumptions and defini-

tions shall hold:

• We denote the first stream of the cross-fade α , and the second stream β .

• Streams α and β have the same frame-rate, and their presentation times-

tamps coincide (same “phase”)3. Thus, a one-to-one correspondence can be

established in the overlap region between any frame in one stream to another

frame in the other stream.

• For a given configuration of some XFADE element, let function dur(s) and

|s| represent the time duration and number of frames of the stream s, respec-

tively. Argument s could be one of the full input streams, or just a portion of

a stream.

• For simplicity, but without loss of generality, we assume that the first frame

of stream α is displayed at time 0.

3Internally, we use frame numbers to derive presentation timestamps

26

XFADE Output

Even though the XFADE element takes its input from two different streams, to

the elements downstream it appears as a single continuous stream whose length is

as long as α and β concatenated minus the duration of their overlap. Also, the

output frame-rate of the XFADE element is the same as its input streams frame

rate. Generally speaking, this means that each time a frame from either α or β

is received by the XFADE element, it will also output one frame (or one frame for

each pair of frames during the overlap).

XFADE Delayed Execution

The XFADE element differs greatly from the other element types seen so far because

of its ability to output data coming from a mix of multiple streams, each with

different scheduling and resource constraints. In order to avoid wasting resources,

and to allow better prioritization of other parallel tasks, the expensive blending

operations are delayed for as long as possible, using Qinematic’s QineImage

work closure features (see Subsection 3.4.4).

Frames outside the overlapping region will be output by the XFADE element

unmodified, whereas special stub frames will be output for frames that will use the

delayed processing feature. Unlike regular video frames, stub frames do not carry

image data. Rather, they carry the integer offsets of the two frames of the pair that

will be alpha-blended.

Each stub frame Si is assigned a number i when it is created, a number from

which the corresponding frame numbers from α and β can be calculated. We will

denote stub frame Si to represent the pair (αi,βi), each taken from their respective

streams at position i, relative from the first frame output by the XFADE element.

When the time comes to output frame Si, the corresponding frames from the pair

will be retrieved and blended. The main reason for delaying the retrieval of the

peer frames is that each of the XFADE element’s input streams is subject to its own

scheduling constraints.

No guarantees can be made regarding the arrival of frames from either α or

β . This implies that it will be possible, in poor streaming conditions for instance,

that there exists a stub Si for which αi, βi, or both are missing when it comes time

27

to produce the blended frame. Rather than dropping stubs whose member frames

cannot be retrieved (e.g., dropped because of adaptation decisions), Qinematic cov-

ers for the loss by substituting the missing peer frame with one that is identified

as the “most sensible” at the time the stub frame is blended. In case no suitable

replacement candidate can be found, a solid-black frame can be used instead. In

good conditions, frames αi and βi should have arrived by the time Si needs to be

displayed, in which case then the blending operation simply proceeds by picking

those two.

The candidate frame for substituting a missing frame is selected using the fol-

lowing criteria:

1. Comes from the same input stream as the missing frame.

2. Comes earlier in presentation order than the missing frame.

3. Presentation timestamp must be as close as possible to missing frame’s own

timestamp.

Finding replacements that match these criteria will reproduce the visual im-

pressions left on the viewer by missing or dropped frames during playback of a

single video stream. In the single video case, a missing frame causes the previ-

ously displayed frame to stay longer on the screen. If a viewer were to superim-

pose two video sources with varying alpha channels, and if each source handled

missing frames the same way as the single-source case does, she would see exactly

what the XFADE element outputs. That is, at any point in time during playback of

the overlap period of the XFADE element, the viewer will see a blend of the most

recent information available at that instant.

XFADE Element’s Coordination of Start Times

Because XFADE’s input streams are subject to independent constraints, and use

independent adaptation timelines, the element must have a certain level of control

over the arrival times of buffers. The XFADE element has to coordinate the two

input streams to address the following issues:

28

1. Both input streams must be started at adequate times. Starting too soon may

cause unnecessary memory usage or sacrifice some quality (some other op-

erations could have been given more processing time). On the other hand,

starting too late may cause drops in quality or interruptions in video play-

back.

2. Frames from the two input streams may never arrive, or may arrive in differ-

ent orders. This means that certain frames may not be paired up with their

ideal one-to-one peer.

In a manner similar presented in the algorithm for scheduling start times of

input streams of SEQelements, streams α and β can be coordinated in such a way

that the two frames used to compose the first frame of the overlap have arrived

at the XFADE by the time the first frame of the overlap is to be output. This is

done by adjusting timeline origins so that the output of the first overlap frames of

α and β match. This simple approach allow timelines from both streams to work

identically, regardless of their arrangement in time. The main drawback of this

approach is that the windows of the timeline of β will start small, while those of

α will have grown by the start of the overlap. This will unnecessarily cause the

frames of β to arrive at a higher rate than those of α . Like we mentioned in the

description of the SEQ element algorithm, one optimization over this arrangement

of the timelines would be to start the timeline of the second stream with window

sizes matching the first stream.

Let o_offset denote a relative time value at which the first frame of one of

the input streams should be displayed, then XFADE uses the following rules to set

the time offsets to apply to α and β .

o_offset_alpha = position.output for first frame of alpha;

o_offset_beta = o_offset_alpha + duration(alpha) - duration(overlap);

XFADE Element Core Mapping Algorithm

This section describes the algorithm used by XFADE to map stub frames to re-

ceived buffer frames from the two input streams when forming pairs. The XFADE

mapping algorithm is composed of a few subroutines. First, when image buffers

29

(containing a video frame) are received from the element’s input pads, procedure

XFADE_RECV_BUFFER is called. Frames are then added to a data structure that

allows the frames to be later retrieved, and this operation is performed by pro-

cedure XFADE_REMEMBER_FRAME. A counterpart to this is invoked by the al-

gorithm to determine the moment at which it is safe for frames to be “released”

from the same data structure: XFADE_SET_FORGET_DEADLINE. Lastly, an-

other procedure is invoked on the image buffers when they are ready to be output:

XFADE_READY_IMAGE.

Algorithm 3.2: XFADE_RECV_BUFFER()
input : from (Origin of image buffer, either α or β).

buffer (The image buffer received).

func XFADE_RECV_BUFFER(from, buffer)1

offset from 1st frame2

i← get_buffer_pos(from, buffer)3

XFADE_REMEMBER_FRAME(from, i, buffer)4

if outside_overlap(i) then5

push_buffer(buffer)6

else if not peer_has_arrived(from, i) then7

stub← create_stub(pts = i)8

push_buffer(stub)9

end10

end11

Algorithm 3.2 lists the actions taken when frames arrive at the XFADE element.

The procedure first finds the offset of the buffer relative to the first frame of α . The

input frame is remembered so that it may possibly be used when blending frames

later on. It is worth pointing out that frames falling outside the overlap are also

remembered, because they could become substitutes for missing frames inside the

overlap.

On line 5, we determine if the frame is inside the overlap or not, by comparing

the presentation order of the frame with the known boundaries of the overlapping

section. Frames that fall into the non-overlapping portions of the XFADE element’s

schedule can then simply be passed downstream on reception. Line 7 deals with

buffers that are part of the overlap and filters out cases where the corresponding

30

peer in the other stream has already arrived, in which case a stub frame should

already have been pushed out for that frame. In this case, no further actions are

needed. Given the presentation timestamp of a frame from α , we determine the

corresponding frame from β that it should be paired with (and vice-versa) by fol-

lowing simple additions and subtractions.

Algorithm 3.3: XFADE_REMEMBER_FRAME()
input : from (origin of image buffer, either α or β).

i (offset from 1st frame).
buffer (The image buffer received).

func XFADE_REMEMBER_FRAME(from, i, buffer)1

lookup← get_frame_lookup(from)2

handle← lookup_insert(lookup, key = i, buffer)3

predecessor← handle.prev4

successor← handle.next5

if predecessor 6= Nil then6

out put_time← get_display_time(from, i)7

XFADE_SET_FORGET_DEADLINE(from, predecessor,8

output_time)
end9

if successor 6= Nil then10

out put_time← get_display_time(from,11

get_buffer_pos(from, successor))
XFADE_SET_FORGET_DEADLINE(from, buffer, output_time)12

end13

end14

In an adaptive streaming scenario, we must allow for frames to arrive out of

order, because of inter-frame dependencies, and varying temporal importances.

We also must anticipate that some frames may arrive only partially, or that they

may never arrive in time. Moreover, in the current implementation, the priority (or

utility) of a given frame does not take into account the dependencies it may have

outside its own stream. This means that frames from one stream labelled as high-

priority (or with high utility) may very well end-up paired with low-utility frames

from the other stream because their presentation timestamps coincide.

Algorithm 3.3 stores the frames that arrive in a search data structure that al-

31

Algorithm 3.4: XFADE_SET_FORGET_DEADLINE()
input : from (origin of image buffer, either α or β).

buffer (offset from 1st frame).
deadline (The time at which buffer is to be forgotten).

func XFADE_SET_FORGET_DEADLINE(from, buffer, deadline)
f orget_event← bu f f er. f orget_event
if f orget_event 6= Nil then

qsf_event_cancel(forget_event)
free(forget_event)

end
def forget_closure(from, i)

lookup← get_frame_lookup(from)
delete_from_lookup(lookup, key = i)

end
f orget_event← create_event(forget_closure, deadline)
f orget_event.arg[0]← f rom
f orget_event.arg[1]← i
bu f f er. f orget_event← f orget_event
qsf_event_submit(forget_event)

end

lows fast retrieval of frames keyed by their position (presentation order) within the

XFADE element. The lookup must allow finding data “closest” to the key given,

must provide sorted iteration of values in presentation order, and must provide fast

deletion and insertion. Off-the-shelf balanced search tree implementations4 that

have been augmented to allow iteration over their values are good candidates for

that purpose. If we also consider that the frames arrive at the XFADE element par-

tially sorted in order of Presentation TimeStamp (PTS) because of the priority order

in which they are received, we might instead use a skip list [18] in the future, which

might prove to be more efficient under the circumstances.

Frames are kept around in the XFADE at least as long as they can be needed.

The XFADE maintains references to a buffer with PTS i until any frame in the

same stream with PTS j, with j > i, passes its presentation time. The algorithm

XFADE_REMEMBER_FRAME() determines the precise times at which buffers can

4Balanced tree implementations are widely available in multiple languages.

32

be discarded, based on buffer display times. This time value is calculated by the

helper function get_display_time(). This function uses the QStream time-

line of a stream and the buffer’s PTS within that stream to perform the calculation.

When the XFADE element receives a new buffer, lines 7 and 11 in Algorithm 3.3

update the “forget time” for both the new frame and previous frame (in presentation

order) in the lookup at the time of reception. For example, if the lookup were

to hypothetically contain two frames A and C with respective PTS x and x + 2 at

the time another frame B with PTS x + 1 was fed to Algorithm 3.3, the algorithm

would setup events to forget A at the time B is displayed (line 7), and B at the

time C is displayed (line 11). Algorithm 3.4 is the function that is responsible for

registering the events with the QSF event loop. It defines a closure that will remove

the forgotten buffer from the lookup. Because this function may be called several

times on the same input stream and buffer, it takes care of cancelling any existing

event before registering a new event.

Algorithm 3.5: XFADE_READY_IMAGE()
input : stub (the image stub to blend).
output: The blended image.

func XFADE_READY_IMAGE(stub)
i← stub.pts
lookupα ← get_frame_lookup(α)
lookupβ ← get_frame_lookup(β)
imgα ← lookup_closest_match(lookupα , i)
imgβ ← lookup_closest_match(lookupβ , i)
transparency← (i−overlap_start)/overlap_duration
stub.data← alpha_blend(imgα ,imgβ ,transparency)
stub.ready← true
return stub

end

When a QineImage must be displayed, its transform method is called.

The stub frames created by XFADE_RECV_BUFFER are setup to invoke function

XFADE_READY_IMAGE, which retrieves the pair of images from the two input

streams and performs the alpha blending operation. Once XFADE_READY_IMAGE

returns, the image is completely transformed and can be displayed.

33

3.4 Pipeline Assembly
An application’s behaviour in Qinematic is completely driven the manner in which

its pads and elements are chained together. The structure of the graph of elements

and the nature of each element determines how data is moved and how it is pro-

cessed. This arrangement of elements and pads is called a pipeline in Qinematic,

like in most of the other frameworks. This section intends to shed light on the tools

Qinematic provides to construct, modify, and destroy the pipeline elements, as well

as provide a description of the established data model.

The elements drive the application in two possible ways. First, they can act on

incoming data immediately by dropping it, pushing it downstream, or transforming

it before passing it down. The links formed between elements in the pipeline will

determine where image and audio buffers are transported. Also, the logic inside

elements can enclose additional units of work to be processed inside the passing

data. These additional processing stages can be stacked on buffers to allow op-

erations to be performed in an order that would be difficult to program from the

arrangement of the elements in the pipeline graph alone. This will be covered later

in the chapter when we discuss operations on buffers (see Subsection 3.4.4)

In Qinematic, a pipeline is fully described by an XML file. Using a simple and

transparent descriptive language such as XML allows the Qinematic tools to infer a

lot of information statically from the description file.

Several factors have been considered in choosing the language:

1. Manipulating the language from a web application.

2. Reading, Querying, and Generating the pipeline description files.

3. Extending language features.

XML presents an ideal solution to all these factors and blends well in the Web

picture. The wide availability of tools to parse and verify XML also made it easy

for us to develop tools outside the browser, such as on the desktop.

We have considered other simpler languages such as Javascript Object Notation

(JSON) to describe the pipelines, which provides several of the desirable features

that XML provides. Even though the language is simpler to manipulate and allows

34

literal translation in JavaScript, we found that that the available tools for manipu-

lating JSON were not as mature and feature rich as those available for XML with

regards to error-reporting. The initial parser for constructing Qinematic pipeline

used JSON as the source language, and we found it more difficult to report mean-

ingful errors. We have found also that working with XML will generally result in

more maintainable pipeline definition files.

3.4.1 Construction

Qinematic provides a set of primitives for assembling pipelines. Elements are first

constructed from a set of named attributes and values, and then linked together

along named paths.

Constructing elements requires an element type, an element name, and a list of

name-value pairs for any properties that are essential at construction time. The per-

mitted names for the types of elements (e.g., “seq”, “xfade”, etc.) are determined

at the time the element types are registered with Qinematic. The list of permitted

attributes for each type can be introspected at run-time (using reflection) from hook

functions on the element class objects registered.

Linking two elements requires their names (or a pointer), as well as names

of their respective pads that should be joined. If the names of the pads are not

specified, then Qinematic defaults to using the first available pad of each element.

The only restriction to the application of this rule is that the pad directions are

compatible (i.e., sink and source).

Qinematic provides a basic C Application Programming Interface (API) for

constructing elements, specifying their attributes, manipulating their pads and the

connections of those pads. The core API is very simple, but is not suitable for

manually creating complex pipelines with hundreds of elements.

For that purpose, Qinematic provides a higher level C API that leverages the

core API, as well as Python bindings to this API and a pipeline builder tool. The

builder can create and play a pipeline from a static XML pipeline description file

containing element definitions and their links. An example valid input for this

utility is listed in Figure 3.6.

The description files are enclosed in a < pipeline > tag and contain a set of <root>

35

< p i p e l i n e >
< r o o t r i d ="firstroot">

< c l i p e i d ="clip100">
<prop name="start-frame" t y p e ="int">1000< / prop >
<prop name="end-frame" t y p e ="int">1099< / prop >
<vdec >

< c l i e n t e i d ="fi3kdb">
<prop name="filename"> 3000 . db< / prop >
<prop name="addr" > l o c a l h o s t < / prop >
<prop name="port" >5000< / prop >

< / c l i e n t >
< / vdec >

< / c l i p >
< / r o o t >

< p i p e l i n e >

Figure 3.6: Example pipeline definition file featuring 3 elements: a client, a
decoder, and a clip.

elements, which identify entry points into the pipeline. The <root> elements are

listed at the top level of the file, and act as sink elements in the static pipeline.

When the pipeline is instantiated however, the pipeline builder will connect the

static sink element from the XML definition to a QvidPlayer element. The player

element will allow the user to view the video data flowing through the pipeline. The

same set of operations that can be performed on a Qvid video can be performed

on a Qinematic element regardless of the complexity of the static pipeline. That is,

playing in forward and reverse directions at fast and slow speeds, and scrubbing.

Tags in the XML file will be instantiated into Qinematic elements, and con-

nections between the elements will reflect closely the organization of the tags in

the file. The current XML format reserves names root, pipeline, prop, and ref for

special XML elements, but all other names are mapped to actual programmed Qine-

matic elements (e.g., seq, xfade, clip). The other special elements not discussed

so far are:

• The <prop> tag defines a named property on the enclosing element. The value

of this attribute is contained inside the <prop> element itself, and the type of

that value is specified in the type attribute, as in type="int". Specifying

36

<vdec e i d ="movie_decoder">
< c l i e n t >

<prop name="addr">a . example . com< / prop >
<prop name="filename">movie . db< / prop >
<prop name="port">5000< / prop >

< / c l i e n t >
< / vdec >
< c l i p e i d ="clip1">

<prop name="start-frame" t y p e ="int">30< / prop >
<prop name="end-frame" t y p e ="int">90< / prop >
< r e f e i d ="movie_decoder" / >

< / c l i p >
< r o o t r i d ="1">

< seq e i d ="clip1_twice">
< r e f e i d ="clip1" / >
< r e f e i d ="clip1" / >
. . .

< / seq >
< / r o o t >

Figure 3.7: Example Usage of the <ref> Element

the type in the XML file allows the pipeline constructor to do type checking

and type coercion with the corresponding attribute of the Qinematic object

representing that element in the pipeline.

• The <ref> acts as a symbolic reference to another element placed elsewhere

in the XML document. Because it is very common to reuse the same ele-

ments in many of the sub-trees of the graph, the <ref> element is very conve-

nient. When the pipeline construction algorithm encounters a <ref> element,

it replaces it with the element it refers to, based on the eid specified as its

attribute. For instance, in Figure 3.7 we use the <ref> element to reuse a

component identified as rat2 that was previously defined. <ref> nodes are

not allowed to have children elements in the static XML representation.

37

Construction Process

The pipeline builder zips through the tree from one of the <root> elements (speci-

fied prior to the construction) and towards the source(s) (e.g., the < client > node in

Figure 3.7). Each element encountered is added to a lookup data structure during

the process, indexed by an element unique identifier <eid> so that the targets of

<ref> nodes can be identified quickly.

To build the dynamic pipeline, the pipeline builder makes multiple traversals

over the graph:

Parsing The static pipeline (XML document) is first parsed using a Simple API for

XML (SAX) Parser, and the first intermediate representation of the graph is

constructed. Nodes (vertices) are stored in various symbol tables indexed by

rid for root elements, and eid for elements. Also, each node holds a list of

element ids to which it is connected. The anonymous elements (those with

no ids) are assigned unique ids implicitly in the process. At the end of this

step, all the possible edges and vertices of the graph are known, and the static

pipeline information is represented in memory as a forest.

Reference Resolution This step resolves elements referenced by <ref> nodes (ver-

ifies existence of elements) and detects cycles that may have been introduced

(cyclic pipelines are rejected). All the edge endpoints that are <ref> nodes

are replaced with their respective target, using the eid of the reference.

Qinematic Conversion The last stage of the process converts the intermediate

representation of nodes and edges into the corresponding Qinematic ele-

ments and pads. The names of the XML elements translate to the names

of the Qinematic element classes, and the appropriate element constructors

are invoked with the attributes present in the XML elements. Each edge will

become a connection between 2 pads of neighbouring elements. All values

assigned are type checked, and appropriate error messages are returned to

the user if necessary.

The current builder, like any prototype, has some limitations. Most notably is

that it makes certain types of elements very awkward, if not impossible, to repre-

sent. The conversion phase of the construction will create a new Qinematic element

38

for each visit of a vertex during the traversal, without pruning. As a result, vertices

reachable from the root by more than one path like the targets of reference nodes

will be cloned for each path. For example, the element with eid="clip1" in Fig-

ure 3.7 is defined only once but can be reached in two ways from <root rid="1">.

It will therefore be represented twice in the instantiated pipeline, similarly with all

the elements downstream from that clip. Elements such as demuxers should have

the ability to output data on more than one pad, and therefore cannot be described

currently. The Qinematic element-pad system however has no such restriction, so

this is really a limitation of the pipeline builder only.

To resolve these issues, the prototype would need to be changed in the follow-

ing ways:

• The edges should specify the names of the pads that can be linked. This

would allow multiple edges between 2 given elements (i.e., multigraphs).

• The current <ref> nodes are useful because they allow sub-trees to be re-

peated in the pipeline, but it is also desirable to be able to link elements

without duplicating them. A new syntax, perhaps using another tag, should

allow “referencing” without duplication. At the same time this would allow

directed acyclic graphs to be represented, not just trees.

3.4.2 Destruction

The destruction of the pipeline is conceptually much simpler than the construction,

but is equally challenging. Once the pipeline is constructed and data has started

flowing, a graceful arrest of the system requires coordination between the various

elements.

Shutdown of a Qinematic pipeline is ordinarily initiated by the user (e.g., the

user closes a window, or completes a key sequence). The following sequence of

events will bring Qinematic to a full stop:

1. The builder releases the references to the elements it has created in the

pipeline.

2. Any element whose last reference goes away will initiate its own shutdown

sequence. First, it releases its own references. This usually means that it

39

drops auxiliary data it keeps around in memory, and it loses references to its

own pads.

3. The elements are then individually finalized and their memory is reclaimed.

If memory for certain elements cannot be reclaimed right away, for instance

because the element still maintains network connections open, then they will

be deleted asynchronously once the resources have been released.

4. The final step of the pipeline construction consists in stopping the event loop.

The event loop will stop iterating once its last reference is dropped.

3.4.3 Qinematic Events

The most interesting stage in the life of a Qinematic application, the main stage,

takes place between the construction and destruction. During that stage, pipelines

react to various types of application defined events. In this section we shall describe

the life-cycle of a Qinematic application in terms of those events.

Each Qinematic element can be in one of many possible states at any time, and

the Qinematic events are the objects that cause transitions between element states

to occur. The set of possible states of an element in Qinematic closely follows the

QStream/Qvid state model.

CLOSED This is the state of the pipeline elements just after their construction.

The elements are present in memory, they are connected, their properties are

set, but connections to the server, database, or files on disk have not yet been

opened.

OPENED This is the state of the pipeline elements after the files and network

connections have been opened. Once opened, the length of the input stream,

the number of streams, and the stream configuration (i.e., frame-rate, or

codecs used) is known. Each element in the pipeline knows about its source.

SEEKING In this state, each element has set a playback position on its source.

This happens when the pipeline is instructed to start playing, for instance

when the “play” button is pressed on the GUI. Elements also use this state

40

CLOSED

OPENED

SEEKING

PLAYING

MAIMING

STOPPED

Figure 3.8: Relations Between Element States

to calculate the amount of time that will be needed to use the first frame

after the start message, by consulting the timeline (see Subsection 2.2.2, and

Algorithm 3.1 for more details).

PLAYING In this state, the elements are processing data according to their indi-

vidual timelines.

MAIMING Elements in this state cease to process new data. Elements go in this

state for two reasons: they are either preparing for a full stop, or preparing

to receive a new seek position.

STOPPED Elements go in this state when the maiming operation is complete and

no new seek position has been ordered for the element. The difference with

the CLOSED state is that resources remain opened in the stopped state, and

the element positions can be set again anytime with a seek.

The set of allowed events in Qinematic is closely related to those states. For

each of those states, Qinematic generally provides a pair of events that will bring

41

an element in and out of that state: a request event and its reply (response).

Here is a list of the current Qinematic events and the effect they should have

on the elements pipeline. When applicable, each entry describes both the request

and the reply (suffixed with “_DONE”).

OPEN & OPEN_DONE Asks the element upstream to open a stream. On suc-

cess, the response will contain a description of the stream that was opened

(i.e. codec, length, and dimensions). This moves the element from a closed

state to an opened state.

SEEK & SEEK_DONE Asks the element upstream to stop what it is doing and

set new playback parameters (position, speed, duration, and direction). To

minimize costly round trips between client and server, the operations that

stop and restart are always pipelined. The response will contain information

about the new playback position5. When received, an element moves to state

MAIMING if it was PLAYING and makes the new seek position effective.

When the new seek position is set, it sends SEEK_DONE and waits for a

START event (unless it has already arrived by the time SEEK_DONE is

sent).

MAIM & MAIM_DONE Sent upstream to request that no more data be sent.

This is generally used to stop the pipeline temporarily until a new SEEK re-

quest comes, or just before the application comes to a permanent stop (e.g.,

before quitting). The element receiving this message moves into the MAIM-

ING state. Elements in the maiming state can have one operation pending,

again, to minimize round trips.

EOF Sent downstream to notify that there is no more data to send according to the

last SEEK event.

START The start event allows delaying the time at which upstream should start

sending data. The START is sent after a SEEK message, either after or

before the SEEK_DONE response comes back. When an element wishes

5Depending on which playback mode is enabled (e.g., frame-accurate, or key-frame only), the
position in the response may be different than the one requested.

42

to receive the data as soon as it is ready, this request is pipelined with the

SEEK. Qinematic uses the delay feature only to synchronize arrival of data

between streams.

CLIENT_CONSUME This event is sent upstream to indicate that a given amount

of data (buffers) has been processed completely downstream. This is only

used when streams are playing in a mode we call “best-effort”, where drop-

ping data along the pipeline is not allowed, but data can arrive late. Best-

effort mode would be used for instance when video is saved to disk (and

quality needs to be at its maximum) instead of played on screen. This event

throttles the arrival of data on the client to prevent overallocation of memory

resources.

This relatively small set of events has been sufficient in Qinematic to convert

all of the existing Qvid modules into Qinematic elements.

Event Propagation

Qinematic follows conventions to orchestrate elements in the pipeline. These con-

ventions define where and how events can travel between elements in the pipeline.

What becomes of the events once they enter an element is not, and cannot, be

monitored by Qinematic.

Firstly, care must be taken to never block the event loop thread when receiving

an event, or when receiving a reply to an event. Secondly the elements must ex-

pect to receive and send out events in accordance to the event-type and state rules

described earlier. For instance, elements must allow multiple seeks in a row to be

received.

Elements register callbacks on the pads they own to receive request events, and

use methods on the qine_pad to reply. When an event is received or generated, the

element performs one of the following actions:

1. Reception: The element can ignore an event, and simply push it out.

2. Reception: The element can absorb the event if the event is a downstream

event such as EOF by choosing to not pass it.

43

3. Reception: The element can subscribe to a request event to signal an interest

in the response. This is done by placing a hook (closure) on the request event,

which will be invoked later when the response for that request is generated.

For instance, placing a hook on a SEEK event will allow an element to also

receive the corresponding SEEK_DONE event

4. Reception: The element can hold on to a received event until some condition

is satisfied. This will delay the propagation of the event (or a response to it).

5. Generation: The element can create a response event, attach it to an ex-

isting request, and publish that response event. Qinematic will invoke the

closure(s) attached to the request object. These closures are invoked in the

opposite order they were registered, which gives room for a lot of flexibility

in terms of controlling the moment at which other elements are notified.

6. Generation: The element can generate a request event, subscribe to it so

that it receives the response, and push it out. This also allows creating com-

plex chains of events between elements. For instance, an element with two

upstream neighbours and one downstream element could receive a SEEK

from downstream, create two new SEEK events to forward upstream, and

then wait for both of the upstream SEEKs to finish before responding to the

original.

The act of pushing an event on a pad always sends that event to the correspond-

ing peer on that pad6, for both downstream and upstream events. This is the default

mode of travel of all request events.

Reply events on the other hand travel solely from one element to the other via

closures that have been registered. Hence, during a publish operation, reply events

will spring into only the elements that have shown interest in the corresponding

request, i.e., the subscribers.

In this section we have covered the various types of events that Qinematic

offers, and the manner in which those events are propagated between elements. In

the next section we shall give an overview of the life-cycle of buffers in Qinematic.

6If the pad is not connected, then the event is silently garbage collected.

44

struct QineBuffer {
/∗< p u b l i c >∗ /
QineBufferType type ;
QineStructure ∗structure ; /∗ t y p e s p e c i f i c e x t r a i n f o ∗ /
gpointer data ; /∗ t y p e s p e c i f i c d a t a p o i n t e r ∗ /

/∗< p r i v a t e >∗ /
QsfCallback destroy ;
QsfCallback consume ;
gboolean consumed ;
volatile gint refcount ;

} ;

Figure 3.9: The QineBuffer structure.

3.4.4 Qinematic Buffers

In addition to events that direct the flow of the pipeline, Qinematic provides buffers

to encapsulate data. Buffers always flow downstream and are composed of a header

and payload.

The header contains type information on the payload, a reference count, as well

as consumption and destruction callbacks.

The destroy callback is invoked when the last reference to the buffer is dropped,

and was setup by the creator of the buffer. It is responsible for freeing memory

associated with the buffer. Small buffers are common, and their data is often part

of the same allocation as the buffer header itself.

The consume callback is similar to the destroy callback, but is only used in best-

effort mode. It can be used to notify upstream that the buffer has been completely

processed. It is separated from the destruction operation to allow destroying buffers

without sending the notification (for instance this would be used during a maim

operation).

Two main types of buffers are currently in use in Qinematic: image and audio

buffers. Each of those can be divided further in subtypes for each of the various

decoding stages traversed. The rest of this section will focus on a description of

the image buffers.

45

struct QineImage {
/∗ Memory management ∗ /
gint ref_count ;
QsfCallback release ;

/∗ T r a n s f o r m a t i o n c o n t e x t ∗ /
GQuark transform_id ;
QineStructure ∗transform_ctx ;
GList ∗deps ; /∗ i n p u t images ∗ /
QsfCallback transform ;

/∗ F i n a l image ∗ /
gboolean ready ;
QineImgFmt fmt ;
guint w ;
guint h ;
gdouble aspect ;
QvidImage data ;

} ;

Figure 3.10: A QineImage transformation context. It contains information
about the transformation operation to apply and the input images.

More than Images: QineImages

Qinematic pipelines are able to represent transformations on video using special

objects called QineImages. QineImages travel inside data buffers, but provide a lot

more than mere data. They are effectively closures that will generate video images

on demand.

Computationally expensive operations can be deferred inside QineImages until

their result needs to be displayed or must take part in the computation of another

image that must be displayed, etc.

Transformations accumulate on the QineImage as it traverses the pipeline. At

the end of the traversal, when the QineImage reaches a sink, it has encapsulated

all the work that must be performed to produce its final representation. That is, the

image that the viewer will see.

This is a great feature to possess in a quality-adaptive scenario, as it allows

work to be prioritized better. Firstly, effort can be spent only on QineImages that

reach the end of the pipeline. Secondly, deferring the computational work until the

last moment may allow better informed decisions to be taken than if they had been

taken on arrival of the buffer at the element.

46

QineImages contain a transformation id that uniquely identifies the transfor-

mation by name, as well as a transformation function pointer. Each element that

applies effects to QineImages can define its own identifier.

The structure also holds a list of references to other QineImages to be used as

input to the transformation. If extra state is needed, the QineImage conveniently

also carries a QineStructure which can hold typed key-value pairs. The images

are reference counted, and can be included inside dependency trees of images.

However, cyclic dependencies are not prevented by Qinematic so elements should

exert extra caution.

A QineImage must always provide information about the final image that will

result if the transformation is applied (this is specified in the last block of Fig-

ure 3.10). This is necessary for checking that transformation operations are com-

patible.

Unfortunately, the current transformation functions are currently not allowed

to complete asynchronously. The convention is that once invoked, they should

perform their computation, and toggle the “ready” flag on the image. They have

been designed for video effect operations that are non-adaptive, such as colour

conversions, cropping, and blending. If elements wish to perform transformations

whose quality will vary depending on time and available resources, they should be

integrated as part of the Qvid timeline.

3.5 Summary
Qinematic is a framework to process video in sophisticated pipelines: elements en-

capsulate the processing code and are connected together using pads. This process-

ing abstraction is simple and is employed by most current media frameworks. It is

simple, but is generic enough to easily model common video editor features such

as separating movies into clips, sequencing clips, adding effects, and cross-fades.

By leveraging Qvid’s timeline and the execution model of the QStream framework,

Qinematic also preserves the ability to adapt its output quality during streaming.

The timeline code assigns timestamps to the various buffers, which allows their

prioritization. Qinematic pipelines make use of one timeline per input stream, and

will combine the information of all timelines to control the overall execution of

47

the pipeline. That is, given a start point to play a video, Qinematic schedules the

arrival of buffers in the various stages of the pipeline and can thus coordinate the

overall flow of data. Regarding the creation of pipelines, Qinematic provides tools

that will parse XML files containing pipeline definitions, will assemble the pipeline,

and then render the output of the pipeline in a GUI. The GUI supports all the ad-

vanced navigation features commonly found in local editors, namely fast forward

and rewind (in speeds that range from 0.5x to 128x), single-step, and last but not

least scrubbing. The Qinematic framework is work in progress, and is still missing

many desirable features found in today’s professional tools. However, our ability

to extend Qvid enough to what we currently support constitutes a strong indication

that Qinematic is moving in the right direction.

48

Chapter 4

Related Work

Qinematic combines quality adaptation aspects and extensibility to create a plat-

form with which amateurs can collaborate in editing video. Qinematic embraces

the Internet video streaming model as it allows distributed teams to work on com-

mon distributed content. This is in contrast with most current professional editing

utilities which usually manipulate video content stored locally or on LAN network

storage.

GStreamer [6] is a popular open-source multimedia framework with a plug-in

based architecture running on a variety of platforms including Linux, Windows,

and OS X. It is a very successful framework that is used inside many audio and

video applications. GStreamer offers a rich panoply of plug-ins (over 150) which

contain elements that process multimedia data in various ways. Examples of ele-

ments are video and audio codecs, container file format readers and writers (.avi,

.mkv, etc.), and various drivers for audio and video (v4l, alsa, x11, etc.). GStreamer

also provides mechanisms for plug-ins to communicate and negotiate common sup-

ported formats, and provides a pipeline architecture. Users can write complex ap-

plication pipelines using the various plug-ins, and programmers can easily integrate

legacy code (e.g., codecs) into GStreamer, by following their API, or by using one

of the higher level language interfaces.

We have considered augmenting the GStreamer model to support adaptation.

This would allow us to leverage all of the pipeline construction features, a wealth

of plug-ins, and the interoperability between formats. Unfortunately, there are

49

many fundamental differences between the QStream and GStreamer code bases

that made the integration of the two frameworks impractical. The end result is

that Qinematic is a unique blend between extensibility provided by GStreamer-

like pipeline structures (which GStreamer in turn borrows from DirectShow), and

quality-adaptation oriented execution.

Firstly, the thread models are different. GStreamer uses a multithreaded ar-

chitecture and offers two modes of operation to displace data in the pipeline:

pull-based or push-based scheduling. Pulling means that elements run a thread

to control the flow of their input, and pushing means that an element is driven com-

pletely by its upstream elements. Different sections of the pipeline can use different

modes in different threads, provided that they communicate via message queues or

a shared bus. Qinematic on the other hand is single threaded and event-driven, and

has no immediate need for the pull-based mode, given that it is the timeline that

controls the arrival of data in the elements.

GStreamer is designed to be embedded inside an application (like an mp3 or

movie player), not the opposite. It is also a framework, which means that the

application is written with it, not around it.

More importantly, GStreamer is very limited in terms of quality adaptation.

For controlling the rate in the pipeline, we must rely on QoS events, which record

statistics on differences between timestamps of buffers on arrival and the clock.

The claim is that those events could be used to provide some form of feedback

loop with elements upstream to adjust their processing. However, the application

of feedback loops is of dubious utility in video streaming settings as they require

complex resource estimation. In order to be efficient, the adaptation mechanisms

must be able to estimate the CPU time required to process the video data, and

estimate the CPU time that will be available, and then derive control decisions that

will lead to the best final video quality [16]. Because Qinematic uses Priority-

Progress, such complex estimates are not needed to adapt output quality.

It is important to mention that GStreamer also has many auto-configuration

features that Qinematic lacks, such as video format auto-detection, grouping of sets

of elements into bins for easier pipeline management, and special meta-elements

such as generic decoders that can transform into specific decoder elements based

on the sources and sinks connected to them. Qinematic is in its early stages, and

50

we simply reached for the simplest solution, due to time constraints.

Pitivi [11] is a new project which combines existing GStreamer elements with

GStreamer’s python bindings, to allow non-linear editing in a friendly desktop user

interface. Being written on top of GStreamer, the project also suffers from the same

deficiencies with regards to quality adaptation. In the hope to simplify writing and

prototyping of new elements, Qinematic also provides Python bindings to proto-

type the necessary elements to build interesting video editing software.

Kaltura [7] is a new platform that shares our goal of providing an open source

video platform. The Kaltura advanced editor (KAE) provides a web-based timeline-

based video editing and sharing platform. The platform itself is open-source, but

uses proprietary Adobe Flash technology to stream videos and show interfaces.

Similarly to Kaltura we aim to expose Qinematic using a web interface.

Qinematic also borrows ideas from the popular image processing solution Core

Image [4] for lazy processing of image buffers. Core Image lets developers define

a series of image filters, called Image Units as image convolution kernels, com-

positions, or deformations to apply on source images. Core Image dynamically

computes the processing pipeline for each pixel and then recombines the results

in the final image. The platform has the capability to compile the image units into

shader language assembly to take advantage of available accelerated graphics hard-

ware. The images that Qinematic provides, QineImages, have similar properties,

as pipelines of transformations can also be applied to them, and these pipelines can

be introspected to perform optimizations (e.g., for doing algebra on image trans-

formations). This optimizer, as well as the compiler are currently missing from

Qinematic, and are part of future work.

Aside from multimedia frameworks, it is also worth mentioning how our ap-

proach compares to the most popular open-source video players, MPlayer [9] and

VLC [1], which take a different view on the need for quality adaptation. They are

both highly optimized applications that provide large sets of features, codecs, and

output drivers written by talented and devoted teams of developers. However, even

there, adaptation goes only as far as adjusting frame rate. Their philosophy is that

you don’t need adaptation if everything is done quicker. In practice however, this

works well only until you play very high quality content, or multiple videos simul-

taneously [16]. Qinematic, on the other hand, doesn’t have as many features, but

51

reaps the benefits of adaptation for CPU, network and storage.

In this chapter we have reviewed existing multimedia frameworks similar to

Qinematic, and compared their features in terms of extensibility and quality adap-

tation. The Qinematic platform is unique in its genre as it combines the plug-

in/pipeline models of popular frameworks and state of the art quality adaptation

techniques.

52

Chapter 5

Conclusions

We have built Qinematic, a quality-adaptive video editing framework. Qinematic

adopts the event-driven model of QStream necessary for quality-adaptation, and

leverages the video functionalities of Qvid, a video player also built with the same

model. The client in Qinematic uses the Qvid timeline to prioritize data flowing in

its pipeline, which consequently allows QStream’s event loop to do the orchestra-

tion of the processing in all elements at once.

Our hope with Qinematic is to see it being used in a distributed video-authoring

platform, to help teams of amateurs elevate the quality of their collective work. We

are targeting a small set of features that are common to many editors we find to-

day: clips, effects, and transitions. In order to do that, we had to extend Qvid’s

static model to something more dynamic which would allow complex video pro-

cessing pipeline configurations. We have looked for inspiration in existing media

frameworks, and found that they couldn’t be used directly because of large dif-

ferences in design and implementation. These frameworks have elegantly solved

the problem of modularity and flexibility, and we believe that QStream and Qvid

solve the problem of adaptation. Qinematic stands in the middle: extensibility and

quality-adaptation.

Qinematic was constructed over a very short period of time, and time con-

straints have forced us to abandon features part of the initial plan, unfortunately.

From the initial three goals of providing support for clips, intra-clip effects, and

inter-clip effects (transitions), only the first two are supported in the implemen-

53

tation as of this writing. The third is documented in this thesis in the form of

algorithms only. Implementation for XFADE has started but its completion is part

of the future work.

Several smaller side projects related to Qinematic have been completed dur-

ing the course of the masters and not been included in this thesis but are still

worth mentioning. Originally, we had decided that Qinematic would be built us-

ing the rich Internet application model. Hence, one of the early experiments we

conducted was to see how well the existing Qvid player could be adapted to work

from a web interface. At the time, the video-editing on-line services we studied

(Kaltura, JumpCut, YouTube Remixer), were offering very similar flash based ser-

vices, locked down inside an applet which took only a small portion of the available

viewing space. For the experiment, we have built a fully compliant NPAPI to pro-

vide access to video content. Shortcomings of the API, namely the inability for

plug-ins to freely access information in the Document Object Model (DOM) of the

enclosing page at will, would have severely affected the user experience. Further-

more, noticing that some of these sites were losing popularity, e.g. JumpCut, we

decided to focus on different aspects of Qinematic.

Another point worth mentioning is that Qinematic’s default video output driver

uses OpenGL, to allow close visual inspection of the output produced with zoom-

ins, and zoom-outs, and also out of convenience to avoid extra conversions when

working with RGB image formats. Generally speaking, GL makes many opera-

tions very simple to implement, like linear transformations and overlays of text

and image.

We concede that Qinematic is still quite far from having all the features we

find today in professional video editing tools produced by Apple, Adobe, or Ulead.

Video editors are hard, especially when they are distributed. Many improvements

are still needed, but we are convinced that what we have in Qinematic is the first

step forward towards a collaborative video editing platform.

54

Bibliography

[1] VLC: The cross-platform open-source multimedia framework, player and
server. Homepage: http://www.videolan.org/vlc/.

[2] AviSynth. Homepage: http://avisynth.org/.

[3] YouTube Surpasses 100 Million US Viewers.
http://www.comscore.com/Press_Events/Press_Releases/2009/3/YouTube_
Surpasses_100_Million_US_Viewers, March 2009.

[4] Developing with Core Image.
http://developer.apple.com/macosx/coreimage.html.

[5] Microsoft DirectShow API.
http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx.

[6] GStreamer: Open Source Multimedia Framework. Homepage:
http://gstreamer.freedesktop.org/.

[7] Understanding Kaltura - Open Source Online Video Platform. http://www.
kaltura.org/understanding-kaltura-open-source-video-online-platform.

[8] MediaSilo. Homepage: http://www.mediasilo.com.

[9] MPlayer. Homepage: http://www.mplayerhq.hu/.

[10] Gecko Plugin API reference.
https://developer.mozilla.org/en/Gecko_Plugin_API_Reference.

[11] PiTiVi: An open-source video editor for Linux. Homepage:
http://www.pitivi.org/.

[12] QStream: Quality-Adaptive Media Streaming. Homepage:
http://www.qstream.org.

55

http://www.videolan.org/vlc/
http://avisynth.org/
http://www.comscore.com/Press_Events/Press_Releases/2009/3/YouTube_Surpasses_100_Million_US_Viewers
http://www.comscore.com/Press_Events/Press_Releases/2009/3/YouTube_Surpasses_100_Million_US_Viewers
http://developer.apple.com/macosx/coreimage.html
http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx
http://gstreamer.freedesktop.org/
http://www.kaltura.org/understanding-kaltura-open-source-video-online-platform
http://www.kaltura.org/understanding-kaltura-open-source-video-online-platform
http://www.mediasilo.com
http://www.mplayerhq.hu/
https://developer.mozilla.org/en/Gecko_Plugin_API_Reference
http://www.pitivi.org/
http://www.qstream.org

[13] D. L. Eager, M. K. Vernon, and J. Zahorjan. Bandwidth Skimming: A
Technique for Cost-Effective Video-on-Demand. In Proceedings of
IS&T/SPIE Conference on Multimedia Computing and Networking
(MMCN), pages 206–215. SPIE, 2000.

[14] C. Krasic and J.-S. Légaré. Interactivity and scalability enhancements for
quality-adaptive streaming. In MM ’08: Proceeding of the 16th ACM
international conference on Multimedia, pages 753–756, New York, NY,
USA, 2008. ACM.

[15] C. Krasic, J. Walpole, and W.-c. Feng. Quality-adaptive media streaming by
priority drop. In NOSSDAV ’03: Proceedings of the 13th international
workshop on Network and operating systems support for digital audio and
video, pages 112–121, New York, NY, USA, 2003. ACM.

[16] C. Krasic, A. Sinha, and L. Kirsh. Priority-progress CPU adaptation for
elastic real-time applications. volume 6504, pages 65040G.1–65040G.12.
SPIE, 2007.

[17] B. Novikov and O. Proskurnin. Towards Collaborative Video Authoring. In
Advances in Databases and Information Systems, 7th East European
Conference (ADBIS 2003), pages 370–380, 2003.

[18] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, 1990.

[19] L. Rutledge. Smil 2.0: Xml for web multimedia. IEEE Internet Computing,
5(5):78–84, 2001. ISSN 1089-7801.

56

Appendix A: Qinematic in Action

This appendix will provide examples and instructions to compile and run Qine-

matic. It also details how the code for the project is divided, and describes the

purpose of each of the project’s components.

A.1 Obtaining the Code
The source code for Qinematic is packaged with the rest of the QStream framework

in the Qvid component. The homepage of the QStream project [12] has details on

how to checkout and install a copy of the code. The essential installation can be

reproduced by executing a program equivalent to Figure A.1. Assuming you have

the necessary dependency libraries, the Qinematic folder should be built along with

all of Qvid.

A.1.1 File Organization

The core of the Qinematic code is located in the Qvid component of QStream,

in qvid/src/qinematic/. And some files shared by Qinematic and the rest of Qvid

have been placed in a different directory to avoid shortcomings of autotools to

track dependencies across directories for generated header files (i.e. files listed

under BUILT_SOURCES variables). Those files contain declarations for QineImage

constants, macros used to define new objects, as well as declarations for basic

enums. They are located in qvid/src/common/. All files from the Qinematic project

are prefixed with “qine_”.

The Qinematic source tree is subdivided into components, each in their sub-

folder.

57

qvid/src/qinematic/
qvid/src/common/

! / b i n / bash
s e t −e
mkdir −p ~ / s r c /
cd ~ / s r c /
i f [[! −d "$BRANCHNAME"]] ; then

HPAGE="http://svn.qstream.org/qstream/branches/"
svn c h e c k o u t "$HPAGE" /"$BRANCHNAME"

e l s e
cd "$BRANCHNAME"
. / b u i l d−a l l . sh l i b p c l −q s t r e a m q s f qs f−example \

x v i d c o r e−q s t r e a m gscope qmon2 \
m x t r a f 2 qps qggen qv id

f i

Figure A.1: Essential steps to download and compile QStream and Qine-
matic. The environment variable BRANCHNAME should be set to
the most recent branch of QStream.

core/ Contains the set of base classes of Qinematic, for elements, buffers, and pads

and associated header files.

elements/ Contains the Qinematic elements written in C. Some of these elements

are wrappers around Qvid components so that they can be used in Qine-

matic’s pipeline, while others are purely for video editing operations or ef-

fects.

defs/ For a structure/object from Qinematic to be exposed in Python, a definitions

file must be created. An excerpt of a definitions file for an object called a

QinePipeInfo object is shown in listing Figure A.2.

python/ This directory contains files that get compiled into the Qinematic Python

qine module. The files that compose that module are created from the files

in the defs/ folder. A special source-to-source compiler from the python-

gobject library is used to produce C code for Python extension modules only

from the information in a definitions file.

override/ In some corner cases, the above compiler cannot produce correct code.

To cover for these cases, the compiler allows reading in special files that

58

(d e f i n e− p o i n t e r P i p e I n f o
(in−module "Qine")
(c−name "QinePipeInfo")
(g type− id "QINE_TYPE_PIPE_INFO")
(f i e l d s
)

)

(def ine−method a d d _ r o o t
(o f−o b j e c t "QinePipeInfo")
(c−name "qine_pipe_info_add_root")
(r e t u r n− t y p e "none")
(p a r a m e t e r s

’ ("const-gchar*" "root_id")
’ ("const-gchar*" "root_elem_id")

)
)

(def ine−method d e s t r o y
(o f−o b j e c t "QinePipeInfo")
(c−name "qine_pipe_info_destroy")
(r e t u r n− t y p e "none")

)

Figure A.2: A portion of a sample definitions file for a QinePipeInfo object.
The definitions define the mapping between symbol names, and types
between the language of the bindings and the C implementation.

will replace the compiler’s output of functions specified. This folder con-

tains these files. In most cases, the overridden methods are very close to the

original output from the compiler.

tests/ A collection of sample XML pipeline definitions to use for testing of Qine-

matic features.

A.2 Building Qinematic
Certain steps in Qinematic’s build system require some explanation. Qinematic’s

build is complicated because of the bindings it packages for Python, and its layer

59

of GObject code: some small extra steps need to be taken, notably code generation

steps.

Firstly, most header and C files in Qinematic are parsed with tools such as

glib−mkenums from the glib2.0 library. These tools look for enum or struct

definitions inside header files, and generate corresponding enum type declarations

that can be introspected at run-time. For example, if we take the enum declaration

for a QinePad’s direction:

typedef enum {
QINE_PAD_SRC ,
QINE_PAD_SINK ,

} QinePadDirection ;

When Qinematic runs glib−mkenums on that declaration, the following acces-

sors are automatically created:

. . .
GType qine_pad_direction_get_type (void) ;
#define QINE_TYPE_PAD_DIRECTION (q i n e _ p a d _ d i r e c t i o n _ g e t _ t y p e ())

/∗ . . . AND . . . ∗ /

GType

qine_pad_direction_get_type (void) {
static GType type = 0 ;
if (type == 0) {

static const GEnumValue QinePadDirection_values [] = {
{ QINE_PAD_SRC , "QINE_PAD_SRC" , "src" } ,
{ QINE_PAD_SINK , "QINE_PAD_SINK" , "sink" } ,
{ 0 , NULL , NULL } /∗ s e n t i n e l ∗ /

} ; /∗ GEnumValue Q i n e P a d D i r e c t i o n _ v a l u e s ∗ /
type = g_enum_register_static ("QinePadDirection" ,

QinePadDirection_values) ;
} /∗ i f ∗ /
return type ;

}
/∗ q i n e _ p a d _ d i r e c t i o n _ g e t _ t y p e ∗ /

Qinematic uses another pass of code generation for its Python bindings code.

Definitions files, such as the ones located in the defs/ sub-directory of the source

tree are generated by a compiler called h2def.py from the python-gobject library.

It parses C and header files to find structures and GObject definitions, which it

60

defs/

identifies because of the naming conventions used in GObject code. It then creates

language-neutral definitions files, such as the one in listing Figure A.2. The out-

put is most often correct, but sometimes a minor amount of manual adjustment is

needed for instance to add or hide methods from C in the higher level language.

The definitions files are passed as input to another compiler that will generate C

code to be compiled in a Python extension module for Qinematic. This is a simple

compiler, called codegen.py that is also provided by the python−gobject library. The

one used in Qinematic is slightly different. The Qinematic codegen.py generates

code for setters in addition to getter functions. This reduces the amount of code

that has to be overridden to access (get and set) fields of simple structs from Python.

Each definitions file maps to a single Python extension module file. Once all

definitions files have been converted, their symbols are imported into a single mod-

ule called qine, which is initialized via the following function:

1 static gboolean

2 _qine_python_module_init (void)
3 {
4 PyObject ∗m ;
5 PyObject ∗d ;
6

7 load_pygobject () ;
8

9 combine_function_tables(&qine_module_functions ,
10 &py_qine_pipeline_functions ,
11 &py_qine_object_functions ,
12 &py_qine_structure_functions ,
13 &py_qine_buffer_functions ,
14 &py_qine_event_functions ,
15 &py_qine_pad_functions ,
16 &py_qine_element_functions ,
17 &py_qine_element_factory_functions ,
18 NULL) ;
19

20 m = Py_InitModule ("qine" , qine_module_functions) ;
21 d = PyModule_GetDict (m) ; /∗ borrowed ∗ /
22

23 py_qine_buffer_add_constants (m , "QINE_") ;
24 py_qine_event_add_constants (m , "QINE_") ;
25 py_qine_pad_add_constants (m , "QINE_") ;
26

27 py_qine_pipeline_register_classes (d) ;
28 py_qine_object_register_classes (d) ;

61

29 py_qine_structure_register_classes (d) ;
30 py_qine_buffer_register_classes (d) ;
31 py_qine_event_register_classes (d) ;
32 py_qine_pad_register_classes (d) ;
33 py_qine_element_register_classes (d) ;
34 py_qine_element_factory_register_classes (d) ;
35

36 _PyQineModule = m ;
37

38 if (PyRun_SimpleString ("import sys\nsys.path.insert(0,’’)")) {
39 PyErr_Print () ;
40 return FALSE ;
41 } /∗ i f ∗ /
42

43 helper .module = PyImport_ImportModule ("qine_helper") ;
44 if (!helper .module) {
45 PyErr_Print () ;
46 return FALSE ;
47 } /∗ f i ∗ /
48

49 /∗ borrowed r e f ∗ /
50 helper .module_dict = PyModule_GetDict (helper .module) ;
51

52 if (PyErr_Occurred ()) {
53 PyErr_Print () ;
54 return FALSE ;
55 } /∗ i f ∗ /
56

57 if (!fill_helper_functions ()) return FALSE ;
58

59 return TRUE ;
60 }
61 /∗ _ q i n e _ p y t h o n _ m o d u l e _ i n i t ∗ /

Lines 9 to 20 load the symbols generated by the compiler and use them to pop-

ulate the qine module. Python classes are registered with the Python GObject type

system in lines 27 to 34, and then on line 43, a helper Python module is executed.

The file qine_helper is a Python script used to bootstrap additional classes, which

we will cover in the next section.

A.3 Running Qinematic
The Qinematic framework provides one application that allows the user to specify a

pipeline in an XML file and connect that pipeline to a graphical player to visualize

62

the processed information. In this chapter we will describe the functions of this

application through the pipeline shown in Figure A.3.

The main application from Qinematic is called “qinematic” and can be found

inside a working copy of the repository under the directory <reporoot>/qvid/src/

qinematic/. To play the pipeline from Figure A.3, you can invoke qinematic it as

follows:

. / q i n e m a t i c t e s t s / t e s t _ s u i t e . xml −R [r i d]

The first argument is the path to the pipeline definition file. This file will be

read and processed according to the rules explained in Subsection 3.4.1. The −R

option argument to qinematic allows selecting which of the root elements from the

pipeline will be selected for viewing in the GUI. This means that for this file, roots

“localmovie”, “localclip”, “bwclip”, “remoteclip”, and “3clips” can be specified.

If the −R option is omitted, then qinematic defaults to the first root element it

finds, starting from the top of the XML document. Also, the list of roots that can

be selected can be conveniently retrieved with the −−list−roots command line

option.

If we start a QStream server on host “somehost” to listen for connections on

port 5555, we should be able to connect to it using qinematic and the “remoteclip”

root id. This will ask the server at somehost:5555 to serve a video source file called

“movie.db” to a pps client. Because the element “remoteclip100” is configured

with "start-frame"==2000, and "end-frame==2099", the full movie that

qinematic will show will contain 100 frames in total.

The application will check the validity of the pipeline and command line ar-

guments and should start a player window similar to the one shown in Figure A.4.

The window shows the first frame of the movie, and waits for user input. The

Qinematic player will respond to the keys listed in Table A.1.

For additional instructions on using and debugging the programs from QStream

and Qinematic, you should refer to the READMEs, and the API documentation

inside the various components of the source tree.

63

<reporoot>/qvid/src/qinematic/
<reporoot>/qvid/src/qinematic/
somehost:5555

< p i p e l i n e >
<vdec e i d ="local">< f i ><prop name="filename">movie . db< / prop >< / f i >< / vdec >
<vdec e i d ="remote">

< c l i e n t >
<prop name="filename">movie . db< / prop >
<prop name="addr" > h o s t . example . o rg < / prop >
<prop name="port" >5555< / prop >

< / c l i e n t >
< / vdec >
< c l i p e i d ="localclip100">

<prop name="start-frame" t y p e ="int">2000< / prop >
<prop name="end-frame" t y p e ="int">2099< / prop >
< r e f e i d ="local" / >

< / c l i p >
<bw e i d ="bwlocalclip100">

< r e f e i d ="localclip100" / >
< / bw>
< c l i p e i d ="remoteclip100">

<prop name="start-frame" t y p e ="int">2000< / prop >
<prop name="end-frame" t y p e ="int">2099< / prop >
< r e f e i d ="remote" / >

< / c l i p >
< seq e i d ="3clips">

< r e f e i d ="remoteclip100" / >
< r e f e i d ="bwlocalclip100" / >
< r e f e i d ="localclip100" / >

< / seq >

< !−− Play a l o c a l movie (l i k e q v i d _ p l a y) −−>
< r o o t r i d ="localmovie">< r e f e i d ="local" / >< / r o o t >

< !−− Play a c l i p o f a l o c a l movie −−>
< r o o t r i d ="localclip">< r e f e i d ="localclip100" / >< / r o o t >

< !−− Play a BW v e r s i o n o f l o c a l c l i p 1 0 0 −−>
< r o o t r i d ="bwclip">< r e f e i d ="bwlocalclip100" / >< / r o o t >

< !−− Play a c l i p o f a movie s t o r e d r e m o t e l y −−>
< r o o t r i d ="remoteclip">< r e f e i d ="remoteclip100" / >< / r o o t >

< !−− Play 3 c l i p s : l o c a l bw and remote , i n s e q u e n c e −−>
< r o o t r i d ="3clips">< r e f e i d ="3clips" / >< / r o o t >

< / p i p e l i n e >

Figure A.3: This pipeline contains various root elements that can each be
viewed inside the Qinematic player. We will use this pipeline as an
example to demonstrate how the Qinematic application works. You
can find a copy of that file in <reporoot>/qvid/src/qinematic/tests/test_
suite.xml.

64

<reporoot>/qvid/src/qinematic/tests/test_suite.xml
<reporoot>/qvid/src/qinematic/tests/test_suite.xml

Figure A.4: The Qinematic GUI’s Player Window after starting qinematic on
root “remoteclip”.

Key(s) Action

Up and Down Changes playback speed from “frame accurate”, to “GOP
step mode” (key-frame only), to speeds 0.5x, 1.0x, 2.0x,
4.0x, . . . , up to 128x.

Left and Right Reverses playback direction.
F Toggles full-screen mode.

+ and - Zooms in and out on the video.
Y,G,H, and J Translates the visible portion of the video while zoomed

in.
0 Resets the zoom level and centers the view.

Space Pauses/Starts playback. In step mode, steps by one frame
in current direction.

Page Up/Down Advances by one minute forward or backward in time.

Table A.1: List of key to action mappings used in the Qinematic player win-
dow.

65

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Glossary
	Acknowledgements
	1 Introduction
	1.1 Goals
	1.1.1 High Level Overview of System Features

	2 Design
	2.1 Quality Adaptation
	2.1.1 Requirements

	2.2 Qinematic Targeted Features
	2.2.1 Call for an Extensible Pipeline
	2.2.2 Qvid Timeline and Priority-Progress
	2.2.3 Leveraging the Timeline

	2.3 Summary

	3 Implementation
	3.1 Program Structure
	3.2 Structured Flow of Media
	3.2.1 Elements and Pads

	3.3 Qinematic Elements
	3.3.1 The Clip Element
	3.3.2 The Sequence Element
	3.3.3 XFade, the Cross-Fade Element (Lap-Dissolve)

	3.4 Pipeline Assembly
	3.4.1 Construction
	3.4.2 Destruction
	3.4.3 Qinematic Events
	3.4.4 Qinematic Buffers

	3.5 Summary

	4 Related Work
	5 Conclusions
	Bibliography
	Appendix A: Qinematic in Action
	A.1 Obtaining the Code
	A.1.1 File Organization

	A.2 Building Qinematic
	A.3 Running Qinematic

