
Building Private Applications on the Personal Web

Jean-Sébastien Légaré, Long Zhang, Alexandru Totolici, Mark Spear
Kalan MacRow, William Aiello, Andrew Warfield

University of British Columbia
Vancouver, Canada

{jslegare,zhlong73,totolici,mspear,kalanm,aiello,andy}@cs.ubc.ca

ABSTRACT
Users of the web trust third-party application providers with the
safe keeping of their data. As the wealth of quality application
services grows, so too does the volume of data that users disclose
and entrust to others. This trust is precarious: services may go
out of business or fail, while application provides may not take
sufficient care of sensitive personal data, leading to data loss or
unauthorized access.

We argue for a web application model that treats personal data
differently. We first observe that the best practical backup of a
user’s data is to collect and store a complete log of their browser-
website interactions, allowing them to search their browsing history
for content and application state that they have viewed in the past.
After showing that the collection and storage of this history is prac-
tical, we argue that many services that access personal data would
be better implemented with access to the log, and in isolation from
the Internet at large. This approach allows applications to be trusted
with access to personal data without concerns over the leakage or
unauthorized disclosure of that information.

We describe the design and implementation of our system, and
then evaluate the model’s potential with three useful applications:
a search application working over all websites visited, a credit card
fraud detection application, and a user self-profiling application.

1. INTRODUCTION
Will your online documents still be online in ten years? Would

you give your credit card company access to your email account
if it meant lower annual fees? Would you trust a new web startup
with copies of your medical records or banking history?

The modern Internet, unlike any information system before it,
demands unprecedented sacrifice from its users. While we, as indi-
viduals, all benefit from rich opportunities for communication and
commerce, we must also increasingly trust the safety and stabil-
ity of hundreds of individual online services to protect our data,
indefinitely into the future. Whether it is account histories from
a financial institution, documents in an online office tool, or play
lists in a music sharing service, users have a broad range of valu-
able, personal, and often private data that they have entrusted to a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WWW2012 2012 Lyon, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

large number of third-party services.
In this paper, we argue that the current state of Internet applica-

tions is incredibly precarious for its users in two regards: first, there
are limited guarantees that data will remain available and acces-
sible into the future; catastrophic events such as hardware failure
or corporate bankruptcy may result in services failing forever, and
API changes in services that remain available may obscure or elim-
inate access to data that was previously accessible. Second, large-
scale application service providers are actively campaigning to
reduce users expectation for individual privacy. In arguing for
the value of personalization and using idioms such as “frictionless
sharing”, Internet services aggressively encourage users to expose
more and more personal information. One major aspect of this ex-
posure is that users receive value in exchange for their privacy: an
online financial site such as Mint.com, helps a user manage their fi-
nances – in exchange for being entrusted with access to that user’s
financial institutions.

1.1 The Personal Web
This paper argues for the importance of a “personal” web. We

believe that a great deal of the information accessed by individu-
als through a web browser is of considerable personal value and
needs to be protected. This protection, however, should not limit
the user’s ability to take advantage of online services and especially
to allow third parties to develop valuable tools that extend private
user data.

We present the design and implementation of Pando, a continu-
ous and persistent secure audit log that records all activities under-
taken by a user through web browsers on any device that they use.
Pando collects a complete and encrypted history of all of a user’s
web sessions, and allows the user to interact with this history at a
later date in order to benefit from the data that they have seen in the
past.

By preserving data in a secure log, Pando completely decouples
the analysis of personal data from the active use of third-party web
services. We propose that, in addition to providing an excellent
long-term archive of personal state, Pando also allows useful ap-
plications to be developed by third parties and used on user data
in a completely safe and isolated manner. Using Pando, a finan-
cial analysis application such as that offered by Mint.com may be
downloaded and executed in a user’s browser and granted complete
access to that user’s recent and historical interactions with their fi-
nancial institutions. However, the application will run in an iso-
lated environment, unable to expose the data that it is analyzing
back to the service provider. Table 1 lists a set of additional ex-
amples demonstrating the sort of queries that a user might usefully
ask of their browsing history; the details of this table, including the
events that must be captured to answer these queries, are discussed
in Section 3.

Event Types

Description Nav Form Vis Init Stat DOM XHR Example Query

Compare all of my friend’s status up-
dates that I’ve read last month. Was
content deleted?

• •

a t ’ ∗ . f a c e b o o k . com / g e n e v e r e ’ ,
s e l e c t " t a b l e . u i I n f o T a b l e t r "

p a r e n t _ o f (" t h . l a b e l f o n t ")
w i t h _ c o n t e n t "∗ s t a t u s ∗ "

d u r i n g ’ Oc tobe r 2011 ’

My password may have been compro-
mised. On which sites do I use user-
name ’U’ as login, or password ’P’ or
MD5(’P’).

• • •

a t ’∗ ’ ,
s e l e c t document . l o c a t i o n when

(form ’∗ ’ match (. . .) or
xhr (r e q u e s t T e x t) match (. . .))

Of all the sites I’ve visited, did any use
a vulnerable version of library X? • • •

a t ’∗ ’
s e l e c t document . l o c a t i o n when
(s t a t . hash == ’md5 ’ or

s t a t . u r l match (’∗x2 . 3 . j s ∗ ’))

Find all pages that I’ve read contain-
ing “Steve Jobs” subsequently to read-
ing mail from Ed.

• • •

DOM c o n t a i n s (‘ ‘ S t e v e Jobs ’ ’)
w i t h i n (5 min) o f
(a t " ∗ : / / ma i l . g oo g l e . com /∗∗ "

c l i c k on tbody t r w i th
(t d . i n n e r T e x t match (\ bEd \ b)))

Table 1: Example Queries

In the remainder of this paper, we describe the design and imple-
mentation of Pando and explain solutions to a number of challeng-
ing problems that arose in trying to record and analyze the personal
web. We believe that the work presented here represents an in-
crementally deployable, and technically viable solution to protect-
ing personal user data, and that it invites individuals – both users
and developers – to reconsider how web-based applications can be
structured in order to protect sensitive user data.

1.2 Contributions
First, we present a client-side browser recording tool that builds

a secure and durable log of a user’s browsing history. The approach
presented is practical and incrementally deployable in today’s web
environments.

Second, we introduce a novel application of existing security
primitives to create web-application sandboxes that can access the
user’s audit log. After being downloaded and initialized, sand-
boxed applications perform an irreversible run-time transition be-
tween two discrete privilege modes: they gain access to the log, but
relinquish their ability to interact with the rest of the network. Af-
ter this privilege transition has taken place, it remains in effect until
the browser tab containing the application is closed, destroying the
application’s state.

Third, we motivate the benefit of our system by describing three
example applications, demonstrating the potential in securely inter-
acting with a user’s personal history:

1. Personal web search. A search engine over a user’s brows-
ing history offering free-text search as well as temporal and
location-aware anchoring.

2. Personal anomaly and fraud detection. A tool that com-
bines various aspects of a user’s personal history to identify
possible credit card fraud.

3. User activity profiling. A retroactive calendar application
that allows a user to evaluate where they are spending time,

and to understand how the applications they use are behav-
ing.

2. GOALS AND NON-GOALS
The central idea in this work is to decouple the data that users

have accessed from the services that they use to access it. We be-
lieve that for both the purposes of backing up data over time and
for building interesting new services that use personal data, that the
only viable approach to preserving and accessing data is to store a
recording of the browser sessions in which they interacted with it
in a secure, durable log.

The core motivation for our approach is that the applications that
manage user data today are outside the control of the users that
use them. For any number of reasons–technical, organizational, or
otherwise–data that is stored on these services may not remain ac-
cessible in the future. As providers cannot be expected to maintain
APIs that allow users to continuously take copies of their data, be-
cause tracking changes to these API when they do exist is onerous,
and because the data of web-based applications depends critically
on browser-side code for presentation and interaction, we believe
that data rendered inside the browser is the best representation for
preservation.

Further, we take the position that the secure log represents a con-
siderably safer approach to accommodate the growing collection of
applications that require users to grant permission for applications
to access sensitive personal information, such as email accounts
and financial institutions. By restructuring these applications to use
the log, we can safely present them with both current and historical
versions of sensitive data, while preventing them from leaking or
otherwise disclosing this data to other parties. The remainder of
this section discusses the specific goals and non-goals of our sys-
tem.

2.1 Applications Over a Secure Log
Pando aims to support a rich set of third-party analysis tools that

can run on top of recorded personal user data, without divulging
this information to these third-parties. We set out the following
goals for our system, and for the applications that run above it:

1. We should collect the most complete, high-fidelity recording
of browser activity that is feasable.

While we believe that a recording of all activity within the
browser is the ideal way to preserve user data, we also rec-
ognize that capturing this activity represents a major techni-
cal challenge. Our design acknowledges that while fidelity
is important, incremental deployment over all the browsers
that an individual uses is critical. Our prototype implementa-
tion, discussed in Section 3, explores one point in this design
space: an extension for Google’s Chrome browser. We be-
lieve that this approach demonstrates a useful mid-point, be-
tween pervasive browser modifications on one extreme, and
proxy-based solutions on the other.

2. They should be forbidden from leaking information to third
parties.

Applications must be sandboxed within the browser, and only
be provided with access to the Pando log. Note that where
analysis applications need access to useful, general-purpose
data (such as GPS coordinates) the user can arrange to visit
relevant sites (e.g., Google Maps) on a periodic basis in or-
der to have that data recorded in the log. This approach is
bolstered by proposals for “background web pages" where
client-side services may remain running and scheduled de-
spite not having a visible tab.

3. They should be prevented from modifying the log.

Malicious applications should not be able to modify or delete
contents from the Pando log. The log must be presented to
the analysis environment as a read-only API, avoiding tam-
pering or rewriting of historical data.

4. Log contents must remain encrypted and protected to the
greatest degree possible.

Log entries should only be decrypted within an execution do-
main that the client trusts, and should be carefully protected.
Analysis tool state should be carefully flushed and expunged
upon termination.

In light of these goals, our approach is to:

• Sandbox applications. This means limit external communi-
cation and access to the DOM.

• Provide local, read-only access to the database. We run the
database decryption in a local, protected runtime environ-
ment. This is currently a background process on the host,
and we plan to move it to run within a NaCl environment in
another tab of the browser.

This implementation provides a safe environment in which users
may develop and share analysis tools with others, and they may
safely experiment with third-party analysis tools without fear of
leaking or corrupting data. At worst, third-party tools can present
incorrect results from the log analysis, and so the veracity of anal-
ysis results should be treated with the same degree of suspicion as
users treat any other data available over the web.

The following items are non-goals:

1. Accessing third-party data as part of analysis.

For instance, an application that examines cell phone bills
and advises a user on the lowest-cost cell phone provider will

Event Log

Sandboxed
Analysis Tool

P
ro

te
ct

ed

En
vi

ro
n

m
e

n
t

Query
Interface

Write-Only
Interface

Read-Only

Proxy Server

Write-Only

Web Services

Global ID

Document URL

Event Type

Stack trace

Data used

…

SSL

SSL

SSL

Figure 1: Pando organization sketch

not be able to refer to an external database of cell phone rates.
This database can, however, be included in the analysis tool
as a static block of data. This rules out analysis that needs to
perform correlation between the Pando log and large external
datasets, but protects against information leakage (e.g., XSS-
style embedding of content within URLs). We will explore
techniques to relax this constraint as future work.

2. Allowing third-parties to run analysis on the Pando log.

While the Pando log may be stored as encrypted data on a
remote data store, our current, conservative model is that all
analysis will be performed on a device that is owned and
trusted by the user. Establishing trustworthy third-party com-
pute resources remains an open problem. While the notion of
third-party “services" might be attractive (for instance, trust-
ing Google to access a user’s Pando log to better personalize
the web experience), we feel that the nature of Pando’s data
is sufficiently sensitive that care should be taken before al-
lowing arbitrary third-party plugins and remote analysis.

3. Auditing of websites for security exploits.

Some of the JavaScript instrumentations employed in our
current implementation can be detected, which makes it un-
suitable for auditing websites or detecting certain exploits.

3. IMPLEMENTATION
The overall architecture of Pando is illustrated in Figure 1. On

the left side, we have the user’s browsers running our extension.
Recorders running in the browsers each authenticate to a web server
that will receive their events. The sum of all events accumulating
in the event log constitutes the personal web. The web server in
charge of receiving these events is written in a safe language and is
kept very simple.

Completely separate from browsing activities is the analysis en-
vironment, where tools can access the data contained in the event
log, but are not allowed to expose results outside their environment.
All external communications are funnelled through a secure web
proxy.

By default, the proxy is configured to drop all connections, ex-
cept for connections to the query-interface. Furthermore, the query
interface is configured to only accept connections originating from
that proxy. The analysis tools are thus confined to their environ-
ment, and the information contained in the user’s personal web.

The following sections will cover each architectural component
in depth.

3.1 Recording Engine
The recording engine must use recording techniques applicable

to already deployed web browsers. In order to reach a wider audi-
ence, it must also be easy to install and configure. Pando’s recorder
ships as a Chrome Extension, and is implemented completely in
JavaScript. It can be easily installed on any up-to-date Chrome
browser in a few clicks. The only configuration settings needed are
the address and credentials to the server exposing the log interface
(covered later in Subsection 3.2). We expect users to install the
extension on all browsers from which log capture is desired.

Even though our current extension depends on some features
specific to Google Chrome’s extension model, we are confident that
they can be be ported to other JavaScript engines (such as Gecko
for instance) with the help of the extension APIs they provide.

Capturing a browser log from within the browser is surprisingly
hard. In the rest of this section, we present the the collection of
events that are recorded in browsers running our extension, and de-
scribe the challenges faced when recording their different aspects.

For many of the different events, the core idea behind the record-
ing technique relies on JavaScript program injection immediately
before the contents of the page are loaded. Chrome provides the
necessary hooks to extensions to instrument the content of every
frame visited, before contents are loaded. This technique has been
applied to other browsers in previous work [6, 9], and is also em-
ployed in some web frameworks such as Greasemonkey1.

3.1.1 Static Resource Load (Stat)
To record a complete view of a webpage it is important to not

only record the initial contents of a page, but also its auxiliary
content attached to the page. Static resources consist of images,
stylesheets, scripts, and embedded media objects depended on by
the web application.

Recording GET for static content embedded in a page is quite
challenging without the assistance of a forward proxy. We avoided
employing a proxy for the recorder to preserve HTTPS and support
scenarios where users already require a proxy to access the inter-
net. The JavaScript APIs provided by Chrome Extension offer a
very limited view on network requests made by the browser. Ex-
tensions also have no way to access the browser cache, or retrieve
the payload of HTTP responses after-the-fact. Parameters users can
see in DOMInspector (the built-in developer console), for instance,
are unavailable to extension APIs at the moment.

However, Chrome extensions have the possibility to listen for a
cancellable event, beforeload, dispatched before new resources
(e.g. sripts, images, iframes, or a stylesheet) are loaded from an
external URL. This gives an opportunity for the Pando extension to
replace the traditional browser behavior with equivalent operations
that allow recording of the content to be downloaded.

For every resource type fetch that we wish to record, our ex-
tension cancels beforeload events of those element types on
receipt. This prevents the normal network requests from occurring,
and we create an XmlHttpRequest object to perform a GET re-
quest at the URL provided as part of the event sent by the browser.
The XmlHttpRequest object lets us read useful headers such
as Content-Length, Cache-Control headers, custom x-*
headers, as well as the original response payload.

One implication of downloading content this way is that we must
respect the guarantees made by web-browser engines towards ap-
plications, in terms of both download and execution guarantees.
1http://www.greasespot.net/

The most complicated and most important element type to simu-
late correctly is the script element. WebKit has different or-
dering rules for scripts, depending on whether they are inlined or
external (i.e. have a src attribute), or whether they possess async
or defer attributes. Inline scripts are always executed as they are
added to the DOM, regardless of their attributes, and behave sim-
ilarly to external scripts with no attributes for which content must
be downloaded and executed synchronously. Inline scripts are part
of the containing page, and do not trigger beforeload. For any
synchronous operation, we use XmlHttpRequest’s synchronous
interface inside the beforeload, whose dispatch is also syn-
chronous with parsing and execution of scripts living in the page.

Scripts with the defer or async attribute can be downloaded
in parallel while the page is parsing, and so can be downloaded
asynchronously with XmlHttpRequest’s asynchronous interface.
Scripts marked with defer differ from script marked async by
their ordering guarantees: deferred scripts execute in the order they
are added to the DOM, whereas scripts marked with async have
no ordering guarantees between them and other deferred scripts.
In the particular case of WebKit, deferred scripts are also guaran-
teed to execute before the DOMContentLoaded event fires, and
async scripts before the load event which always occurs after
the former event. This varies across browser vendors.

Pando initiates the XmlHttpRequest download as soon as
beforeload fires (as dictated by the engine’s download rules),
and enforces execution ordering by queuing scripts internally. To
respect the execution ordering rules with respect to relative tim-
ing of load events, event handling mechanisms in the page are in-
strumented to wait for an additional signal from the extension be-
fore propagating both onload and DOMContentLoaded to the
rest of the application’s event handlers. To execute a script pay-
load, a new script element must be created. The cancellation of
the original script element unfortunately makes it non-reusable for
executing code. The new script element’s text content is set to the
XmlHttpRequest’s response payload, prefixed with a statement
that “self-destructs” the script in such a way that the JavaScript
code is unable to get a handle on the element itself. Allowing the
script to see the contents of the “ephemeral” script element would
violate same-origin constraints. After the script completes execut-
ing, an load event is dispatched on the original script to preserve
load semantics of scripts.

Other resources such as images and embedded objects can be
downloaded in similar ways, and can use HTML5 File APIs, and
Blob objects. We are investigating ways to record image content
part of CSS not encoded as data URIs.

To download objects with XmlHttpRequest rather than using
proxies, the set of permissions for our extension had to be adjusted
to allow contacting all origins, rather than just the event log web
server origin. The same-origin policy is still enforced in the page,
as the extension and page reside in two isolated JavaScript environ-
ments, each with different restrictions.

The request headers sent by our extension XmlHttpRequest
operations match the headers that would be present in regular static
content fetches, so existing security mechanisms relying on Referer
[sic] headers, for instance, still work.

The main limitation of this approach is that the fetching of static
content for the document itself (e.g HTML or XML document) and
frames cannot be overridden in a way that allows us to first record
and then overwrite contents of the container. We are investigating
approaches using HTML5’s window.open. However, as we will
describe in the next section, we can work around this limitation
by capturing a snapshot of the frame content after its parsing is
complete.

http://www.greasespot.net/

3.1.2 Initial Load (Init)
The initial contents of the page are important to reconstruct an

accurate view of documents when they are recovered from the log.
The initial contents of a document also contain text that can be later
indexed and queried.

WebKit defines two events that indicate different stages of a page
being “loaded”. First, a DOMContentLoaded event is fired when
the browser completes the parsing of all of the document’s text into
DOM elements. Subsequently, when all of the scripts and embed-
ded objects have been downloaded and made visible in the page, a
second event “window.load” is fired.

Pando generates load status events at two critical moments. The
first event is generated immediately before a frame starts loading a
document at the start of Pando’s boot sequence. The second fires as
soon as the document finishes parsing, and before the application
becomes notified that the loading is complete. Once the DOM is
constructed, at DOMContentLoaded, Pando serializes the con-
tents of the DOM. The two points in time for each event represent
good “anchors” for building application queries2.

3.1.3 Navigation (Nav)
Load events alone can provide us a list of websites that have

been visited in the past, but make it difficult to determine the cause
of the page transitions. Pando can fill in navigation semantics by
capturing the methods used to navigate in an out of pages. Our
extension can track the following navigation mechanisms:

• Direct interaction with address bar

• Interaction with the browser’s chrome (e.g., favorites)

• Back and Forward history buttons

• Click on an anchor element

• Form submission (see Subsection 3.1.6)

• Opening a new tab or window (homepage), or closing it (nav-
igating away)

• Programmatically (location . replace , location . reload , location . href ,
window.open, window.close, window.navigate, etc.)

This generally suffices to extract semantics for traditional web-
site navigation. However, newer Web 2.0 applications tend to present
a single page to users, from which new content is fetched via AJAX
and the application view is modified with dynamic HTML. In addi-
tion to the mechanisms above, Pando also captures events suscep-
tible of causing a significant alteration of the application’s view:

• Changes to the URL fragment (location hash). Fragments
are often used internally by applications to perform “routing”
from a given URL into a corresponding application state.

• Clicks to DOM elements with registered click event handlers.
Applications commonly rely on click events to trigger ex-
panding menus, perform “button” functions, or change por-
tions of a page into and out of edit-mode.

3.1.4 Dynamic Resource Load (XHR)
In order to allow for detailed analysis of applications, Pando

records all of the issued AJAX requests and received responses,
in addition to fetching static content Subsection 3.1.1. Our exten-
sion interposes on XmlHttpRequest communications to record
these payloads and the associated headers.

2We considered using MutationEvents, but the interface is depre-
cated.

In our prototype, XmlHttpRequest operations are interposed
with prototype overriding in the page, which means that the infor-
mation contained in our records is limited to the information avail-
able to JavaScript. For security reasons, JavaScript cannot access
some of the headers (such as cookies) and redirects are also hidden.
Adopting a different recording mechanism built into the browser,
adding native plugins, or employing a forward proxy would enable
us to obtain more information, but would severely affect the appli-
cation’s deployability and security.

3.1.5 DOM Modification (DOM)
Web 2.0 applications modify their DOM repeatedly by adding,

removing, or replacing existing content. Modifications to the DOM
are necessary for updating the application’s user interface, but are
also commonly employed for loading additional library code in the
page, or even as a form of communication, such as with JSON
padding.

With Pando, these modifications can be searched and queried just
as easily as static content or the initial snapshot of the page at load
time (Subsection 3.1.2).

For methods of the DOM API that mutate the document structure
(e.g. appendChild, removeChild, insertBefore , etc.), Pando relies on
overriding the corresponding prototypes.

Browsers also define special properties with accessors that mod-
ify or inspect the document. For example, Element’s innerHTML
property allows setting or retrieving the contents of a given element
as an HTML string. Intercepting object properties is more difficult
than object methods. In our implementation, we had to resort to
defining JavaScript getters and setters3. There are at least two prob-
lems with this approach. First, unlike the methods on prototypes,
the getters and setters have to be defined for each Node created.
Pando must then in turn intercept every Node creation to modify
those properties. Second, by defining getters and setters with the
same name as an existing property, the original behavior is lost (at
least in Google Chrome), so Pando simulates it by using equivalent,
but slower, sequences of operations.

3.1.6 Form Submission (Form)
HTML Forms are generally used for communicating information

to web servers: implementing login/logout mechanisms, chang-
ing application settings, or submitting comments and edits. Forms
are of interest for Pando because they can be used to send user-
specified content to a server.

Browsers generate events to notify the page scripts that a form
is being submitted. In practice, these events are used to wrap form
submissions with validation functions. When validation passes, the
event is allowed to propagate, otherwise the application stops its
propagation. If the propagation is uninterrupted, the browser initi-
ates the default action for form submission events, that is the actual
submission of the fields.

Form submission will replace the current application, and load a
new page, leaving no opportunity to record the form event after the
form is submitted. Because the default action cannot be overridden,
the event must be recorded by Pando at some time before the default
action happens. The recorder must find a suitable time to record the
form contents, within the following constraints:

1. The recorded data must reflect the final state of the form
fields.

2. Only submissions that have not been cancelled should be
recorded.

3. No changes to the application should be required.
3defined in ECMAScript5

f u n c t i o n f o r m _ b u b b l e _ h a n d l e r (e v t) {
i f (CANCELLED(e v t))

/∗ The form w i l l not be s e n t : Do n o t h i n g . ∗ /
re turn ;

/∗ P r o p a g a t i o n s t o p p e d or t o p r e a c h e d .
L a s t h a n d l e r t o r e c e i v e e v e n t . ∗ /

i f (STOPPED(e v t) | | e v t . c u r r e n t T a r g e t === document)
f o r m r e c . c a p t u r e (e v t . t a r g e t) ; # s y n c h r o n o u s

/∗ l e t t h e e v e n t p r o p a g a t e ∗ /
}

Figure 2: Pseudocode for the end-of-line handler

For #1, our algorithm ensures that the last event listener to prop-
agate a form submit event is one that has been registered by Pando,
and not the application. Then, if we suppose that our algorithm al-
ways strategically places its handlers to be invoked last, #2 amounts
to determining whether the event has been prevented, prior to invo-
cation of the last handler.

Event propagation has been described in a lot of details in pre-
vious work [9]. In this section we shall focus on those details
that pertain to our algorithm. Preventing an event affects only
the course of the default action (whether form contents are sent
over the network), but not the event’s propagation. Default actions
can be prevented either by calling preventDefault () on an event ob-
ject, or by returning a false value from a DOM Level 1 intrinsic
event handler (i.e. onsubmit=). The propagation can be stopped
with stopPropagation () , which still allows the other handlers on the
same DOM node to be invoked but not on following nodes, or
stopImmediatePropagation () which causes the current event handler
the be the last to receive the event.

Our algorithm first places a capturing handler on the root of the
document. This capturing handler is always the first handler to re-
ceive submit events. When invoked, the handler looks at the target
<form> element’s hierarchy, and for each level that registered ei-
ther a DOM level 1 hook, or one or more DOM level 2 submit
event listeners, it installs an “end-of-line” bubbling handler. The
end-of-line handler is placed such that it is always the last invoked
handler for a given level in the DOM. We make this guarantee by
instrumenting addEventListener. We also install the end-of-
line bubbling handler on the document node itself, for cases where
there are no other listeners.

We change stopImmediatePropagation’s prototype to raise
a flag instead of stopping the event. To make sure we catch the flag
before another handler runs, our modified addEventListener
wraps all of the application’s handlers to check for that flag after
completion. Pando keeps a handle on the original application han-
dler that was passed, because it is the one applications must provide
to removeEventListener the same listener that was originally
added. Our instrumented removeEventListener just maps
the application’s handler to the wrapper before doing the underly-
ing call.

Pseudocode for our end-of-line bubbling handler is shown in Fig-
ure 2.

All of these modifications are transparent to the application. Event
listeners cannot be introspected, so the application is unaware of
the extra handlers we add. Additionally, any newly added prop-
erties are configured to be invisible to iteration, which addresses
#3.

3.1.7 Visibility events (Vis)
As new long-running web applications emerge, users are neces-

sarily browsing more sites simultaneously. A web user may leave
one window open monitoring an email inbox or chatting with friends,
and use another for active browsing. Looking only at browsing his-
tory and the times when sites were initially accessed, a user may be
left wondering where time was really spent.

Browsers can keep an accurate record of which windows are ac-
tive, which tabs are open, and where focus is. Fortunately, this in-
formation can be exposed to browser extensions. We observe that
by recording the right amount of information, Pando can keep ac-
curate accounting of time spent per-domain, per-site, and even per
sections within a site.

Our recorder inserts entries into the log whenever tab focus changes.
Identifiers for the source and destination window/tab are gener-
ated based on the tab and window IDs (which are exposed by the
browser via the extension API) and included in these event records
in order to permit accurate tracking of user activity in the browser.
With this data collected, we build accurate time-tracking applica-
tions that give users better insight into their browsing habits.

3.1.8 Frame Hierarchies
Overriding prototypes requires that our recording instrumenta-

tions be injected in every document frame (<frame> or <iframe>).
Each instrumented document works in isolation, and so the records
they generate are relative to their containing document.

Without the frame’s position in the document hierarchy, we can-
not determine if events in a domain of interest are for a top-level
document, or contained in another frame document. Annotating
records with the hierarchical position lets us specify in queries the
particular frames that are of interest, and allows for arbitrary nest-
ing. For instance, this enables queries for all content loaded by
applications on a Facebook user’s profile page.

Fortunately, a document’s hierarchical frame position can be ob-
tained regardless of same-origin policies. Accesses to attributes of
other frame objects (such as origin or document URL) or frame
contents are subject to the same-origin policies, but the frame ob-
jects themselves can be compared by physical equality (i.e. ===),
and the list of their child frames or parent frame can always be in-
spected. Pando obtains a frame’s absolute position in the page by
walking up until the top-level frame is obtained, and at each step
remembering the frame’s index in its parent’s children list.

The mapping from frame indices to URLs is done later in the
extension itself, where logs from all the documents are regrouped.
Complications arise if the frames are reparented, but in those cases
the parent relationships can be readjusted by making the recorders
identify new and old ancestors.

3.2 Log
The log stores all of the events recorded by the user’s devices,

and therefore must be secure, durable, and location transparent. It
must also be simple to deploy and maintain, and so should have few
moving parts.

We defined two separate event log interfaces, one for recording
and one for querying. We present the storage interface in this sec-
tion, and the query interface in Subsection 3.2.4.

Records are transmitted from the browser extension, over a se-
cure network connection to the event log web server. The server
exposes an extremely simple REST interface to store new event
records, which consists of a single /insert/ collection handling
POSTs. Request payloads consist simply of chunks of JSON-encoded
records.

Client authentication to the storage interface can employ any
scheme supported by browsers, such as username/password com-
binations, NTLM, or client SSL certificates. For server authenti-

cation, we are opting for a self-signed SSL certificate. The task of
authorization, also performed by the web server, solely consists in
determining if the client connecting should be allowed to write or
not. No reads are ever allowed on the recorder interface.

3.2.1 Storage Format
Given that writes to the event log are append-only, with the oc-

casional need for rotation, flat files are used as the default on-disk
format. However, we expect Pando applications to build custom
indices on top of these logs for speeding up their queries. For com-
mon access patterns, like searching within HTML for natural lan-
guage text, Pando already offers indices. We have also built an
additional storage backend on MongoDB, an open-source scalable
high-performance document-oriented database, to temporarily ma-
nipulate subsets of interests with map/reduce programs. We believe
these two formats alone can handle a large set of interesting queries.

3.2.2 Protecting the Data
Because the data recorded is private and potentially sensitive, it

is of utmost importance to ensure that it remains protected. The
records should be at the least encrypted on disk, using a key pro-
tected by a master password and loaded when the event log web
server is started. Alternatively, logs can be placed on an encrypted
partition, with keys managed externally.

As for the choice of the host running the server, we believe that
users will have different preferences based on a combination of
their levels of comfort and the degree of sensitivity of the data.

The simplest solution is to store the data on the same physical
host as the browser. However, unless the user’s browsing devices
are connected, this solution implies that the logs gathered from
multiple browsers are stored on different hosts. Users may also
trust a host enough to browse from it, but not necessarily store logs,
so this option may not suit all users.

Another choice is to place the logs on a home server, accessible
from all of the user’s browsers. This allows logs to be placed in a
central location with plenty of storage space and processing power.

If users feel more comfortable securing their data with a third
party, or do not have sufficient hardware to host the server them-
selves, it should also be possible to store event logs on cloud ser-
vices such as Amazon’s Simple Storage Service (S3), Google Ap-
pEngine’s Datastore, or Microsoft’s Azure.

3.2.3 Retention Policy
The event log web server can be configured with a retention

policy to control the quantity of the logs that are kept. Logs can
be rotated at the end of a configurable period. Depending on the
Pando applications the user wishes to install, it may not be desir-
able to keep browsing data older than some given threshold. We are
also planning on adding decay options based on the types of events
recorded, so that for instance the list of clicks made have longer
log-lifespans than the DOM modification events.

Analyses and indices constructed by applications are not auto-
matically rotated, as they may contain statistics that roll-over, but
users should always have the option to “reset” or uninstall applica-
tions.

3.2.4 Query Engine
In addition to the storage interface presented earlier, Pando also

exposes a read-only query interface to the event log for the usage
of the analysis tools. Access to the query interface should be con-
trolled based on the the analysis tools that wish to access it such that
only recognized tools, should be granted permission to connect to
the query interface.

The query-engine is exposed as a web service running on a web
server process separate from the storage web server. The query-
engine web service has read-only access to the raw logs.

We plan on making the query-engine offer multiple modes of
search: a structural search mode in which HTML/XML markup
is discarded, a structural search mode in which it is possible to
look for records affecting only a particular portion of the DOM or
a a particular subtree pattern, similarly to XPath. It should also
be possible to constrain queries on a particular context, such as
the protocol used, domain names, or on sites that used a particular
cookie.

These queries can also offer additional assistance when com-
bined with any custom index that the analysis tool may have built.
For instance it should be possible to form queries with temporal
relations, or queries that depend on particular resource conditions
such as “current number of pending XmlHttpRequest”.

3.3 Application Proxy
On one hand, the applications must be easy to install and setup.

Installing applications requires first downloading the application
code itself, followed by possibly extra content (modules, data files,
etc.) from third-parties. On the other hand, these applications re-
quire access to the logs to perform their analysis.

We protect the query API using a simple webproxy operating in
two exclusive discrete modes: locked and unlocked. The proxy
starts in unlocked mode. When unlocked, the proxy drops any
incoming connection destined for the query API webserver, but
all other connections are allowed. When locked, the proxy does
the opposite, the only requests that are allowed to go through are
those destined for the query API webserver. The proxy recognizes
a special lock message , to transition permanently from unlocked
to locked.

To install a new application, a new browser process is instan-
tiated on the same host as the proxy server, configured with the
proxy for sole internet access. The browser is pre-configured with
a “bootstrap” extension, whose only task is to initiate the proxy’s
lock sequence. Because the proxy is initially unlocked, any website
can be accessed, except Pando’s query API.

Websites providing apps, can communicate a small message to
the bootstrap extension to indicate that the application wishes to
be locked to the user’s logs. After confirming with the user, the
bootstrap extension sends the lock message to the proxy, so that the
application browser is permanently locked to the query API.

As long as browser proxy settings are unreachable from the JavaScript
environments of the browser, and that extension runtime environ-
ments are protected from the page, it should be unfeasible for a
web application running in the sandbox to either guess the lock
message, or escape the proxy.

4. APPLICATIONS
Using the event log created by our recorder, we have developed

three analysis tools that we believe are of high-utility for users.
In all cases, the tools combine data coming from different online
services, perform computations, and output an analysis report that
can be easily displayed in a web page. It is excessively difficult to
offer similar analyses as traditional online services without relying
on users explicitly granting permissions to access the data required
for analyses.

4.1 Personal Web Search
The first analysis consists in searching by search terms all of the

content that has at one point or another been visible in the user’s
browser. Whereas online search engines help users find new pages

with high popularity, this tool helps with recalling content (not just
pages) that contains the terms of interest. It works similarly to the
built-in browser history, but can be configured to search over addi-
tional information, like form submissions, and XHR payloads.

History tools provided by browsers only give you a limited view
of your past activities. They record an initial text snapshot of “nodes”
in your history (i.e. accessible with back/forward buttons), but do
not provide versioned histories of long-running application visual
states. Nor is dynamic content searchable, even though it had been
previously displayed by the browser.

Depending on the information available in the event log at the
time of the search , snapshots of the DOM at the time of a match
can be visualized in a suitable sub-frame, after scripts have been
removed. This contrasts existing browser history tools by provid-
ing more visual information than simply a surrounding sentence.
What we propose is of greater utility as it allows the users to search
for parts of the page that surround the information they are really
looking for.

4.2 Monetary Transaction Verifier
By correlating information from various sources, we can attempt

to spot fraudulent transactions on credit card or bank statements.
The task consists of finding events in the log that offer an explana-
tion for entries in the bank statements, and flagging those entries
that are not supported by the user’s browsing history.

We assume that the financial institution provides a way to export
a user’s account statements in a way that can be parsed in order to
extract tuples consisting of the name of the business and a transac-
tion timestamp and amount.

The task of this tool is to find any context that could lead to
explaining a transaction. Online transactions can often be tracked
by either looking at mail or looking at visits to the relevant domains.
Our intuition is that even purchases made offline can be explained
through online behavior, such as chat messages, queries to map
services, or geolocation items.

We built a prototype of this tool that scans the event log for both
textual matches for the name of the business and the amount of the
transaction, as well as broader cues (such as terms related to the
business and URLs) that fall within a configurable temporal range
during which the transaction occurred.

4.3 User Interests
By looking at events generated by Pando for webpage activity

it is possible to analyze where a user spends her time online. We
show in Figure 3 a breakdown of which sites get most of the atten-
tion of an author of this paper over a 12 hour work day. Activity
times are summed across tabs, leading to very large durations for
sites opened in multiple tabs. Additionally, the author spent a large
portion of his time on non-browser activites which results in limited
“focused” time in the browser.

5. EVALUATION
Pando’s design includes several mechanisms that may impose a

considerable overhead on the browsing experience. We evaluate
the runtime overhead incurred by Pando, as well as the storage re-
quirements for the event log. Our evaluation is performed on an
Intel Core i5 2.80 GHz Quad-Core machine with 4 GB of RAM
and an Intel 82578DC Gigabit Ethernet network interface. We used
Google Chrome version 15.0.874.117 on Ubuntu 10.04.

5.1 Page Load Evaluation
Figure 4 shows the load time latencies for the homepage of 7

popular websites. We define the page load latency as the period

 0

 5

 10

 15

 20

 25

w
w

w
.c

s
.u

b
c
.c

a

w
w

w
.g

o
o

g
le

.c
o
m

p
lo

tic
u

s
.s

o
u
rc

e
fo

rg
e

.n
e
t

d
o

c
s
.p

y
th

o
n

.o
rg

e
jo

h
n
.o

rg

b
y
te

s
.c

o
m

w
w

w
.g

o
o

g
le

.c
a

g
n

u
p
lo

t-tric
k
s
.b

lo
g

s
p
o
t.c

o
m

d
e

v
to

o
ls

w
w

w
.c

s
.h

m
c
.e

d
u

e
x
te

n
s
io

n
s

w
w

w
.fa

c
e
b

o
o

k
.c

o
m

d
e

v
e

lo
p

e
r.m

o
z
illa

.o
rg

g
n

u
p
lo

t.s
o

u
rc

e
fo

rg
e

.n
e
t

tw
itte

r.c
o

m

lg
lin

u
x
.b

lo
g

s
p
o

t.c
o

m

e
n

.w
ik

ip
e

d
ia

.o
rg

b
lo

g
.w

u
x
in

a
n

.n
e

t

fre
e
s
o
ftw

a
re

.z
o

n
a

-m
.n

e
t

g
d

.tu
w

ie
n
.a

c
.a

t

E
ff
e

c
ti
v
e
 D

u
ra

ti
o
n
 (

h
o

u
rs

)

Web browsing behaviour analysis

focused
visible
hidden

Figure 3: Breakdown of user activity on top 20 sites

facebook google bing youtube yahoo wikipedia cibc

0

0.5

1

1.5

2

2.5

3

3.5

4

Extension Disabled

Extension Enabled

Figure 4: Pando Page load latencies comparation

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

L
o
g
 s

iz
e
 (

M
iB

)

Time (hours)

initial load 1
visibility events

navigation
dom modification

static resource load
other events
initial load 2

script.src setter
xmlhttprequest

Figure 5: Pando log size vs. time

of time from then initial URL request issued from the browser, to
the complete loading of all DOM events. We disabled all of the
browser-side data cache in order to maintain consistency across
these tests. We run each test 10 times, with and without Pando
enabled, and average the results. We found that the overhead in-
troduced by Pando is site-specific: the more DOM operations per-
formed, HTTP requests issued and static content loaded by a site,
the higher the overhead cost as Pando spends more time intercept-
ing XmlHttpRequest and recording the DOM tree. While ini-
tial load times are an important metric to consider, a more compre-
hensive study is needed in order to gain further insight into how
Pando’s overhead affects the browsing experience.

5.2 Storage Overhead
We ran Pando continuously for 12 hours on the lab machine

of a typical computer science graduate student. Figure 5 shows
the breakdown of log events by type for this period, and identifies
static content loading and DOM manipulations as the main sources
of events. The non-deterministic events, including navigation and
visibility changes, take a relatively small portions of the log. We
compressed our raw log with gzip and achieved a 0.14 compression
ratio (132 MB compressed from 932 MB of data).

6. RELATED WORK
Surprisingly little work has been done on recording user-centric

information generated through browser-webpage interactions and
using this information to protect users’ privacy, improve web expe-
rience, and support various rich applications.

6.1 Record and Replay for Web Apps
Mugshot [9] is the first JavaScript record and replay tool that cap-

tures every nondeterministic event in an executing program, allow-
ing developers to deterministically replay past executions of web
applications. Because of its proxy-based nature, external content
that bypasses the caching proxy will not be recorded at all. More-
over, Mugshot generates an extremely detailed log in a low-level
language for debugging use, which makes it difficult to be inter-
preted by applications. Pando concentrates more on user-triggered
browser-webpage interactions and logs events in a more semanti-
cally meaningful way. Other proxy based tools[2][3] indiscrim-
inately track all events occurring inside the browser, and gener-
ate coarse-grained logs that requires extra effort to interpret. Even
worse, the proxy based solutions are incompatible with the HTTPS
protocol, and are therefore prevented from being widely deployed.

WaRR [1] targets the interactions between users and web appli-
cations, but since its implementation requires modifications to the
WebKit browser engine, it will likely be difficult to port to other
browsers. In general, we don’t believe that requiring browser mod-
ifications is appropriate for projects such as Pando as it raises addi-
tional issues of portability, security, and stability.

6.2 Content Script Injection Frameworks
Greasemonkey4 is a Firefox extension that allows users to in-

ject scripts into their browsers and manipulate the DOM “on the
fly”. Chickenfoot5 puts an IDE in the browser’s sidebar so that
clients can write scripts for manipulating web pages and automate
web browsing. DOM Snitch6 uses similar functionality targeting
web developers using the Chrome browser. C3 [8] abstracts a more
general model from web browsers and provides a platform for web
developers to write browser independent apps. Pando uses simi-
lar techniques to achieve a feature-rich, fine-grained event logging
mechanism.

6.3 Applications supported by Pando
A diverse set of applications can benefit from the platform pro-

vided by Pando. Previous works [4][5][10][11] explore users’ in-
terests based on past queries, web history, and online social net-
work information. They can therefore improve on the quality of
search results generated by commodity search engines. All of them
could provide local, personalized search by being ported on top
of Pando’s personal information repository. Pando could change
the current data-collection model used by advertisers; It would be
possible for Doubleclick, Smart AdServer, or Fastclick to dele-
gate their user data collection undertakings to clients and thus mit-
igate the risk of Personally Identifiable Information (PII) getting
leaked to third parties. A similar proof-of-concept application is
Privad[7], a privacy perserving advertising tool which runs totally
on the client’s machine without leaking PII.

6.3.1 Time-tracking Applications
Time-tracking applications allow users to “take notes” of what

happened in the past, and analyze them in the future. Browser
based history and bookmarks are the simplest examples, but they
only give users insight into the titles and urls of the previously vis-
ited webpages. EverNote7 allows users to record their web doc-
uments on demand, but requiring users to actively “take notes” is
ineffecient and error-prone. Time Doctor8 and Rescure Time 9 can
run silently in the background and keep track of usage among web-
pages. However, there are no security guarantees regarding these
tools. Equivalents of these tools can be built on top of Pando, let-
ting users “remember all the important things” while preserving
privacy.

7. CONCLUSION AND FUTURE WORK
Today’s internet forces users to make a compromising decision

between privacy and functionality: They may elect to take advan-
tage of useful online services but must entrust their data to oth-
ers in order to do so. Pando represents an alternate perspective
with regard to this tradeoff. We first observe that users can achieve
long-term durability of their personal data, in the format that they
4http://www.greasespot.net/
5http://groups.csail.mit.edu/uid/chickenfoot/
6http://code.google.com/p/domsnitch/
7http://www.evernote.com/about/home.php
8http://www.timedoctor.com
9http://www.rescuretime.com

http://www.greasespot.net/
http://groups.csail.mit.edu/uid/chickenfoot/
http://code.google.com/p/domsnitch/
http://www.evernote.com/about/home.php
http://www.timedoctor.com
http://www.rescuretime.com

viewed it, by capturing a complete log of the browser’s bahav-
ior over time. Second, we observe that this secure and persis-
tent log represents an alternate medium on which applications that
have privacy-preserving access to personal data may be built. We
present an isolated application runtime in which third party tools
perform a binary transition, relinquishing external network access
in exchange for access to a user’s browser log. Using this environ-
ment, we implemented three useful applications that users would
be unlikely to entrust to third parties.

Currently, we are in the process of doing a pando deployment
over 20 users, and expect to gathering real-time data spans for a
couple of months. In the future, we will actively work on enlarg-
ing the scale of our case study and doing a more profound analysis
over the data set. We are also seeking to answer the questions like
“Whether there are safe ways to disclose information or access re-
mote state from Pando apps?" and “Whether we can allow Pando
apps to run in a safe, cloud-based infrastructure to take advantage
of scalable computing tools such as MapReduce and MPI10."

References
[1] ANDRICA, S., AND CANDEA, G. Warr: A tool for high-

fidelity web application record and replay. In 41th IEEE/IFIP
International Conference on Dependable System and Net-
works (2011).

[2] ATTERER, R., AND SCHMIDT, A. Tracking the intereaction
of users with ajax applications for usability testings. In CHI
(2007).

[3] ATTERER, R., WNUK, M., AND SCHMIDT, A. Knowing the
user’s every move- user activity tracking for website usabil-
ity evaluation and implicit interaction. In World Wide Web
(2006).

[4] CHIRITA, P. A., FIRAN, C. S., AND NEJDL, W. Personal-
ized query expansion for the web. In ACM SiGIR (2007).

[5] DOU, Z., SONG, R., AND WEN, J. R. A large-scale evalua-
tion and anaylsis of personalized search strategies. In World
Wide Web (2007).

[6] ERLINGSSON, U., LIVSHITS, B., AND XIE, Y. End-to-
end Web Application Security. In Proceedings of the 11th
USENIX workshop on Hot topics in operating systems (Berke-
ley, CA, USA, 2007), USENIX Association, pp. 18:1–18:6.

[7] GUHA, S., CHENG, B., AND FRANCIS, P. Privad: Practi-
cal pricacy in online advertising. In USENIX Symposium on
Networked Systems Design and Implementation (2011).

[8] LERNER, B. S., BURG, B., VENTER, H., AND SCHULTE,
W. C3: An experimental, extensible, reconfigurable platform
for html-based applications. In Usenix Conference on Web
Application Development (2011).

[9] MICKENS, J., ELSON, J., AND HOWELL, J. Mugshot:
Deterministic Capture and Replay for JavaScript Applica-
tions. In Proceedings of the 7th USENIX conference on Net-
worked systems design and implementation (Berkeley, CA,
USA, 2010), NSDI’10, USENIX Association, pp. 11–11.

[10] MISLOVE, A., P.GUMMADI, K., AND DRUSCHEL, P. Ex-
ploiting social networks for internet search. In ACM Work-
shop on Hot Topics in Networks (March 2006).

10Message Passing Interface, http://en.wikipedia.org/wiki/
Message_Passing_Interface

[11] TEEVAN, J., DUMAIS, S. T., AND HORVITZ, E. Personal-
izing search via automated analysis of interests and activities.
In ACM SIGIR Conference (2005).

http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Message_Passing_Interface

	1 Introduction
	1.1 The Personal Web
	1.2 Contributions

	2 Goals and Non-Goals
	2.1 Applications Over a Secure Log

	3 Implementation
	3.1 Recording Engine
	3.1.1 Static Resource Load (Stat)
	3.1.2 Initial Load (Init)
	3.1.3 Navigation (Nav)
	3.1.4 Dynamic Resource Load (XHR)
	3.1.5 DOM Modification (DOM)
	3.1.6 Form Submission (Form)
	3.1.7 Visibility events (Vis)
	3.1.8 Frame Hierarchies

	3.2 Log
	3.2.1 Storage Format
	3.2.2 Protecting the Data
	3.2.3 Retention Policy
	3.2.4 Query Engine

	3.3 Application Proxy

	4 Applications
	4.1 Personal Web Search
	4.2 Monetary Transaction Verifier
	4.3 User Interests

	5 Evaluation
	5.1 Page Load Evaluation
	5.2 Storage Overhead

	6 Related Work
	6.1 Record and Replay for Web Apps
	6.2 Content Script Injection Frameworks
	6.3 Applications supported by Pando
	6.3.1 Time-tracking Applications

	7 Conclusion and Future Work

