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Abstract
Users of hosted web-based applications implicitly trust
that those applications, and the data that is within them,
will remain active and available indefinitely into the fu-
ture. When a service is terminated, for reasons such as
the insolvency of the business that is providing it, users
risk the immediate loss of software functionality and
may face the permanent loss of their own data. This pa-
per presents Micasa, a runtime for hosted applications
that allows a significant subset of application logic and
user data to remain available even in the event of the
failure of a provider’s business. By allowing users to au-
dit application dependence on hosted components, and
maintain externalized and private copies of their own
data and the logic that allows access to it, we believe
that Micasa is a first step in the direction of a more bal-
anced degree of trust and investment between applica-
tion providers and their users.

1 Introduction
“On July 3, 2012, picplz will shut down

permanently and all photos and data

will be deleted. [. . .] Thank you for your

support of picplz and we apologize for

any inconvenience this may cause you.”
—Message received by the users of picplz, an (insuf-

ficiently) well-financed photo sharing app, on June 1,
2012 [16].
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Will the cloud-based applications that you use today
still exist in ten years? What would you lose if they were
to discontinue service tomorrow?

As a growing amount of the software that we use—
both as individuals and as organizations—is offered in
the form of hosted services, questions like these demand
careful consideration. Application hosting is a compet-
itive and operationally expensive market, and provider
business models do not always prove to be sustainable.
As has already been the case with a number of real sys-
tems, the abrupt application end-of-life (EOL) that fol-
lows the decision to discontinue a given service risks
the loss of both software functionality and user data
[5, 9, 13, 10, 16].

Interestingly, this exposure to risk is not a necessary
property of hosted applications: the consolidation of ap-
plication logic and the storage of user data within an ap-
plication provider’s servers is simply the way that sys-
tems have been built in the past, and is a model that
is supported by most popular development frameworks.
Moreover, building a large-scale hosted application is a
challenging problem unto itself, and providers have un-
derstandably chosen to invest efforts in developing and
scaling their own applications rather than providing fea-
tures that anticipate their own demise.

We believe that the risk presented by application EOL
is significant. As application markets evolve over the
next decade, it seems very likely that additional appli-
cations will cease operations, resulting in inconvenience
and potentially even considerable expense for users. As
a result, users may hesitate to invest time in new appli-
cations, and organizational software procurement pro-
cesses may place priority on established and incumbent
applications. The perceived risk of using a new service
will further challenge the ability of new entrants to inno-
vate and succeed in the application marketplace.

In this paper, we describe Micasa, a web-based ap-
plication runtime that treats the sudden and permanent
unavailability of an application provider as a recover-
able failure mode. Micasa makes the trust that users are
placing in an application service provider explicit, by al-
lowing large portions of application data and function-



ality to operate independently of the provider’s hosting
environment. Our system aims to find a balance that
preserves the benefits of today’s hosted applications—
including the ease of adoption, maintenance, and soft-
ware upgrading—while allowing providers to clearly
demonstrate to users that their data and a relevant sub-
set of application functionality will remain available in
perpetuity.

Micasa applications are partitioned by developers into
server- and client-side components. Client-side applica-
tion logic, written in JavaScript and HTML5, is stored
alongside user data in a third-party storage service (such
as Amazon’s S3), chosen by the user. Under normal op-
eration, the provider is responsible for maintaining cen-
tral, private data and computationally demanding func-
tionality. However, in the event that the provider is no
longer available, the application is capable of continuing
to offer a subset of functionality, even “social” features
requiring interaction with data owned by other users, us-
ing only the client-side code and associated storage ser-
vices. To ensure that the exposure to lost functionality
remains explicit, Micasa includes a browser-side moni-
tor that audits RPC interactions with hosted components
of the application, and also allows users to “unplug” ap-
plications, simulating provider failure.

While some hosted applications have provided inter-
faces for users to “take out” [8] their data, the result
is generally a large volume of JSON- or XML-encoded
data, leaving no mechanism for users to usefully interact
with the contents. Further, as data representations and
schemas may change over time, writing third-party tools
to interact with these backups has proven to be a chal-
lenging task [21]. By packaging application logic for
data access and presentation alongside user data, Micasa
ensures that user data is preserved in a manner that is
more likely to be usable immediately upon EOL and that
can be preserved, in an archival sense, for long periods
into the future.

Micasa takes advantage of rich, browser-side execu-
tion environments and user-facing storage services in or-
der to achieve a clearer degree of trust between users and
application providers. While it does not protect the en-
tirety of application functionality in the event of EOL,
we believe it is a useful first step. In particular, the risk
mitigation enabled by Micasa allows upstart providers to
make clear claims to potential customers about service
longevity even in the face of end-of-life (EOL), which
provides a competitive advantage over services that can-
not (or choose not to) make similar claims.

1.1 Challenges

New applications written with Micasa can provide users
with a clear guarantee of both features of an application

and the set of their own data that will remain available
even after EOL. Our system seeks to preserve the scala-
bility, availability, and performance goals of today’s cen-
tralized application models, without entrusting a single
fallible entity with the hosting of data and application
logic. Our approach is to move user data out to external
cloud storage services and create an access path to this
data for the application. Many characteristics of hosted
applications make this decentralization difficult:

Single point of authority and control. Centralized
control services, accessible with a well-known identi-
fier (DNS name or URL) act as a rendezvous for client
browsers that are unable to communicate directly with
one another.1 This control service updates clients on ev-
ery visit, enforces authentication, authorization, input
validation, and serialization of requests as per the de-
sired application policies.

Proprietary information hiding. Centrally hosted
applications provide a convenient location to store data
invisible to clients, such as the exhaustive list of regis-
tered users, algorithms, and keys.

Scalability. Centrally hosted providers benefit from
elastic scalability within a single operational environ-
ment. A provider can use cloud computing to grow,
shrink, and relocate their compute power to adapt to
changing user demand and maintain suitable perfor-
mance levels.

Global view. Centrally hosted providers benefit from
a global view on all data in the system. This is useful for
building fast search engines, spam detectors, and enforc-
ing constraints across all data (e.g., uniqueness of user
email addresses). Finally, storing all data centrally and
controlling access to it allows application developers to
decide on storage formats and infrastructure, and evolve
them over time.

Micasa applications are distributed by a central host-
ing provider. When the provider is available, the ap-
plication benefits from all the advantages listed above.
Unlike traditional applications however, Micasa appli-
cations can preserve core functionality in the event that
the service is discontinued. When this occurs we say that
the application has become “unplugged”.

Micasa eliminates the need for the application
provider to mediate access to user data and protect data
integrity. However, unplugged applications are not exact
analogs of today’s centralized applications—we do not
attempt to distribute proprietary information, nor pre-
serve a global view on all data.

Micasa will support certain classes of applications
better than others when unplugged. Applications which
are heavily based on individual user-data-driven views

1There are upcoming browser peer-to-peer technologies, but they
require addressable proxies to establish connections.



such as blogs or photo galleries are the easiest to support.
With Micasa’s data interface, applications can share data
objects between users, and support user comments and
ratings (TwoCans, in Section 2, is an example of this).

On the other hand, Micasa is less suitable for appli-
cations that rely heavily on proprietary or global data,
e.g., a web search engine, or a matchmaking dating
site. There is still value in using Micasa for these ap-
plications however, because Micasa allows archiving,
indexing, and searching both the content in a user’s
personal store, as well as content shared by the user’s
“friends”. For instance, a hypothetical Netflix-Micasa
application might not offer recommendations when un-
plugged (because computing those might require ratings
of all users), but still allow an individual user to look at
(or search through) the list of all the previously viewed
items and ratings in their social graph (HotCRP-P, in
Section 5.2, covers such archiving and search).

Our implementation focuses on web applications, and
therefore we limit unplugged operation to computations
supported by modern web browsers. Also, we do not
offload any of the application logic to storage-side ser-
vices, aside from access control checks. This implies, for
instance, that a webmail service built on Micasa could
support, once unplugged, access to inbox contents and
sharing of messages via our sharing API, but not recep-
tion of email via SMTP from other mail servers.

Applications that serve cached pages for high perfor-
mance or that offer notifications to their users, such as
Twitter or Flickr, can still do so while the provider is
present. After EOL, Micasa can offer viable fallback
modes of operation. For instance, notifications can be
replaced with polling, and caches can be replaced with
direct access to user data stores (Section 5.3 covers the
caching example). Other examples of unplugged func-
tionality are summarized in Table 1.

2 Architecture

We will explain Micasa’s architecture through a moti-
vating application example. Figure 1 is a high-level ar-
chitecture diagram of TwoCans, a shared chat and mes-
saging system similar to services such as Google Chat,
Google+ Hangouts, or Facebook Chat. Its design is rep-
resentative of a typical Micasa application. TwoCans is
normally available as a browser-based application from
a provider at a well-known URL. However, if the appli-
cation is ever discontinued, TwoCans still has access to
chat histories, as well as the ability to interact with ex-
isting known contacts. A key requirement to enable this
post-EOL functionality is that user content not be stored
by the central server, or else it could disappear with it.

The software provider distributes the TwoCans source
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Figure 1: TwoCans, a typical Micasa application.

code from their servers, labelled as (1) in Figure 1. We
discuss how this Micasa application differs from a tra-
ditional web application in Section 2.1. Label (2) shows
this same code running inside the user’s browser, where
it links with the Micasa library, which we discuss in Sec-
tion 2.2. This library includes a secure monitor, which
ensures that the source code abides by the rules for un-
plugged applications. A code cache is also available lo-
cally at the client, for both the application code and the
library itself.

In Micasa applications, users provide the application
with the routable name of a Micasa-compatible data
store of their choice (e.g., during registration), denoted
by Label (3) in Figure 1 for TwoCans. Users store per-
sonal content on their chosen data store and retrieve the
content of other users from their respective data stores.
That is, users do not interact directly as in peer-to-peer
systems nor do they interact using a service provider as
a relay. Rather, they interact using the personal stores as
intermediaries in what we call peer-to-store communi-
cation. The programming interface of the personal data
store is discussed in Section 2.3.

Users could in principle run their own storage server
on a home network. However, we assume that most users
will use a commercial storage provider for their Micasa
applications to take advantage of the durability, avail-
ability, and reachability of a commercial provider. A user
may, but need not, use the same storage provider for ev-
ery Micasa application.

By using third-party storage we are not simply
exchanging dependence on one service for another.
Internet-scale storage is now mature, highly reliable, and
revenue-generating. The cloud storage business model
depends on protecting the integrity of the data stored,
and providing users with the ability to retrieve it. While
dominant cloud storage providers have proven thus far
to be stable and lasting service offerings, Micasa still al-



Converted feature

Feature Name Classification (§1.1) Unpluggable? Solution Summary

ACL / Confidentiality single-point yes Client-side crypto. Users store encrypted blobs and meta-
data. Group keys can be shared with closed caps.

User Registration prop. information hiding lost No new users can register. Known registered users can be
remembered however.

Content Discovery global view lost Requires access to global data. Limited form of discovery
possible out-of-band (e.g., URLs in emails).

Notifications scalability degraded Polling for object modification time changes or pub-sub
mechanisms implemented with append operations.

Table 1: Common application features, their categorization, and likely replacements in an unplugged application.

lows application code and data to be migrated from one
storage provider to another. We assume that if a large
storage provider were to go out of business, it would pro-
vide its customers with sufficient time to perform migra-
tion. We discuss data store migration in Section 2.3.4.

2.1 Micasa Applications

A chief challenge in Micasa is to survive the failures
associated with provider end-of-life without sacrificing
the many benefits conferred by centralized, cloud-based
application architectures. In particular we wish to pre-
serve performance and availability at scale. Rather than
attempt to replace existing application models outright
with a peer-to-peer architecture [23], our philosophy is
to embrace the same core approach that centrally hosted
applications use today, but endeavour to remove the
availability of application providers themselves as a cen-
tral point of failure.

The client-side code of Micasa applications makes
heavy use of dynamic HTML changes and modern
browser features from HTML5, such as CORS [18], to
fetch resources from multiple third-party services. Like
traditional web applications, the application provider
serves the client-side code, and maintains global applica-
tion data—data that is not owned by any particular user
or group of users. Providers may also cache some user
data, to accelerate certain operations.

Our model introduces an additional role for a storage
service provider, which is to guard access to a user’s au-
thoritative copy of their data. A disconnection from the
application service provider does not affect this role.

The monitor shipped with the Micasa library allows
users to check whether application functionality remains
available in the absence of the service provider (dis-
cussed in Section 2.2.2). We expect users will find this
even more useful than a simple data check-out feature,
and not take this as a sign that the service provider ex-
pects business failure.

2.2 Clients

Clients have access to a local code cache modelled after
the HTML5 offline cache, that can be updated by simply
visiting the application provider’s website. This cache is
periodically synchronized to the user’s per-application
personal data store so that it persists on durable storage.

Micasa applications require our client-side library,
libeol, to be installed in the browser. libeol provides
a JavaScript API, called Capability Storage Interface
(CAPSI), for interacting with user data stores from
client-side code. Our user data store API is described
in Section 2.3. libeol also monitors network access to
both the application provider, tc.example.org in
the example, and storage providers. The installation
of libeol simply consists of registering a new browser
extension—only a few clicks are required.

Except for the presence of libeol, TwoCans possesses
all of the regular functionality and appearance of a nor-
mal web 2.0 application: user actions in the view can is-
sue RPCs to the provider to retrieve additional dynamic
content (e.g., search and forms).

This form of deployment follows typical web nav-
igation paradigms and makes trying out new applica-
tions very easy. We believe that Micasa applications
could also be packaged in forms compatible with cur-
rent browser “hosted application or local app” concepts
such as Chrome Apps or Mozilla Apps [7, 15].

2.2.1 Connecting to Data Stores

Micasa’s client library exposes CAPSI, which is used
to request any data to and from Micasa data stores. Ta-
ble 2 lists its methods, grouped by category. CAPSI al-
lows users to create isolated stores for each applica-
tion, called namespaces. A user can gain write access
to one of the namespaces he or she owns by logging into
the data provider from the application associated with
that namespace. A session is only valid within a sin-
gle namespace, for that client, on that application. Once



Category Methods

Writing putlist, putblob, append
Sharing mkget, mkappend
Reading getlist, getblob, getnsroot
Deleting delete, revoke
Accounting login, logout, mkns

Table 2: Methods in CAPSI.

an authenticated session is established with its storage
provider, a client can create, manipulate, and share ob-
jects from the namespace with other users. Clients can
also read or append objects from other storage providers,
unauthenticated, provided that a valid reference to that
object is presented. This way, no extra login procedures
are required to access other user stores.

2.2.2 Library Installation and Audit

The client library places a monitor around the applica-
tion code, which intercepts, classifies, logs, and possi-
bly blocks all external requests issued. To audit an ap-
plication’s dependence on its provider, users can use
the monitor to launch Micasa-enabled applications in
“unplugged” mode. When launched this way, the mon-
itor simulates the absence of the provider by artifi-
cially breaking all provider-bound connections passing
through the application interface, verifying any of the
provider’s claims about robustness to EOL.

In order for the library to properly monitor the ap-
plication, its code is loaded in the user’s browser first,
before the application starts loading. The early injec-
tion allows the monitor to gain access to the unmodified
JavaScript environment. The library injects JavaScript
code in the top of the page to enable CAPSI function-
ality, as is done in other JavaScript instrumentation sce-
narios (e.g., MugShot [14]).

When a network request is intercepted, the monitor
consults a file supplied by the application developer. The
Interface Definition Language (IDL) file simply contains
a set of URL regular expressions that classify outgoing
requests (more details on the format is available in Sec-
tion 4.1.1). The monitor finds a matching entry in the
file based on the request environment, and a policy deci-
sion is applied based on the entry’s type and plugged/un-
plugged status. The monitor records the network interac-
tion (and decision) into an audit log, and can optionally
report the contents of the log back to a web server exter-
nal to the browser.

This mechanism allows motivated parties with suf-
ficient expertise to validate any warranty claims the
provider could make about the application, and thus
helps prove the provider’s good intentions. For instance,

if an application offered a private or local search into a
user’s own data (e.g., Section 5.2), an investigative user
could trigger search actions in the UI while unplugged
and verify in the logs that the application does not con-
tact a central application server to gather search results.

2.2.3 Personal Search

A central provider is very useful for indexing and search-
ing across all of the data associated with an application.
However, if all of the indexing and search functional-
ity is located at the provider and the provider fails, the
clients are left without an ability to search even their
own data. Micasa makes it feasible for clients to keep a
rich index. Clients can maintain an index over their own
content with references to their own store, as well as an
index over all of the data to which they have been given
access. An index mapping keys to capabilities can be
built incrementally during the process of retrieving con-
tent from other users’ stores. In addition, from the list of
capabilities in the index, a client can periodically recur-
sively crawl the content to which it has access to update
the index for mutable objects that may have changed. We
demonstrate the personal search capability of Micasa in
our conference management system, called HotCRP-P,
which is detailed in Section 5.2.

2.3 Data Stores

In Micasa, browser applications interact with user data
stores. Currently, we require that these data stores ex-
port a capability interface, CAPSI. For a given appli-
cation, different users are free to choose different data
stores, and a given user is free to choose different
data stores for different applications. While users may
manage their own CAPSI-store, we envision a Micasa
ecosystem that includes a number of commercial cloud
storage providers that export an interface with the fol-
lowing:

Provider compatibility Users can choose their storage
service, and can access stores of other users regardless
of their chosen provider. The data should be migratable,
so that users can change providers.

Sharing and access control Users can create data ob-
jects and share them with other users. References to ob-
jects can be used to control access to the information,
and encryption can be used to protect the confidentiality
of the data.

Revocation Users can revoke access to a previously
shared object. This is the opposite of sharing.

Write Access Control To protect the storage footprint
of user data stores, we disallow arbitrary writes to data



Field Description

Object Reference Type and content address of object
Server Reference Used to resolve server hostname
Issuer Userid of object owner
Audience Userid of users who is allowed access
Root Reference Cap. from which this cap. is derived
Timestamps Creation, and (optional) expiry times
HMAC Signature of the cap. with server’s key

Table 3: Anatomy of a capability.

stores of other users. We do, however, provide a permis-
sions mechanism which emulates append-style seman-
tics for applications. Given the appropriate permissions,
one user may append a reference to an object they own
into a list of references in another user’s data store.

Fine- to Coarse-Grained Sharing Users can share an
individual object, or group multiple objects into collec-
tions and then share them all at once.

Unfortunately, the permissions interfaces exposed by
existing cloud storage services such as Dropbox, Azure,
and S3, are a poor fit for these requirements: they force
data to either be open to the public, or to be shared
with a named user on the same storage service. Simi-
larly, their access control primitives make it impossible
to safely support append-only semantics. Instead we de-
veloped and implemented the CAPSI storage interface.
This interface is immediately deployable, for example,
as an EC2-based service with an S3-based back-end. As
storage services have an incentive to attract more cus-
tomer data, we assume that if Micasa-style applications
became popular, commercial storage providers would
add CAPSI as a native interface to their service (or al-
ternatively provide access control primitives that allow a
compatible client interface to exist).

2.3.1 Capability Servers

With data stores distributed across multiple independent
storage providers, as in our model, using authentication
and access control lists to implement the sharing of ob-
jects between users would require either numerous user
registrations (e.g., a user would need an authentication
mechanism for each of the storage providers used by
his/her friends) or a trusted third party identity provider.
Instead, we have chosen capabilities as the basis of our
sharing model. This way, access to objects can be com-
municated over email, or be embedded inside pages, etc.

2.3.2 Structure

In this section we briefly describe the structure of our
capabilities, displayed in Table 3.

We define two types of objects: blobs (files) and lists
(folders). Lists allow capability grouping and nesting.
Both types can be shared with other users. Sharing a ca-
pability to an object will share both the object and all
of its descendants. For applications that require different
types of navigation, such as searching by tags, lists store
application metadata for each entry that can be used to
build search indexes.

The objects themselves are either mutable or im-
mutable. Immutable objects are referenced by their con-
tent address (content hash). Mutable objects have a
unique name on the underlying data store.

Capabilities describe three types of rights over an ob-
ject: OWNER, which is all-rights, GET, which is read-
only, and APPEND, which allows a controlled form of
write sharing (only for lists). We found these to be suffi-
cient to build rich applications.

Other fields are used to reduce the scope of capabili-
ties. Limited periods of validity can be set using the ex-
piry time and creation time fields. Also, capabilities con-
tain reserved fields for issuer and audience to determine
the owner of an object, and limit access to some users
in cases where the capability server can authenticate the
requester (see Section 3.1).

A server reference field can be resolved to locate the
capability server that manages the object. This indirec-
tion allows data migration (Section 2.3.4), and transfor-
mation of capabilities into URLs. Lastly, every capabil-
ity generated by the server includes an HMAC over the
properties in the capability tuple, computed with its own
secret key, to avoid spoofing.

2.3.3 Data Access

Data in Micasa is represented by capability URLs. These
define both the Internet location and access permissions
of the data, and have a well-defined format that is under-
stood by all storage providers that support CAPSI.

Figure 2 gives a common example usage of our li-
brary, in which Alice is sharing some data with Bob. For
illustration, we describe this process in the context of a
private chat session between Alice and Bob in TwoCans.

We assume Alice gains access to Bob’s chat room
page by either navigating tc.example.org, or receiving a
URL out-of-band. This page contains a capability to the
list of messages in the chat as well as an APPEND capa-
bility to append to the list. To add a message to this chat,
Alice needs to first upload a file containing the message
to her storage provider. To do so, she types in her mes-
sage and submits it, which causes the page to upload
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Figure 2: Alice shares data with Bob. In this example, Al-
ice’s application is interacting with both Alice’s and Bob’s
data stores. Prior to Alice performing a put for F, Bob has
a list L of capabilities in his store and Alice has a capability
APND L "Alice" to append to that list.

the file (step 1). After the upload, the response from Al-
ice’s storage provider is a capability that indicates that
she owns the file. An OWNER capability is a proof of
ownership of that file and gives Alice read-write-delete
permissions over it. The application then converts that
OWNER capability into a form suitable for sharing (with
Bob), a GET capability (step 2). The GET capability cre-
ated is logged by her CapServ, so that Alice may revoke
it or migrate it in the future (explained in Section 2.3.4).

Alice transfers this GET capability to Bob, by invok-
ing her APPEND capability on Bob’s server (step 3). A
tag parameter (’’Alice’’ in Figure 2), taken from the
append capability, is copied to the new entry in Bob’s
list, so that he may know which target was used to ap-
pend. The next time Bob reads the chatroom list, he will
detect the new message entry, and can retrieve Alice’s
file directly from her data store using the capability for
that file now sitting in the list.

2.3.4 Data Migration

In Micasa, in order to mitigate service provider lock-
in, users store their data with an independent storage
provider. We emphasize that by doing so, we are not
trading one form of lock-in for another. Current stor-
age services have a good track record, and we believe
they are less likely to go out of business than many
other cloud services. Moreover, the services are effec-
tively built to allow users to simply and easily access
and retrieve their data.

In cases where data store migration is desired, Mi-
casa is able to do so while preserving access control
and availability. To achieve this, capabilities previously
constructed by one server must continue working after
a data store has migrated. Because the keys used to sign
and verify capabilities are private to each CAPSI storage

provider, capabilities issued for objects at the original
server cannot be verified at the new server. To migrate
to a new server, we first copy all user objects, followed
by the capability generation log (one entry for each call
to mkget or mkappend where the capability has not
yet expired) to the new server. When the new server re-
ceives a request with an unverifiable signature, it can
check the log for the existence of a matching legacy ca-
pability record, and allow access accordingly.

The server reference field in the capability must al-
ways be resolved to the active server that stores the ob-
ject. Once the data and capability records have been
copied, the final step in data migration consists of up-
dating the resolved value of the server reference to point
to the new capability service. Our prototype server and
client use DNS as a resolution mechanism, but we are
investigating other approaches based on email addresses
and web discovery protocols.

3 Maintaining Service Integrity
For traditional hosted applications, the central servers
play a crucial role in maintaining the integrity of the ser-
vice. For example, they ensure data authenticity, data in-
tegrity, and data consistency through validation and san-
itizing. Servers also attempt to minimize excessive use
of the service (e.g., by bots) or other abusive behaviour.
Micasa-style applications do not have the luxury of a
central point of enforcement to implement these mea-
sures. It is therefore important that the application de-
veloper compensate for the absence of a central server
by correctly using the tools provided by the library. Be-
low we discuss how this can be achieved.

3.1 Data Authenticity and Integrity

Certain situations require proving that objects are au-
thentic to particular users or that access requests have
been issued by specific users.

Micasa capabilities are open by default, meaning that
simply bearing the capability is sufficient to invoke the
rights it describes. An optional tag attribute allows dif-
ferentiating capabilities to the same object, but cannot
be relied upon to tell apart two users bearing the same
capability.

While authentication could be provided in Micasa
through closed capabilities, which require the bearer to
prove his or her identity before a request is executed
(e.g., with passwords or email addresses), it is also pos-
sible to authenticate requests and data objects via digital
signatures, using cryptographic information stored else-
where in the application. This does require additional
key-management complexity, but is less demanding on



the capability system, and thus the TwoCans application
described in Section 5.1 is implemented in this manner.

CAPSI capabilities on their own offer basic sup-
port for verifying content integrity. As shown in Sec-
tion 2.3.2, immutable object capabilities expose the
content hash of objects, which can be verified on the
client with JavaScript routines or native plugins.2 Stor-
age providers falsely reporting content can be added to a
blacklist and pruned out.

Verifying the integrity of mutable objects is also feasi-
ble, but requires information external to the capability. In
this case, the library provides the tools to digest content
and verify signatures, but the application is responsible
for providing the expected values.

3.2 Data Consistency

To ease application development, CAPSI forces all
writes to be isolated and serialized per-object. In our im-
plementation, if the underlying data store can only of-
fer eventual consistency on updates, then updates to an
object are logged by the capability service until propa-
gation completes.3 Updates could also use a version pa-
rameter to provide a “conditional put” mechanism.

It is possible to use this consistency model to perform
more complex transactional operations, as long as all
participating processes cooperate. Unfortunately, this is
impossible to enforce if users are not trusted. Our frame-
work is therefore limited to unplugged features that can
be supported with single-object atomic operations.

3.3 Validation and Sanitization

Applications impose many restrictions on the actions
users can take and the data they submit. Coding prac-
tices recommend that users’ submitted data be validated
and sanitized before it is persisted. This guarantees that
all content on the server satisfies an accepted format.

In unplugged applications however, validating only
before submission is insufficient. Because users have
full control over their own stores, the data of other users
must be verified before it is used. To this end, libeol pro-
vides basic common content validators, such as enforc-
ing length bounds on responses and HTML escaping.

The amount of validation needed will depend on the
type of application. We have found in practice that non-
global uniqueness checks (e.g., a user can only post once
on a photo) and chronological checks are simple to im-
plement. Immutability checks (e.g., forbid edits) require
chaining digests and are more complicated. Fortunately,

2libeol checksums unencoded network payloads (binary) using
JavaScript and XHR Level 2 features.

3Propagating updates takes only a few seconds in practice.

expensive validation operations can be short-circuited by
memoizing content hashes of objects previously visited.

3.4 User Store Abuse
Users must pay for bandwidth and space on their storage
provider, which represents a new system element vul-
nerable to abuse. While there are no foolproof solutions,
capability servers can mitigate certain forms of abuse.

Rate of access can be controlled by the capabil-
ity service, through rate-limiting or the insertion of
CAPTCHAs. In terms of controlling space usage, users
need only worry about other users appending capabil-
ities to their lists; capability strings are relatively small
(less than 1KiB), and if this became an issue a maximum
length on list objects could be imposed.

It is generally the responsibility of the application
provider to rid the application of spammy content and
fake accounts. To prevent that sort of abuse, unplugged
applications will need to rely on client-side databases
and spam engines, or third party spam services. Mod-
erators can still flag inappropriate content, but it is the
client-side code that would need to filter it out from view.

3.5 Missing User Data
In a centralized hosted service, any revocation or dele-
tion of data by users is mediated by the application.
Thus, there will not be any data missing unexpectedly
at page build time. In Micasa, however, a user can ac-
cess and manage data in an application’s namespace in
his own store via CAPSI out-of-band of the applica-
tion, such as via a namespace file explorer app. Owners
can also revoke access to data that they have previously
shared. Capability servers ensure that invoking revoked
rights will fail. For the application, this possibility trans-
lates into “holes” within pages.

Developers should provide fail-safes for missing con-
tent. They should account for the eventuality that con-
tent has been revoked, at least at the granularity of the
“un-share” operations defined in the application. For in-
stance, if the application allows changing privacy set-
tings on pictures, then access to any picture could be re-
voked along with all associated information. In this case,
the error condition is detected (e.g., 404 Not Found), and
the application can replace the image with a placeholder
or another visual indicator.

4 Implementation
We have implemented a CAPSI-compliant capability
service called CapServ, a client-side library for build-
ing Micasa applications called libeol, as well as several
applications which will be described later in Section 5.



The capability service is composed of less than 3K
lines of Python. It is run as a python-WSGI applica-
tion. It supports three storage backends for data objects:
POSIX local file system, Amazon S3, and Microsoft
Azure. However, in an ideal deployment scenario, the
capability service would be implemented directly by the
cloud storage provider.

Our client library, libeol, runs in unmodified browsers.
There are two subsystems in the library. First, there is
the CAPSI subsystem, which is invoked by the appli-
cation to access capabilities. This alone is written in
approximately 3K lines of Java Google Web Toolkit
(GWT) code that compile down to around 120KiB of un-
compressed obfuscated JavaScript (33KiB compressed).
This subsystem also has bindings for web applications
written only in JavaScript (i.e., without GWT). The sec-
ond subsystem is the monitor, which is divided in two
parts. The first part, the in-page monitor, runs in the
page’s JavaScript environment. The second, the external
monitor, runs as a Chrome browser extension.

The in-page monitor is loaded at the very start of each
page load. Its responsibility is to bootstrap a communi-
cation channel between the page and the external moni-
tor, and provide some hooks that the application can use.

As an extension, the external monitor has the privi-
leges necessary to interpose on and audit all network
connections. It captures network events that would be
otherwise impractical or expensive to capture from the
JavaScript environment, namely network requests trig-
gered by embedding objects in the DOM (e.g., image
tags). It also presents a GUI to unplug the application
(Section 4.1.2). Cross-browser compatibility is future
work, and may benefit from a JavaScript sandbox such
as TreeHouse [11].

4.1 Before and After Unplugging
In Micasa we leverage HTML5 application cache mani-
fests [19] to identify client-side resources that should be
preserved in the absence of the service provider. These
application cache manifests can be defined for devel-
opers to allow “offline” mode functionality, and can be
used as a mechanism to speed up application load times
on subsequent visits.

We assume that clients are running our extension
when they visit a Micasa-enabled website. Micasa ap-
plications are installed to the code cache with the initial
visit to a page featuring a special eol marker:

<html manifest="man.appcache" eol="true">

If the manifest referenced is new to the code cache
storage or has changed, then the manifest itself, and all
contained resource references are stored. Chrome exten-
sions cannot, as of this writing, programmatically access

the browser’s application cache contents directly. Our
implementation thus introspects the DOM to find the lo-
cation of the cache manifest and parse its entries. For
each entry, a new URL to the corresponding entry in the
Micasa cache is created, and a page mapping is updated
from original resource URL to cached resource URL.
The resources are cached externally to the browser so
that they have a longer lifetime than the browser cache.

After unplugging, the local application cache may
need to be repopulated from the external code cache.
Our implementation redirects web request URLs accord-
ing to the previously constructed mapping. This is cur-
rently achieved with Chrome extensions’ webRequest
module4. Programmatic access to the application cache
would also be preferable for this task, because redirects
performed with this module are unfortunately not origin-
preserving for top-level documents.

4.1.1 Manifest Specification

The HTML5 cache-manifests are defined per-page, not
per-domain. However, we assume in our implementation
that there will be a single Micasa application per domain
name, and that the application will be a “single-page”
application. This simplification allows the extension to
associate one-to-one applications and domain names,
and allows users to unplug applications on demand more
easily. We reuse the HTML5 cache manifest syntax and
semantics for Micasa applications, except that in order
for CAPSI requests to succeed, a wildcard entry must be
added to the NETWORK section of the manifest. This
entry informs the browser that requests outside the static
set of cached resources should be allowed if there is net-
work connectivity.

In addition to the set of static UI resources, the mani-
fest also lists a server IDL file, in JSON format. The pur-
pose of this file is to categorize the requests seen by the
application monitor. Entries in this file declare a method
name (key), a human-readable description of the oper-
ation (an intention), a type label (provider, third party,
or CAPSI), and a list of expressions used to match the
URLs belonging to the entry. The file is evaluated at load
time by the in-page monitor, and its information is com-
municated to the external monitor.

The external monitor matches outgoing network re-
quests to entries in the IDL file, and will block or allow
the connection, depending on the type of the entry and
plugged/unplugged status. The default policy when un-
plugged is to block those requests with type “provider”,
and those that match no entries (fall through).

The provider may attempt to make bogus claims that
certain features are unpluggable, and make them appear
to be so via mislabelling. However the monitor provides

4Proxies are an alternate solution, but complicate deployment.



an audit trail by logging all outgoing requests. A decep-
tion exposed in an audit by any customer risks alienating
all customers.

4.1.2 The Unplugged Event

UI controls in our monitor extension toolbar allow the
user to disconnect from a service provider on demand.
This unplugs the application, switches filtering rules in
the monitor, and notifies the running application of the
state change. Users could use this control to simulate a
disruption to provider services, and test that the applica-
tion features continue to work as advertised.

After failing a server request due to an unexpected
network or server error, applications must determine
whether the error is transient, or permanent (unplugged).
The application code can trigger the application to un-
plug on its own, for instance if repeated attempts to
reach a server all fail. However, to help the application
decide faster, Micasa defines new runtime page events,
unplugged and plugged, that fire according to the cur-
rent state of the monitor.

Applications can listen for these events to dynami-
cally change their behaviour. For instance, applications
could determine if certain features should be presented
to the user, or to pick alternate implementations of a par-
ticular feature.

HTML5 offline mode [19] defines similar events for
cases where the browser is experiencing a network out-
age. Our unplugged scenario is similar in that the appli-
cation service appears unavailable, but different because
unplugged clients can still rely on the network to per-
form CAPSI calls, or access third-party services.

5 Evaluation
We wish to create applications that can tolerate perma-
nent disconnection from their provider, but we also want
these applications to have good performance, be func-
tional, feature-rich, and practical to build. Those are dif-
ficult criteria to meet when considering that the conve-
nience of a central server can be lost. We evaluated the
practicality of our prototype by building many different
applications, listed in Table 4 with their size in lines of
client-side code. Of the list, two will be explained in fur-
ther detail in the following sections. The last section of
the evaluation benchmarks Micasa-model applications
on a Flickr-based data set.

5.1 TwoCans: Messaging System
Our first application showcases the core functionality
provided by our prototype library. We use libeol to im-
plement a multi-reader multi-writer system, a pattern

App. Name SLOC Description

TwoCans 1500 IM System (§5.1).
HotCRP-P 10K Permanent HotCRP (§5.2).
Lenscapes 2200 Photo album sharing.

Data Viewer 650 Namespace file explorer.

Table 4: Micasa Web Applications and their size.

common to multiple online social web applications. This
pattern often takes the form of comment lists, page votes,
a “friend wall”, etc. Multiple instances of this pattern can
be duplicated and composed to create pages of arbitrary
complexity (e.g., a comment list on a photo, itself inside
a shared photo album).

We place this pattern at the core of TwoCans, a multi-
party Internet messaging system, written from scratch.
It is a conceptually simple application that allows mul-
tiple users to exchange text messages in chat rooms. It
differs from typical chat programs in that writers retain
ownership of the messages they send out. The messages
are exchanged between peers using the stores as inter-
mediaries in a peer-to-store fashion. The implementation
consists of about 1500 lines of client-side code (exclud-
ing libeol), and a small central server implementation of
under 300 lines of Python.

To initiate a conversation, users create a list to host the
messages. To add a message in the conversation, users
first upload message text to their store, then append the
resulting capability to the conversation list. The owner of
the conversation list can act as a moderator, and revoke
access to one of the users. By design, if the owner of
a conversation deletes the conversation, the conversation
is lost (unless a copy is taken). Also, users can revoke ac-
cess to their own messages. The TwoCans central server
provides discovery of other users and public chat rooms
via search. When unplugged, these features go away, but
users retain the ability to communicate in chat rooms in
which they are already members. Furthermore, inviting
users in a chat room can always be done by sharing an
invite URL out-of-band.

TwoCans protects against message spoofing via mes-
sage RSA signatures, generated with utilities in libeol.
An author obtains a signature with a libeol function call
over the message plaintext, the current timestamp and
the unique chat room ID. Signatures are appended along
with message plaintext. Other chat members verify them
using the author’s public key, which is retrieved from the
central application server (but could be retrieved from an
external service), and cached at the client.

Overall, the TwoCans service consists in a directory of
registered users and their public keys, as well as a search
index on the subjects of active conversations. Scalabil-



ity of the service relies mostly on the cloud storage
providers of the users.

5.2 HotCRP-P: Permanent HotCRP

In this section, we demonstrate that Micasa can sup-
port the needs of modern applications, with reasonable
developer efforts, by refitting the conference manage-
ment software HotCRP to work in a Micasa environ-
ment. HotCRP-P, our modified application, includes all
of the original application functionality, plus the perma-
nent ability to search through all reviews and papers the
user has ever had access to, regardless of the conference
server’s availability. The difficulty in this case lies in
teaching HotCRP that it can be unplugged, change cer-
tain UI flows accordingly, and ensure users can search at
all times.

HotCRP consists of about 20K lines of PHP code
that mixes data and logic in the page that it renders
(like many PHP applications). To change HotCRP into
a cacheable web application, we went through the te-
dious process of extracting UI logic from the server-side
HTML generation templates for most of the conference
core functionality. The resulting UI resources comprise
around 10K lines of JavaScript, 700 lines of HTML, and
200 lines of CSS. Porting an application that from the
start embraces Web2.0 further (e.g., no top level page
changes, AJAX-heavy) would be easier.

We then modified the login flow in the client to allow
connecting the user to a Micasa store, before logging in
to the HotCRP server. We modified the paper submis-
sion, abstract modification, and review submission flows
on the client to work with capabilities (i.e., upload ob-
ject to store, obtain capability, and submit capability to
server). We made corresponding changes on the server
so that it stored both the capabilities and a cached ver-
sion of the full object. Loading these pages as a viewer
works in the reverse way: capabilities are fetched from
the server via a REST-ful interface (using key parame-
ters such as the paper’s id) and objects are retrieved from
Micasa stores. If the papers are unavailable, the server’s
cached copy can be used instead.

We implement the permanent search feature by build-
ing a client-side index of page contents, keyed with the
paper id of the page being viewed. The index itself is
periodically saved to the user’s store. Rather than writ-
ing our own indexer, we modified Apache Lucene (ver-
sion 3.3.0) to work in a Java applet. The patch for this
is around 1400 lines of Java code. The client stores the
capabilities, so that page content can be reconstructed.

The permanent-access feature is only enabled when
the application is unplugged. In that mode, authentica-
tion is no longer possible. HotCRP-P thus replaces the
login flow with a search query flow. After a success-

ful search, corresponding pages can be displayed, and
cached capabilities retrieved.

5.3 Client Performance Overheads

We measure the performance impact of migrating from
a centralized service to one running in a Micasa en-
vironment, in a benchmark modelled after Flickr pic-
ture pages. The benchmark consists in rendering picture
pages, along with respective user comments, and images
embedded in these comments.

We take measurements on multiple picture pages of
varying complexity. Pages are representative of a ran-
dom sample of Flickr picture pages, and were sampled
from the “fresh” (recently-uploaded) and “7-day popu-
lar” Flickr feeds. The number of comments, the size of
the comment text, the images inlined with a comment,
the image data, and number of comment authors match
the online version of the page in the feeds, and vary
across all of the sampled pages. We maintain Flickr’s
limit of 20 comments shown per page. However, it is not
uncommon for comments to embed a variable number of
additional images. We run the benchmark on three dif-
ferent versions of the pages, and perform point to point
performance comparisons.

The first version is our baseline, a static version of the
page with comment text and image tags inlined. That is,
all the URLs to images and the comment data are known
once the index file is loaded. It simulates an application
server that can generate page content instantly (i.e., no
page-generation overhead). The server also serves data
for all images, scripts, and CSS referenced in the page.

The second implementation uses libeol. In this ver-
sion, comment and image data are retrieved across
CAPSI stores. The base content of the page (HTML,
JavaScript, CSS, icons, logos etc.) is devoid of user data.
Client-side logic fetches and displays all of the dynamic
content in the page from a single top-level capability
list for that page. We assign each user involved in the
page, i.e., the picture owner and all comment authors,
to one store sampled from a population of 10 distinct
CapServ stores, according to a Zipf popularity ranking
of 1/r. Users are also assigned a key pair for signing
comments. The public key is stored in a key repository
on the application server. Individual comments and em-
bedded images are stored as immutable blobs. Refer-
ences to the comments and images are stored inside a list
for each comment, and references to these comments are
appended to a single comment list owned by the owner
of the page. Comments are digitally signed with RSA by
including content hashes for comment text, embedded
image references, and other fields from the capabilities.

The reference to the appendable comment list, as well
as a reference to the main picture is stored inside the top



level list. Overall, the client recurses 3 lists of capabil-
ities to obtain references to all objects to be displayed
in the page. To verify signatures on comments written
by authors unknown to the client, missing public keys
are fetched from the key repository, and cached to avoid
future lookups.

The third implementation is similar to the second, but
benefits from application server caching. Page loading
is sped up by retrieving a cache file from a central appli-
cation service. This simulates an application that caches
capabilities added to the page by users (i.e., whenever
a new comment is appended). The cache file contains a
“flattened” view of the capability structure of the page.
It contains capabilities to the user data (comment blobs
and embedded image blobs), but not the data itself. In
this version, signature verifications on author comments
are skipped because the cache file is assumed to be au-
thoritative. However, object digests must still be com-
puted to match expected values in the cache file.

We run all of the CapServ hosts in 32bit Ubuntu 10.04
micro-instance VMs on Amazon EC2 (west coast), and
configure them to store objects on their local block stor-
age. Our client runs Google Chrome Stable 25, on a
Ubuntu Desktop 10.04 64bit, with a Core i5 750 CPU
(4 cores, no hyper-threading), connected to the univer-
sity’s public network.

5.3.1 Results

The bandwidth overhead for any page and version de-
pend upon the number of comments and data objects.
The amount of application data loaded is the same across
the three versions (images and comments are the same
size), so any additional data transferred comes from ca-
pability lists, capability strings referring to data objects,
and user keys. The two versions using Micasa have the
advantage that client-side code is cached at the client,
and need not be downloaded. The bandwidth consump-
tion overhead of the version with caching over the static
one is minimal, around 6%. In the worst case, when
server caching is unavailable, the extra work involved in
retrieving keys and reconstructing the capability struc-
ture places this overhead at 23% over static5.

In contrast with bandwidth requirements, the impact
of using Micasa on page load times is more complex
to characterize. We compared, pairwise, the total time
needed to load all the comments and images on the page.
The cumulative distribution of overheads in page load
times over the static version is shown in Figure 3. For
example, around 80% of all pages without caching have

5The median values are within 3% of the means, and we mea-
sured bandwidth consumption using Charles 3.6.5 HTTP proxy, with
caching disabled in both the browser and proxy.
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Figure 3: CDF of the percentage load time overhead versus
the static baseline, compared on a page-by-page basis.

an overhead of 100% or less over static6, and similarly,
all pages with caching have no more than 40% overhead
over static. Results shown are for 50 Flickr pages. For
each page and version, we compare median load times
over 21 repeated page views. Our sample set’s static
pages have 72.8 objects to retrieve on average (69.5 me-
dian), and have average load times of 1026.8 millisec-
onds (1006.5 median).

The overheads with respect to the static case are due
to a number of factors. First and foremost, they are
due to data dependencies that increase the overall time
needed to construct pages. In the Micasa version with-
out caching, four levels of capabilities need to be tra-
versed before images and comments can be inserted in
the DOM. Three of these levels are already unrolled with
caching. Similarly, the caching version does not need to
fetch keys and can skip signature verifications.

Generally speaking, capabilities on a same given level
can be retrieved in parallel, but not before their parent
list has been retrieved and parsed. In practice, this paral-
lelism is subject to per-host-port connection limits, and
a global limit set in the browser (16 and 35, respectively,
in our experiment).

Second, in isolation, fetching blobs from our proto-
type CapServ incurs penalties over static file fetches
from Apache 2.2.14. The overheads on the server con-
sist of a base cost for capability verification (SHA1-
HMAC), the Python language runtime, and a WSGI con-
nector that passes data between the server application
and Apache. This is added to the client overheads caused
by the libeol invocation, and the client-checksum rou-
tine performed over response bodies. Figure 4 shows
median overheads of performing getblob on various
sizes over 200 trials, on a local network. The slowdown
is approximately a multiplicative factor of 3 between
static and Micasa, and 3 from Micasa to Micasa with
client-side JavaScript SHA1 [17].

Third, as mentioned earlier, both Micasa versions ben-
efit from local caching of client-side code.

6(tcaching(page)− tstatic(page))/tstatic(page)
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Fourth, in our tested scenario, some Micasa pages
gain an advantage over the static case due to increased
data parallelism. In the Micasa cases, the browser can
fetch data from up to ten stores based on the number of
personal stores involved. Recall that in our static case,
a single server delivers content. While we did this to
model a startup service, more mature providers deploy
multiple servers to improve page load times.

Overall, we find that with all factors combined, our
Micasa prototype offers promising performance. Many
further optimizations could be applied to improve its
performance. For instance, our server could benefit from
request batching, or recursive list fetches, and the client
digest computation could be moved off the main thread
into a worker.

6 Related Work
The idea of separating web application code from data
is not new. It is a core concept in Web 2.0, and has
been applied for many different purposes. Some use it
to solve a form of data lock-in [2, 25], by empowering
users to place data in personal stores in the cloud. Un-
fortunately, their storage models are mostly designed for
single-user applications. In the case of unhosted, receiv-
ing updates from other users is only possible by granting
coarse OAuth write access to a mediating service. They
therefore do not address the challenges inherent to pre-
serving social features without a central server, nor do
they address building applications that are compatible
both with and without the server.

W5 [12] also proposes an architecture allowing users
to retain control of their data by separating it from ap-
plication logic. W5, however, is designed to restrict data
flow to providers. This falls outside the scope of Micasa;
we focus on EOL functionality.

Menagerie [6] presents a system that allows appli-
cations to aggregate data across cloud services, by en-
capsulating access to objects inside capabilities. In both
Menagerie and Micasa, capabilities provide uniform ac-
cess mechanisms to objects stored on heterogeneous ser-

vices, and are at the basis of sharing. However, their goal
is to aggregate data dispersed on the Internet. It does
not allow service continuity without the provider. Our
capability-based API alone provides features similar to
other existing capability systems [22, 20]. Our system
was developed independently, but it appears possible to
create a portability layer to support our needed seman-
tics on these other systems.

SPORC [4] and Frientegrity [3] address the problem
of having groups of users collaborate on untrusted cen-
tralized servers. Whereas our goal is to test that applica-
tion providers can provide continued application func-
tionality, their main goal is to protect the user’s data in-
tegrity by detecting misbehaving servers. They rely on
developers using operational transformation for merg-
ing event conflicts, whereas we allow more familiar
ways of programming. Our system’s storage organiza-
tion also resembles Persona [1]’s decentralized storage.
They solve the particular problem of protecting data pri-
vacy in a distributed private social network context using
attribute-based encryption, whereas we build a frame-
work for letting applications disconnect from providers.

Many choose to do away with a centralized service
and provide essential functionality inside smaller feder-
ated instances of the same application. Two famous ex-
amples are Diaspora [23] which replaces a centralized
social network with federated “pods” users can join, and
OpenPhoto [24], a photo-management and sharing ap-
plication which allows users to run their own OpenPhoto
servers. Users gain some control over their data privacy
because they can choose the servers that will host it.
However, their APIs are specific to a single application.
Running multiple different applications with this design
would require trusting and maintaining a different server
each time. Our APIs on the other hand can generalize to
multiple applications, and can benefit from the conve-
nience of a central server.

7 Future Work and Discussion

As the Micasa framework adds complexity to an applica-
tion, it is natural to ask what incentives developers have
to use it. We believe the answer starts with users. If users
are particularly interested in certain functionality, devel-
opers have an incentive to provide it. Micasa is moti-
vated by the belief that many users would find features
that mitigate against lock-in and EOL very appealing,
and conversely, that users find the lack of such mitiga-
tion a deterrent to investing their time and data.

In a Micasa application, the capital and opera-
tional costs of providing the service are effectively dis-
tributed across the service provider and selected storage
providers (i.e., those hosting content for users registered



for that service). Many new providers, and even some
who run at scale already find it economical to lever-
age online storage in this fashion, for example, Netflix
stores its entire movie library on S3. Furthermore, Mi-
casa enables a new range of monetization strategies. For
example, a service provider may have partnership agree-
ments with select storage providers and flow user fees
and ad revenue through these partnerships. After a user’s
storage provider is specified, an application could ensure
that it be given a frame for serving an advertisement.

In our current prototype we require storage providers
to export the CAPSI API. In our prototype, we demon-
strate how to fulfill this requirement using an EC2
instance provisioned with suitable storage. Moreover,
given that storage providers have an incentive to drive
new business, if Micasa-style applications became popu-
lar, there would be an incentive to adopt the CAPSI API.
Nonetheless, there is an obvious bootstrapping problem.

As part of our current efforts, we are working in two
directions. First, we are exploring protocols for emulat-
ing the CAPSI API using the existing bucket and access
control mechanisms on S3. We intend for the additional
complexity on the client side to be encapsulated as part
of the Micasa library. More generally, we assume that
some diversity among distinct storage providers is to be
expected and we are currently exploring a more flexi-
ble model. In this model, the library and monitor would
support a number of storage APIs. Applications would
interact with the “application-side” of the monitor us-
ing a generic application API. The “storage-side” of the
monitor would be capable of interacting with any of a
number of supported storage APIs. The monitor would
translate between the application API and a particular
storage API based on the domain of the client’s stor-
age provider. Even within this model, certain minimal
requirements, beyond those currently fulfilled by cur-
rent storage providers, may need to be fulfilled by any
Micasa-compatible storage API in order to achieve both
abuse prevention and proper access control.

Although we have not emphasized the following up
until now, Micasa provides users with more control of
their own content than in current centralized applica-
tions. In current apps, when a user deletes some content,
she cannot be sure that well-crafted get commands by
other parties will not retrieve the content. In contrast,
in Micasa a user can revoke any or all of the capabil-
ities for an object or delete the object on his store by
virtue of his owner permissions. With respect to this
added control we make three points. First, such added
control may be appealing to users and used as a market-
ing tool by Micasa applications. Second, we emphasize
that Micasa does not preclude an application provider
from caching or mining user data in any form they like.
In this sense, we do not believe Micasa deprives appli-

cation providers from existing monetizing avenues, such
as advertisement, or performance measures.

Finally, and conversely, the Micasa architecture may
in fact provide the means for protecting the privacy
of user data from the service provider. We are cur-
rently building cryptographic and key management APIs
into the Micasa library to allow for confidential shar-
ing among user defined groups. As future work we will
explore practical techniques for the Micasa monitor to
police against exfiltration of content and keys to the
provider. Such privacy-preserving apps could still al-
low for provider-side caching of encrypted objects. Ser-
vices could still be supported with untargeted ads. Users
may be willing to directly pay the incremental costs be-
tween targeted and less targeted ads for the added pri-
vacy. Whether they are willing is a market question, one
which our architecture allows developers to explore.

8 Conclusion

In this paper we introduce the Micasa architecture for
writing applications which treat service provider EOL
as a recoverable failure mode. The model assumes an
ecosystem of storage providers that export a common
API and a client-library for writing applications that ad-
here to this API. Micasa users cache client-side appli-
cation code and upload their content to personal stores
rather than to the service provider directly. While the
service provider is in business, Micasa applications en-
joy the benefits of existing centralized services, but if
the provider discontinues service for any reason, Mi-
casa clients can continue to use the application in an
unplugged mode. When unplugged, Micasa clients re-
tain the functionality and data access promised by the
developer in perpetuity. Micasa also enables users to au-
dit the developers adherence to the expected unplugged
behavior at any time.

We demonstrated the feasibility of the architecture by
building two applications, each with different data shar-
ing characteristics. In addition, we emulated the load
times that Flickr pages would have if delivered as a Mi-
casa application, and found the overhead of the numer-
ous HTTP fetches acceptable due to the concurrency af-
forded by modern web browsers and the possibility of
future speed improvements for client-side computations.
Hence, a provider building applications with the Micasa
platform can offer minimal EOL risk to new users while
still being able to deliver features and performance com-
parable with existing centralized services.
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