
Graphical Newton for Huge-Block Coordinate Descent on
Sparse Graphs

Issam Laradji, Julie Nutini and Mark Schmidt

Summary

I Motivation:
I Block coordinate descent is widely-used in machine learning.

I Easy to implement, cheap iteration cost, low memory requirements.
I Especially useful for problems with sparse dependencies between variables.

I Recent works use Newton updates on the blocks.
I Makes more progress per iteration than gradient steps.
I This is the optimal update for quadratic objectives.

I But this costs O(|b|3) even for sparse problems.
I So standard methods are forced to use small blocks.

I Contribution:
I For sparse problems we propose to use forest-structured blocks.

I Allows us to implement the Newton step in O(|b|).
I We propose random and greedy rules for selecting forests.

I Results in more progress per iteration than standard rules.

Example: Sparse Quadratic Functions and Newton’s Method

I Consider a quadratic objective,

argmin
x∈IRn

1

2
xTAx− cTx.

I The optimal update for block b is given by the solution of the linear system

Abbxb = c̃b,
for c̃ = cb − Abbxb.

I If Abb is unstructured solving this linear system costs O(|b|3).
I Classic approach (“red-black ordering”) chooses b so that Abb is diagonal.

I Because of sparsity pattern we can solve the linear system in O(|b|).

I We consider more general case where Abb has a forest structure.
I We can still solve it in O(|b|) update, but it allows dependencies within the block.

I For non-quadratic updates, we need to solve the Newton system,

∇2
bbf (x

k)d = −∇bf (x
k).

I If we pick b so∇2
bbf (x

k) forms a forest, we can solve it in O(|b|) instead of O(|b|3).
I We can update“huge” blocks.

Message Passing for Forest-Structured Linear Systems

I Let G be the graph representing the sparsity pattern of the matrix ∇2f (xk).
I And let Gb be the graph representing the sparsity pattern of ∇2

bbf (x
k).

I If Gb forms a forest, we can solve the linear system in linear time:
I Divide the nodes in each tree in b into sets L{1}, L{2}, . . . , L{T}.

I L{1} is an arbitrary node in the graph chosen as the “root” node
I L{2} is the set of the root node neighbours
I L{3} is the set of the L{2} neighbours - excluding parent nodes
I The process continues until all nodes are assigned to a set

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

Figure: Process of partitioning nodes into level sets. For the above graph we have the following sets:
L{1} = {8}, L{2} = {6, 7}, L{3} = {3, 4, 5} and L{4} = {1, 2} .

I Row operations
I Select the nodes furthest from the root node, L{T}.
I Carry out the row operations of Gaussian elimination on L{T}, L{T − 1},. . .

I Forest structure and this elimination order guarantees there is no fill-in.
I Total cost is O(|b|).

Greedy Selection of Forest-Structured Blocks

I The General Gauss-Southwell rule chooses the “best” block b to update using

argmin
|b|≤τ

{‖∇f (xk)‖2}.

I We can solve this problem by sorting the |∇f (xk)| values and taking τ largest.
I But this ignores the structure, so the Newton update costs O(τ 3)
I We need to choose τ = 3

√
n for Newton update to have linear cost in n.

I The Tree Gauss-Southwell rule chooses the “best” block among all forests F ,

argmin
b∈F
{‖∇f (xk)‖2}.

I For sparse graphs some forests may have O(n) nodes (“huge blocks”).
I But the cost of the update is always in O(n).

I This is NP-hard to compute so we use a greedy approximation:

1. Initialize b with the node i corresponding to the largest gradient, |∇if (x
k)|.

2. Add to b the node i with largest gradient that maintains the forest property.
3. Repeat until no nodes can be added to b.

I This can be implemented in O(n log n + |E|) by sorting and hashing.

I Alternatives are random forests or cycling through a partition into trees.

Comparison of Forest-Structured Blocks with Lattice Dependency

I Comparison of red-black ordering, tree partition, and greedy forest rules:

I Red-black and tree-partition methods update n/2 nodes.
I Red-black takes O(

√
n) iterations to propagate information between all nodes.

I Tree-partition and greedy only need 2 iterations.

I Greedy method tends to update around 2n/3 nodes.

Empirical Evaluation

I We compared BCD methods with different selection on label propagation problems,

min
yi|i/∈S

1

2

b∑
i=1

n∑
j=1

wij(yi − yj)2

I We considered lattice-structured problem and a semi-supervised learning:

0 20 40 60 80
Iterations

6.7× 104

7.5× 105

8.4× 106

9.4× 107

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

Random-Tree

Greedy Tree

General

Red Black

Tree Partitions

0 20 40 60 80
Iterations

4.4× 100

1.6× 101

5.6× 101

2.0× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

Random-Tree

Greedy Tree

General

