Graphical Newton for Huge-Block Coordinate Descent on
Sparse Graphs

Issam Laradji, Julie Nutini and Mark Schmidt

» Motivation: » The General Gauss-Southwell rule chooses the “best” block b to update using
Block coordinate descent is widely-used in machine learning. : ky 112
" | Ty 5 argmin{ ||V f (z")[|"}.
» Easy to implement, cheap iteration cost, low memory requirements. b|<T

» Especially useful for problems with sparse dependencies between variables.

» We can solve this problem by sorting the |V f(2*)| values and taking 7 largest.
» Recent works use Newton updates on the blocks.

» But this ignores the structure, so the Newton update costs O(7°)

» Makes more progress per iteration than gradient steps. » We need to choose 7 = \/n for Newton update to have linear cost in n.

> This is the optimal update for quadratic objectives. » The Tree Gauss-Southwell rule chooses the “best” block among all forests F,

» But this costs O(|b|*) even for sparse problems.
argmin{||V f (z")[|*}
» So standard methods are forced to use small blocks. s '
» Contribution:
» For sparse problems we propose to use forest-structured blocks.
» Allows us to implement the Newton step in O(|b]).

» For sparse graphs some forests may have O(n) nodes (“huge blocks”).
» But the cost of the update is always in O(n).
» This is NP-hard to compute so we use a greedy approximation:
1. Initialize b with the node i corresponding to the largest gradient, |V, f(z")|.

2. Add to b the node 7 with largest gradient that maintains the forest property.
3. Repeat until no nodes can be added to b.

» We propose random and greedy rules for selecting forests.
» Results in more progress per iteration than standard rules.

Example: Sparse Quadratic Functions and Newton's Method

> This can be implemented in O(nlogn + |E|) by sorting and hashing.

» Consider a quadratic objective » Alternatives are random forests or cycling through a partition into trees.
15 ; : : :
argmin 5o Ar —c x. Comparison of Forest-Structured Blocks with Lattice Dependency
reR"
» The optimal update for block b is given by the solution of the linear system » Comparison of red-black ordering, tree partition, and greedy forest rules:
Appxy = C
for ¢ = ¢ — Ay, T 24885885800 SO ST OIIE 6658 550805

» If Ay is unstructured solving this linear system costs O(|0]”).
» Classic approach (“red-black ordering”) chooses b so that Ay, is diagonal.
» Because of sparsity pattern we can solve the linear system in O(|b|).

» We consider more general case where A, has a forest structure. > 0006060000) 666660666666 » 6606066066

» We can still solve it in O(|b|) update, but it allows dependencies within the block.

_ » Red-black and tree-partition methods update n/2 nodes.
» For non-quadratic updates, we need to solve the Newton system,

» Red-black takes O(4/n) iterations to propagate information between all nodes.
Vi f(aM)d = =V, f(zF). » Tree-partition and greedy only need 2 iterations.

» If we pick b so V3, f(x*) forms a forest, we can solve it in O(|b|) instead of O(|b|?). > Greedy method tends to update around 21,/3 nodes.

» We can update “huge” blocks. - _
Empirical Evaluation

» We compared BCD methods with different selection on label propagation problems,

Message Passing for Forest-Structured Linear Systems

» Let G be the graph representing the sparsity pattern of the matrix V2 f(x"). 1)
» And let G, be the graph representing the sparsity pattern of V3, f(x*). yr?{gé%_ Zl Zl wij(Yi — Yj)
» If GGj forms a forest, we can solve the linear system in linear time: _ _ S _ _ _
» Divide the nodes in each tree in b into sets L{1}, L{2} L{T} » We considered lattice-structured problem and a semi-supervised learning:

» L{1} is an arbitrary node in the graph chosen as the “root” node 1.0 x 10°
» L{2} is the set of the root node neighbours
» L{3} is the set of the L{2} neighbours - excluding parent nodes
» The process continues until all nodes are assigned to a set

A

Figure: Process of partitioning nodes into level sets. For the above graph we have the following sets:

* Gf@@d
7.5 x 10° - LI
e

4 |
6.7 x 10 0

f(z) — f* for Quadratic on Dataset D

Qo
N
X
—_
<
|

fz?\/

D

L{1} = {8}, L{2} = {6, 7}, L{3} = {3,4,5} and L{4} = {1,2} 79 10°
» Row operations w
G)
» Select the nodes furthest from the root node, L{T'}. 8 2.0 x 102 -
» Carry out the row operations of Gaussian elimination on L{T'}, L{T —1},... a
o
u = E N = | © i
u " T "N g HOx10
A B B B HE B B 0 N N S
a 2 B N i | -
= B u o, u £
= = ,,,,,,,, = '*r 1.6 % 101 |
= Em EER ambm ¢

» Forest structure and this elimination order guarantees there is no fill-in.

» Total cost is O(b)).

0
4.4 x 10 0

Iterations

