A Derivative-Free Approximate Gradient Sampling Algorithm for Finite Minimax Problems

Speaker: Julie Nutini

Joint work with Warren Hare

University of British Columbia (Okanagan)

III Latin American Workshop on Optimization and Control January 10-13, 2012

Table of Contents

Outline

- Introduction
- 2 AGS Algorithm
- Robust AGS Algorithm
- Mumerical Results
- Conclusion

Setting

Outline

We assume that our problem is of the form

$$\min_{\mathbf{x}} f(\mathbf{x}) \quad \text{where } f(\mathbf{x}) = \max\{f_i : i = 1, \dots, N\},\$$

where each f_i is continuously differentiable, i.e., $f_i \in C^1$, **BUT** we cannot compute ∇f_i .

Active Set/Gradients

Definition

We define the **active set** of f at a point \bar{x} to be the set of indices

$$A(\bar{x}) = \{i : f(\bar{x}) = f_i(\bar{x})\}.$$

The set of **active gradients** of f at \bar{x} is denoted by

$$\{\nabla f_i(\bar{x})\}_{i\in A(\bar{x})}.$$

Clarke Subdifferential for Finite Max Function

Proposition (Proposition 2.3.12, Clarke '90)

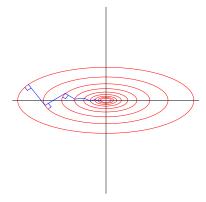
Let $f = \max\{f_i : i = 1, ..., N\}$.

If $f_i \in \mathcal{C}^1$ for each $i \in A(\bar{x})$, then

$$\partial f(\bar{x}) = conv\{\nabla f_i(\bar{x})\}_{i \in A(\bar{x})}.$$

Method of Steepest Descent

- **1. Initialize:** Set $d^0 = -\text{Proj}(0|\partial f)$.
- **2. Step Length:** Find t_k by solving $\min_{t_k>0} \{f(x^k + t_k d^k)\}$.
- **3. Update:** Set $x^{k+1} = x^k + t_k d^k$. Increase k = k + 1. Loop.



AGS Algorithm - General Idea

Outline

- Replace ∂f with an approximate subdifferential
- Find an approximate direction of steepest descent
- Minimize along nondifferentiable ridges

Conclusion

AGS Algorithm

Outline

- Initialize
- @ Generate Approximate Subdifferential:

Sample $Y = [x^k, y^1, \dots, y^m]$ from around x^k such that

$$\max_{i=1,\ldots,m}|y^i-x^k|\leq \Delta^k.$$

Calculate an approximate gradient $\nabla_A f_i$ for each $i \in A(x^k)$ and set

$$G^{k} = \operatorname{conv}\{\nabla_{A}f_{i}(x^{k})\}_{i \in A(x^{k})}.$$

- **1 Direction:** Set $d^k = -\text{Proj}(0|G^k)$.
- **1** Check Stopping Conditions
- (Armijo) Line Search
- Update and Loop

Convergence AGS Algorithm

Remark

Outline

We define the approximate subdifferential of f at \bar{x} as

$$G(\bar{x}) = \operatorname{conv}\{\nabla_A f_i(\bar{x})\}_{i \in A(\bar{x})},$$

where $\nabla_A f_i(\bar{x})$ is the approximate gradient of f_i at \bar{x} .

Suppose there exists an $\varepsilon > 0$ such that $|\nabla_A f_i(\bar{x}) - \nabla f_i(\bar{x})| \le \varepsilon$.

Then

- for all $w \in G(\bar{x}), \exists v \in \partial f(\bar{x})$ such that $|w v| \le \varepsilon$, and
- ② for all $v \in \partial f(\bar{x})$, $\exists w \in G(\bar{x})$ such that $|w v| \leq \varepsilon$.

Proof.

1. By definition, for all $w \in G(\bar{x})$ there exists a set of α_i such that

$$\textit{w} = \sum_{i \in \textit{A}(\bar{\textit{x}})} \alpha_i \nabla_{\textit{A}} \textit{f}_i(\bar{\textit{x}}), \qquad \text{where } \alpha_i \geq 0, \sum_{i \in \textit{A}(\bar{\textit{x}})} \alpha_i = 1.$$

Using the same α_i as above, we see that

$$\mathbf{v} = \sum_{i \in \mathbf{A}(\bar{\mathbf{x}})} \alpha_i \nabla f_i(\bar{\mathbf{x}}) \in \partial f(\bar{\mathbf{x}}).$$

Then
$$|\mathbf{w} - \mathbf{v}| = |\sum_{i \in A(\bar{\mathbf{x}})} \alpha_i \nabla_A f_i(\bar{\mathbf{x}})) - \sum_{i \in A(\bar{\mathbf{x}})} \alpha_i \nabla f_i(\bar{\mathbf{x}})| \le \varepsilon.$$

Hence, for all $w \in G(\bar{x})$, there exists a $v \in \partial f(\bar{x})$ such that

$$|w-v|\leq \varepsilon. \tag{1}$$

Convergence

Outline

Theorem

Let $\{x^k\}_{k=0}^{\infty}$ be generated by the AGS algorithm.

Suppose there exists a \bar{K} such that given any set Y generated in Step 1 of the AGS algorithm, $\nabla_A f_i(x^k)$ satisfies

$$|
abla_A f_i(x^k) -
abla f_i(x^k)| \leq \bar{K} \Delta^k$$
, where $\Delta^k = \max_{y^i \in Y} |y^i - x^k|$.

Suppose t^k is bounded away from 0.

Then either

- $f(x^k) \downarrow -\infty$, or
- $|d^k| \to 0, \Delta^k \downarrow 0$ and every cluster point \bar{x} of the sequence $\{x^k\}_{k=0}^{\infty}$ satisfies $0 \in \partial f(\bar{x})$.

Convergence - Proof

Proof - Outline.

- 1. The direction of steepest descent is $-\text{Proj}(0|\partial f(x^k))$.
- 2. By previous lemma, $G(x^k)$ is a good approximate of $\partial f(x^k)$.

Robust AGS Algorithm

- 3. So we can show that $-\text{Proj}(0|G(x^k))$ is still a descent direction (approximate direction of steepest descent).
- 4. Thus, we can show that convergence holds.

Robust Approximate Gradient Sampling Algorithm (Robust AGS Algorithm)

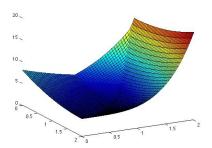
Consider the function

$$f(x) = \max\{f_1(x), f_2(x), f_3(x)\}\$$

$$f_1(x) = x_1^2 + x_2^2$$

$$f_2(x) = (2 - x_1)^2 + (2 - x_2)^2$$

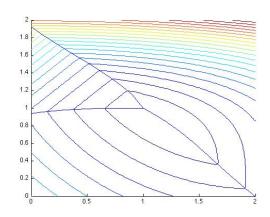
$$f_3(x) = 2 * \exp(x_2 - x_1).$$



Visual Representation

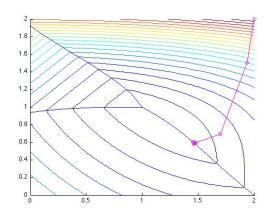
Outline

Contour plot - 'nondifferentiable ridges'



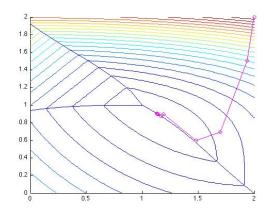
Visual Representation

Regular AGS algorithm:



Visual Representation

Robust AGS algorithm:



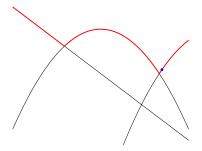
Definition

Outline

Let $Y = [x^k, y^1, y^2, \dots, y^m]$ be a set of sampled points.

The **robust active set** of f on Y is

$$A(Y) = \bigcup_{y^i \in Y} A(y^i).$$



Robust Approximate Gradient Sampling Algorithm

Initialize

Outline

@ Generate Approximate Subdifferential:

Calculate an approximate gradient $\nabla_A f_i$ for each $i \in A(Y)$ and set

$$G^k = \operatorname{conv}\{\nabla_A f_i(x^k)\}_{i \in A(x^k)},$$

and $G^k_Y = \operatorname{conv}\{\nabla_A f_i(x^k)\}_{i \in A(Y)}.$

- **1 Direction:** Set $d^k = -\text{Proj}(0|G^k)$ and $d^k_{\mathbf{v}} = -\text{Proj}(0|G^k_{\mathbf{v}})$.
- Check Stopping Conditions: Use d^k to check stopping conditions.
- **(Armijo) Line Search:** Use d_{V}^{k} for the search direction.
- Update and Loop

ConvergenceRobust AGS Algorithm

Robust Convergence

Theorem

Outline

Let $\{x^k\}_{k=0}^{\infty}$ be generated by the robust AGS algorithm.

Suppose there exists a \bar{K} such that given any set Y generated in Step 1 of the robust AGS algorithm, $\nabla_A f_i(x^k)$ satisfies

$$|\nabla_{A} f_i(x^k) - \nabla f_i(x^k)| \leq \bar{K} \Delta^k, \ \ \textit{where} \ \Delta^k = \max_{y^i \in Y} |y^i - x^k|.$$

Suppose t^k is bounded away from 0.

Then either

- $f(x^k) \downarrow -\infty$, or
- 2 $|d^k| \to 0$, $\Delta^k \downarrow 0$ and every cluster point \bar{x} of the sequence $\{x^k\}_{k=0}^{\infty}$ satisfies $0 \in \partial f(\bar{x})$.

Numerical Results

Approximate Gradients

Requirement

In order for convergence to be guaranteed in the AGS algorithm, $\nabla_A f_i(x^k)$ must satisfy an **error bound** for each of the active f_i :

$$|\nabla_{A}f_{i}(x^{k}) - \nabla f_{i}(x^{k})| \leq \bar{K}\Delta,$$

where $\bar{K} > 0$ and is bounded above.

We used the following 3 approximate gradients:

- O Simplex Gradient (see Lemma 6.2.1, Kelley '99)
- 2 Centered Simplex Gradient (see Lemma 6.2.5, Kelley '99)
- 3 Gupal Estimate (see Theorem 3.8, Hare and Nutini '11)

Numerical Results - Overview

- Implementation was done in MATLAB
- 24 nonsmooth test problems (Lukšan-Vlček, '00)
- 25 trials for each problem
- Quality (improvement of digits of accuracy) measured by

$$-\log\left(\frac{|F_{\mathsf{min}} - F^*|}{|F_0 - F^*|}\right)$$

Numerical Results - Goal

Outline

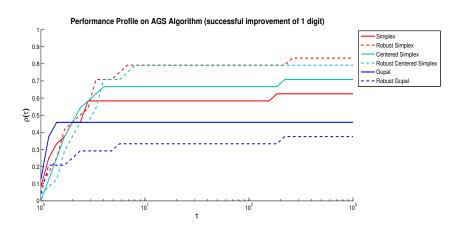
Determine any notable numerical differences between:

- Version of the AGS Algorithm
 - Regular
 - 2. Robust
- Approximate Gradient
 - 1. Simplex Gradient
 - 2. Centered Simplex Gradient
 - 3. Gupal Estimate

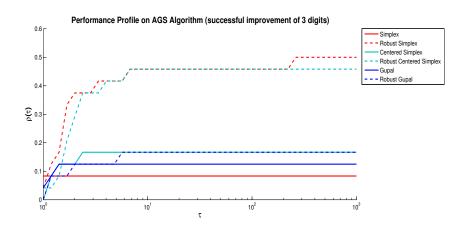
Thus, 6 different versions of our algorithm were compared.

Conclusion

Performance Profile



Performance Profile



Conclusion

Outline

- Approximate gradient sampling algorithm for finite minimax problems
- Robust version
- Convergence $(0 \in \partial f(\bar{x}))$
- Numerical tests

Notes:

- We have numerical results for a robust stopping condition.
 There is future work in developing the theoretical analysis.
- We are currently working on an application in seismic retrofitting.

Thank you!

References

Outline

- J. V. Burke, A. S. Lewis, and M. L. Overton. A robust gradient sampling algorithm for nonsmooth, nonconvex optimization, SIAM J. Optim., 15(2005), pp. 751-779.
- W. Hare and J. Nutini. A derivative-free approximate gradient sampling algorithm for finite minimax problems. Submitted to SIAM J. Optim., 2011.
- K. C. Kiwiel. A nonderivative version of the gradient sampling algorithm for nonsmooth nonconvex optimization, SIAM J. Optim., 20(2010), pp. 1983-1994.
- C. T. Kelley. <u>Iterative methods for optimization</u>, SIAM, Philadelphia, PA, 1999.
- L. Lukšan and J. Vlček. Test Problems for Nonsmooth Unconstrained and Linearly Constrained Optimization. Technical Report V-798, ICS AS CR, February 2000.