PCA and ICA

Julie Nutini

Machine Learning Reading Group

February 6, 2017

• Principal Component Analysis (PCA) is a statistical procedure that allows better analysis and interpretation of unstructured data.

- Principal Component Analysis (PCA) is a statistical procedure that allows better analysis and interpretation of unstructured data.
- Uses an orthogonal linear transformation to convert a set of observations to a new coordinate system that maximizes the variance.

- Principal Component Analysis (PCA) is a statistical procedure that allows better analysis and interpretation of unstructured data.
- Uses an orthogonal linear transformation to convert a set of observations to a new coordinate system that maximizes the variance.
- The new coordinates are called principal components.

- Principal Component Analysis (PCA) is a statistical procedure that allows better analysis and interpretation of unstructured data.
- Uses an orthogonal linear transformation to convert a set of observations to a new coordinate system that maximizes the variance.
- The new coordinates are called principal components.

Example:

- Fit *n*-dimensional ellipsoid to data.
- By omitting axis with smallest variance (smallest principal component), we lose smallest amount of info.

Principal Component Analysis (PCA) aka...

- Signal processing: discrete Kosambi-Karhunen-Loève transform (KLT)
- Multivariate quality control: the Hotelling transform
- Mechanical engineering: proper orthogonal decomposition (POD)
- Linear algebra: singular value decomposition (SVD) of X (Golub and Van Loan, 1983)
- Linear algebra: eigenvalue decomposition (EVD) of $X^T X$
- Psychometrics: factor analysis, Eckart-Young theorem (Harman, 1960), or Schmidt-Mirsky theorem
- Meteorological science: empirical orthogonal functions (EOF)
- Noise and vibration: empirical eigenfunction decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al., 1988), spectral decomposition
- Structural dynamics: empirical modal analysis

- Dimension construction
- Feature extraction
- Data visualization
- Image compression
- Medical imaging
- Lossy data compression

...

Application: 2D Data Analysis

• Data matrix *X* can be rotated to align principal axes with x and y axis.

Application: 2D Data Analysis

• Data matrix *X* can be rotated to align principal axes with x and y axis.

• Project *X* on the primary and secondary principal direction.

Application: Data Visualization

- Scattered set of points, presumably forms coherent surface.
- Display point cloud data in a pleasing way.

Figure 4.9. Example 4.18: a point cloud representing (a) a surface in three-dimensional space, and (b) together with its unsigned normals.

Application: Image Compression

• Effectively represent image with limited number of principal components.

Application: Image Compression

• Effectively represent image with limited number of principal components.

• Do not know # of principal components needed for successful reconstruction.

Application: Image Compression

(a) 1 principal component

(b) 5 principal component

(c) 9 principal component

(d) 13 principal component

(e) 17 principal component

(f) 21 principal component

(g) 25 principal component

(h) 29 principal component

Let *X* be a *D*-dimensional random vector with covariance matrix *S*.

Let *X* be a *D*-dimensional random vector with covariance matrix *S*.

• **Problem**: Consecutively find the unit vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_D$ such that

$$Y_i = X^T \mathbf{u}_i$$

satisfies:

• var(Y_1) is the maximum.

- ② var(Y_2) is the maximum subject to $cov(Y_2, Y_1) = 0$.
- var(Y_k) is the maximum subject to $cov(Y_k, Y_i) = 0$, where k = 3, 4, ..., D and k > i.

 Let (λ_i, u_i) be the pairs of eigenvalues and eigenvectors of the covariance matrix S such that

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_D (\ge 0)$$

and

$$||u_i||_2 = 1, \quad \text{for all } 1 \le i \le D.$$

 Let (λ_i, u_i) be the pairs of eigenvalues and eigenvectors of the covariance matrix S such that

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_D (\ge 0)$$

and

$$||u_i||_2 = 1, \quad \text{for all } 1 \le i \le D.$$

- Then $var(Y_i) = \lambda_i$ for $1 \le i \le D$.
- \rightarrow The principal components of X are the eigenvectors of S.
 - \rightarrow The variance will be a maximum when we set \mathbf{u}_1 to the eigenvector having the largest eigenvalue.

 Let (λ_i, u_i) be the pairs of eigenvalues and eigenvectors of the covariance matrix S such that

$$\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_D (\ge 0)$$

and

$$||u_i||_2 = 1, \quad \text{for all } 1 \le i \le D.$$

- Then $var(Y_i) = \lambda_i$ for $1 \le i \le D$.
- \rightarrow The principal components of X are the eigenvectors of S.
 - \rightarrow The variance will be a maximum when we set \mathbf{u}_1 to the eigenvector having the largest eigenvalue.
- → The proportion of variance each eigenvector represents is given by the ratio of the given eigenvalue to the sum of all the eigenvalues.

• Linear, nonparametric analysis that cannot incorporate prior knowledge.

- Linear, nonparametric analysis that cannot incorporate prior knowledge.
- Important that variance can be used to differentiate/imply similarity.

- Linear, nonparametric analysis that cannot incorporate prior knowledge.
- Important that variance can be used to differentiate/imply similarity.
- If the given data set is nonlinear or multimodal distribution, PCA fails to provide meaningful data reduction.

- Linear, nonparametric analysis that cannot incorporate prior knowledge.
- Important that variance can be used to differentiate/imply similarity.
- If the given data set is nonlinear or multimodal distribution, PCA fails to provide meaningful data reduction.
- To incorporate the prior knowledge of data to PCA, researchers have proposed dimension reduction techniques as extensions of PCA:
 - e.g., kernel PCA, multilinear PCA, and independent component analysis (ICA).

General: How to do PCA?

Goal: Find the axes of the ellipse (i.e., the principal components).

Consider a data matrix *X*.

Subtract the sample mean from each column of *X* (data has mean 0).

Consider a data matrix *X*.

- Subtract the sample mean from each column of *X* (data has mean 0).
- Ompute covariance matrix of the data.

Consider a data matrix X.

- Subtract the sample mean from each column of *X* (data has mean 0).
- Ompute covariance matrix of the data.
- Solution of covariance matrix,

$$Xv = \lambda v$$

* Xv does not change direction of v.

Consider a data matrix *X*.

- Subtract the sample mean from each column of *X* (data has mean 0).
- Ompute covariance matrix of the data.
- Solution of covariance matrix,

$$Xv = \lambda v$$

- * Xv does not change direction of v.
- Orthogonalize the set of eigenvectors, normalize each to unit vectors.

Formulations of PCA

There are two main formulations of PCA:

Formulations of PCA

There are two main formulations of PCA:

• Maximum variance formulation: The orthogonal projection of the data onto a lower dimensional linear space (principal subspace) such that the variance of the projected data is maximized.

Formulations of PCA

There are two main formulations of PCA:

- Maximum variance formulation: The orthogonal projection of the data onto a lower dimensional linear space (principal subspace) such that the variance of the projected data is maximized.
- **Minimum-error formulation**: The linear projection that <u>minimizes the</u> average projection cost, defined as the mean squared distance between the data points and their projections.

- Consider a data set of observations $\{x_n\}$ where n = 1, ..., N.
- Each x_n is a Euclidean variable with dimensionality D.

- Consider a data set of observations $\{x_n\}$ where n = 1, ..., N.
- Each x_n is a Euclidean variable with dimensionality D.
- Assume projecting onto a one-dimensional space (M = 1).

- Consider a data set of observations $\{x_n\}$ where n = 1, ..., N.
- Each x_n is a Euclidean variable with dimensionality D.
- Assume projecting onto a one-dimensional space (M = 1).
- Define the direction of this space using **u**₁.
- Assume \mathbf{u}_1 is a unit vector ($\mathbf{u}_1^T \mathbf{u}_1 = 1$).

Maximum Variance Formulation

• The mean of the projected data is $\mathbf{u}_1^T \bar{x}$ where \bar{x} is the sample set mean

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

Maximum Variance Formulation

• The mean of the projected data is $\mathbf{u}_1^T \bar{x}$ where \bar{x} is the sample set mean

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

• The variance of the projected data is given by

$$\frac{1}{N}\sum_{n=1}^{N} \left(\mathbf{u}_{1}^{T} x_{n} - \mathbf{u}_{1}^{T} \bar{x}\right)^{2} = \mathbf{u}_{1}^{T} S \mathbf{u}_{1}$$

where S is the covariance matrix of the data,

$$S = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})(x_n - \bar{x})^T.$$
• To maximize the variance, we solve the following constrained problem

$$\underset{\mathbf{u}_{1}}{\text{maximize}} \quad \mathbf{u}_{1}^{T}S\mathbf{u}_{1} \quad \text{s.t.} \quad \mathbf{u}_{1}^{T}\mathbf{u}_{1} = 1$$

• To maximize the variance, we solve the following constrained problem

$$\underset{\mathbf{u}_1}{\text{maximize}} \quad \mathbf{u}_1^T S \mathbf{u}_1 \quad \text{s.t.} \quad \mathbf{u}_1^T \mathbf{u}_1 = 1$$

• The Lagrangian of this problem is given by

$$\mathcal{L}(\mathbf{u}_1, \lambda_1) = \mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1).$$

• To maximize the variance, we solve the following constrained problem

$$\underset{\mathbf{u}_1}{\text{maximize}} \quad \mathbf{u}_1^T S \mathbf{u}_1 \quad \text{s.t.} \quad \mathbf{u}_1^T \mathbf{u}_1 = 1$$

• The Lagrangian of this problem is given by

$$\mathcal{L}(\mathbf{u}_1, \lambda_1) = \mathbf{u}_1^T S \mathbf{u}_1 + \lambda_1 (1 - \mathbf{u}_1^T \mathbf{u}_1).$$

• Differentiating with respect to **u**₁, we have a stationary point when

$$S\mathbf{u}_1 = \lambda_1 \mathbf{u}_1.$$

• By left-multiplying by \mathbf{u}_1 and using $\mathbf{u}_1^T \mathbf{u}_1 = 1$, we have

 $\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1.$

• By left-multiplying by \mathbf{u}_1 and using $\mathbf{u}_1^T \mathbf{u}_1 = 1$, we have

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1.$$

 Thus, the maximum variance will occur when we set u₁ to the eigenvector having the largest eigenvalue λ₁.

• By left-multiplying by \mathbf{u}_1 and using $\mathbf{u}_1^T \mathbf{u}_1 = 1$, we have

$$\mathbf{u}_1^T S \mathbf{u}_1 = \lambda_1.$$

- Thus, the maximum variance will occur when we set u₁ to the eigenvector having the largest eigenvalue λ₁.
- Additional principal components can be defined in an incremental fashion.
- A similar problem can be formed for the minimum error formulation.
 - Solution is in terms of the D M smallest eigenvalues of the eigenvectors that are orthogonal to the principal subspace.

• The singular value decomposition of a matrix $A \in \mathbb{R}^{m \times n}$ is given by

 $A = U\Sigma V^T$

where

- $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e., $U^T U = U U^T = I$)
- $D \in \mathbb{R}^{m \times n}$ diagonal matrix with the singular values of A along the diagonal.

• The singular value decomposition of a matrix $A \in \mathbb{R}^{m \times n}$ is given by

 $A = U\Sigma V^T$

where

- $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e., $U^T U = U U^T = I$)
- $D \in \mathbb{R}^{m \times n}$ diagonal matrix with the singular values of A along the diagonal.
- The largest variance is in the direction of the first column of *U* (the first principal component)
- The largest variance on the subspace orthogonal to the first principal component is the direction of the second column of *U*

• Therefore,

$$B = U^T A = \Sigma V^T$$

represents a better alignment than the given *A* in terms of variance differentiation.

• Therefore,

$$B = U^T A = \Sigma V^T$$

represents a better alignment than the given *A* in terms of variance differentiation.

• Covariance matrix of *A* is a positive semi-definite matrix,

$$C = AA^T = U\Sigma\Sigma^T U^T$$

and the eigenvectors are the columns of U (namely, the singular vectors which are the principal components).

• Therefore,

$$B = U^T A = \Sigma V^T$$

represents a better alignment than the given A in terms of variance differentiation.

• Covariance matrix of *A* is a positive semi-definite matrix,

$$C = AA^T = U\Sigma\Sigma^T U^T$$

and the eigenvectors are the columns of U (namely, the singular vectors which are the principal components).

- Application of PCA with respect to SVD:
 - Solving almost singular linear systems
 - If the problem is too ill-conditioned, then regularize it.

Eigenvalues:

- QR algorithm: costs $O(D^3)$.
- Power Method: Finds first M principal components, costs $O(MD^2)$.

Eigenvalues:

- QR algorithm: costs $O(D^3)$.
- Power Method: Finds first M principal components, costs $O(MD^2)$.

Singular values:

• SVD costs $O(m^2n + mn^2 + n^3)$ for general matrix A of dimension $m \times n$.

Eigenvalues:

- QR algorithm: costs $O(D^3)$.
- Power Method: Finds first M principal components, costs $O(MD^2)$.

Singular values:

• SVD costs $O(m^2n + mn^2 + n^3)$ for general matrix A of dimension $m \times n$.

 \rightarrow When *D* is large, a direct application of PCA will be computationally infeasible.

Let X be an $(N \times D)$ -dimensional centered matrix.

- The *n*th row is $(x_n \bar{x})^T$.
- The covariance matrix can be written as $S = \frac{1}{N}X^TX$.

• The corresponding eigenvector equation becomes

$$\frac{1}{N}X^T X \mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

• The corresponding eigenvector equation becomes

$$\frac{1}{N}X^T X \mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

• Multiply both sides by *X*,

$$\frac{1}{N}XX^T(X\mathbf{u}_i) = \lambda_i(X\mathbf{u}_i).$$

• The corresponding eigenvector equation becomes

$$\frac{1}{N}X^T X \mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

• Multiply both sides by *X*,

$$\frac{1}{N}XX^T(X\mathbf{u}_i) = \lambda_i(X\mathbf{u}_i).$$

• Let
$$v_i = X \mathbf{u}_i$$
 to get

$$\frac{1}{N}XX^T\mathbf{v}_i = \lambda_i \mathbf{v}_i,$$

which is the eigenvector equation for the $N \times N$ matrix $\frac{1}{N}XX^{T}$.

• The corresponding eigenvector equation becomes

$$\frac{1}{N}X^T X \mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

• Multiply both sides by *X*,

$$\frac{1}{N}XX^T(X\mathbf{u}_i) = \lambda_i(X\mathbf{u}_i).$$

• Let $v_i = X \mathbf{u}_i$ to get

$$\frac{1}{N}XX^T\mathbf{v}_i = \lambda_i \mathbf{v}_i,$$

which is the eigenvector equation for the $N \times N$ matrix $\frac{1}{N}XX^{T}$.

- This has the same N 1 eigenvalues as the original covariance matrix.
- We can solve the eigenvalue problem for cost of $O(N^3)$.

• PCA is a statistical procedure that uses an orthogonal linear transformation to reduce the dimension of a dataset while maximizing the variance.

- PCA is a statistical procedure that uses an orthogonal linear transformation to reduce the dimension of a dataset while maximizing the variance.
- PCs of a dataset *X* are the eigenvectors of its covariance matrix.

- PCA is a statistical procedure that uses an orthogonal linear transformation to reduce the dimension of a dataset while maximizing the variance.
- PCs of a dataset *X* are the eigenvectors of its covariance matrix.
- Formulated as a maximum variance problem or a minimum error problem.

- PCA is a statistical procedure that uses an orthogonal linear transformation to reduce the dimension of a dataset while maximizing the variance.
- PCs of a dataset *X* are the eigenvectors of its covariance matrix.
- Formulated as a maximum variance problem or a minimum error problem.
- Transformation for high-dimensional data.
 - Allows you to find principal components in smaller subspace.

- PCA is a statistical procedure that uses an orthogonal linear transformation to reduce the dimension of a dataset while maximizing the variance.
- PCs of a dataset *X* are the eigenvectors of its covariance matrix.
- Formulated as a maximum variance problem or a minimum error problem.
- Transformation for high-dimensional data.
 - Allows you to find principal components in smaller subspace.
- Extensions:
 - Probabilistic PCA
 - Maximum likelihood PCA, EM algorithm for PCA, Bayesian PCA, Factor analysis
 - Kernel PCA

- PCA focuses on models with latent variables based on linear-Gaussian distributions.
 - The PCs represent a rotation of the coordinate system in data space.
 - Data distribution in the new coordinates is uncorrelated.

- PCA focuses on models with latent variables based on linear-Gaussian distributions.
 - The PCs represent a rotation of the coordinate system in data space.
 - Data distribution in the new coordinates is uncorrelated.
 - This is a necessary condition for independence, but not a sufficient condition.

• Independent Component Analysis (ICA):

• Similar to PCA, finds a new basis to represent data.

- Independent Component Analysis (ICA):
 - Similar to PCA, finds a new basis to represent data.
 - Computational method for separating multivariate signal into additive subcomponents that are maximally independent.

- Independent Component Analysis (ICA):
 - Similar to PCA, finds a new basis to represent data.
 - Computational method for separating multivariate signal into additive subcomponents that are maximally independent.
 - Observed variables are linear combination of the latent variables.

- Independent Component Analysis (ICA):
 - Similar to PCA, finds a new basis to represent data.
 - Computational method for separating multivariate signal into additive subcomponents that are maximally independent.
 - Observed variables are linear combination of the latent variables.
 - Assumes subcomponents are non-Gaussian signals and are statistically independent.

Example: blind source separation

Example: blind source separation

• ICA is used to recover the sources.

• Consider some data $s \in \mathbb{R}^n$ that is generated via *n* independent sources

x = As,

where *A* is an unknown matrix (mixing matrix), *x* received signal.

• Consider some data $s \in \mathbb{R}^n$ that is generated via *n* independent sources

x = As,

where A is an unknown matrix (mixing matrix), x received signal.

• Repeated observations gives a data set $\{x^{(i)}, i = 1, ..., m\}$.

• Consider some data $s \in \mathbb{R}^n$ that is generated via *n* independent sources

x = As,

where A is an unknown matrix (mixing matrix), x received signal.

- Repeated observations gives a data set $\{x^{(i)}, i = 1, ..., m\}$.
- **Goal**: Recover $s^{(i)}$.

- Given no prior knowledge about the sources or the mixing matrix, some inherent ambiguities in *A* are impossible to recover.
- Permutation of the sources is ambiguous.

- Given no prior knowledge about the sources or the mixing matrix, some inherent ambiguities in *A* are impossible to recover.
- Permutation of the sources is ambiguous.
- Scalings of $W = A^{-1}$ cannot be recovered.
 - Might not matter depending on the application.
- We cannot determine the order of the independent components.

- Given no prior knowledge about the sources or the mixing matrix, some inherent ambiguities in *A* are impossible to recover.
- Permutation of the sources is ambiguous.
- Scalings of $W = A^{-1}$ cannot be recovered.
 - Might not matter depending on the application.
- We cannot determine the order of the independent components.

- These are the ONLY ambiguities assuming the sources s_i are non-Gaussian.
- As long as the data is non-Gaussian, we can recover the *n* independent sources.

ICA Algorithm (Bell and Sejnowski)

- Suppose the distribution of each source s_i is given by a density p_s .
- The joint distribution of the sources *s* is given by

$$p(s) = \prod_{i=1}^{n} p_s(s_i).$$

ICA Algorithm (Bell and Sejnowski)

- Suppose the distribution of each source s_i is given by a density p_s .
- The joint distribution of the sources *s* is given by

$$p(s) = \prod_{i=1}^{n} p_s(s_i).$$

 \rightarrow By modelling the joint distribution as a product of the marginal, we capture the assumption that the sources are independent.

ICA Algorithm (Bell and Sejnowski)

- Suppose the distribution of each source s_i is given by a density p_s .
- The joint distribution of the sources *s* is given by

$$p(s) = \prod_{i=1}^{n} p_s(s_i).$$

- \rightarrow By modelling the joint distribution as a product of the marginal, we capture the assumption that the sources are independent.
 - This implies the following density on $x = As = W^{-1}s$:

$$p(x) = \prod_{i=1}^{n} p_s(w_i^T x) \cdot |W|.$$

• Need to specify a density for the individual sources *p_s*.

- We need to specify a cdf for it that slowly increases from 0 to 1.
- Reasonable default: the sigmoid function

$$g(s) = \frac{1}{(1+e^{-s})}.$$

• This yields $p_s(s) = g'(s)$.

- We need to specify a cdf for it that slowly increases from 0 to 1.
- Reasonable default: the sigmoid function

$$g(s) = \frac{1}{(1+e^{-s})}.$$

- This yields $p_s(s) = g'(s)$.
- Given a training set $\{x^{(i)}, i = 1, ..., m\}$, the log likelihood for our parameter matrix W is

$$\ell(W) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \log g'(w_j^T x^{(i)}) + \log |W| \right).$$

• Maximizing this in terms of *W*, we derive a stochastic gradient ascent learning rule for training example *x*^(*i*):

$$W := W + \alpha \left(\begin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \\ 1 - 2g(w_2^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} x^{(i)^T} + (W^T)^{-1} \right)$$

where α is the learning rate.

• Maximizing this in terms of *W*, we derive a stochastic gradient ascent learning rule for training example *x*^(*i*):

$$W := W + \alpha \left(\begin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \\ 1 - 2g(w_2^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} x^{(i)^T} + (W^T)^{-1} \right)$$

where α is the learning rate.

• After the algorithm converges, we compute $s^{(i)} = Wx^{(i)}$ to recover the original sources.

- FastICA [http://research.ics.aalto.fi/ica/fastica/]
- Implements the fast fixed-point algorithm for ICA and projection pursuit.
- Can download (for R, C++, Python and Matlab)

Separated signals after 1 step of FastICA

Separated signals after 2 steps of FastICA

Separated signals after 3 steps of FastICA

Separated signals after 4 steps of FastICA

Separated signals after 5 steps of FastICA

- The source signals were sinusoidal and impulsive noise.
- The joint density is the product of the marginal densities.
 - Definition of independence.

Separated signals after 5 steps of FastICA

• ICA is a statistical and computational technique used to reveal hidden factors that underlie sets of random variables, measurements, or signals.

- ICA is a statistical and computational technique used to reveal hidden factors that underlie sets of random variables, measurements, or signals.
- Data assumed to be linear combinations of some unknown latent variables.
- Latent variables are assumed to be non-Gaussian and independent.

- ICA is a statistical and computational technique used to reveal hidden factors that underlie sets of random variables, measurements, or signals.
- Data assumed to be linear combinations of some unknown latent variables.
- Latent variables are assumed to be non-Gaussian and independent.
- ICA finds these independent components.

- ICA is a statistical and computational technique used to reveal hidden factors that underlie sets of random variables, measurements, or signals.
- Data assumed to be linear combinations of some unknown latent variables.
- Latent variables are assumed to be non-Gaussian and independent.
- ICA finds these independent components.
- Stochastic gradient ascent learning rule for training example $x^{(i)}$.
- FastICA
- ...

Thank you!

- U. M. Ascher and C. Greif, A First Course in Numerical Methods, SIAM, 2011.
- C. M. Bishop. Pattern Recognition and Machine Learning, Springer, 2006.
- A. Hyvärinen. What is Independent Component Analysis? https://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml
- S. Jang. Basics and Examples of Principal Component Analysis (PCA), slecture, 2014 https://www.projectrhea.org/rhea/index.php/PCA_Theory_Examples.
- A. Ng. Independent Component Analysis, CS299 Lecture Notes.
- FastICA, http://research.ics.aalto.fi/ica/fastica/.