
PCA and ICA

Julie Nutini

Machine Learning Reading Group

February 6, 2017

1 / 40



What is PCA?

Principal Component Analysis (PCA) is a statistical procedure that allows

better analysis and interpretation of unstructured data.

Uses an orthogonal linear transformation to convert a set of observations to a

new coordinate system that maximizes the variance.

The new coordinates are called principal components.

Example:
Fit n-dimensional ellipsoid to data.

By omitting axis with smallest variance (smallest

principal component), we lose smallest amount of

info.
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Principal Component Analysis (PCA) aka...

Signal processing: discrete Kosambi-Karhunen-Loève transform (KLT)

Multivariate quality control: the Hotelling transform

Mechanical engineering: proper orthogonal decomposition (POD)

Linear algebra: singular value decomposition (SVD) of X (Golub and Van Loan, 1983)

Linear algebra: eigenvalue decomposition (EVD) of XTX

Psychometrics: factor analysis, Eckart-Young theorem (Harman, 1960), or Schmidt-Mirsky
theorem

Meteorological science: empirical orthogonal functions (EOF)

Noise and vibration: empirical eigenfunction decomposition (Sirovich, 1987), empirical
component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al., 1988), spectral
decomposition

Structural dynamics: empirical modal analysis

...
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Applications of PCA

Dimension construction

Feature extraction

Data visualization

Image compression

Medical imaging

Lossy data compression

...
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Application: 2D Data Analysis

Data matrix X can be rotated to align principal axes with x and y axis.

Project X on the primary and secondary principal direction.
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Application: Data Visualization

Scattered set of points, presumably forms coherent surface.

Display point cloud data in a pleasing way.

[Ascher, Greif, 2011]
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Application: Image Compression

Effectively represent image with limited number of principal components.

Do not know # of principal components needed for successful reconstruction.
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Application: Image Compression
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The Problem

Let X be a D-dimensional random vector with covariance matrix S.

Problem: Consecutively find the unit vectors u1,u2, . . . ,uD such that

Yi = XTui

satisfies:
1 var(Y1) is the maximum.
2 var(Y2) is the maximum subject to cov(Y2, Y1) = 0.
3 var(Yk) is the maximum subject to cov(Yk, Yi) = 0, where k = 3, 4, . . . , D and
k > i.
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The Solutions

Let (λi,ui) be the pairs of eigenvalues and eigenvectors of the covariance

matrix S such that

λ1 ≥ λ2 ≥ · · · ≥ λD(≥ 0)

and

‖ui‖2 = 1, for all 1 ≤ i ≤ D.

Then var(Yi) = λi for 1 ≤ i ≤ D.

→ The principal components of X are the eigenvectors of S.
→ The variance will be a maximum when we set u1 to the eigenvector having the

largest eigenvalue.

→ The proportion of variance each eigenvector represents is given by the ratio of

the given eigenvalue to the sum of all the eigenvalues.
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Restrictions of PCA

Linear, nonparametric analysis that cannot incorporate prior knowledge.

Important that variance can be used to differentiate/imply similarity.

If the given data set is nonlinear or multimodal distribution, PCA fails to

provide meaningful data reduction.

To incorporate the prior knowledge of data to PCA, researchers have
proposed dimension reduction techniques as extensions of PCA:

e.g., kernel PCA, multilinear PCA, and independent component analysis (ICA).
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General: How to do PCA?

Goal: Find the axes of the ellipse (i.e., the principal components).

Consider a data matrix X .

1 Subtract the sample mean from each column of X (data has mean 0).

2 Compute covariance matrix of the data.

3 Calculate the eigenvalues/corresponding eigenvectors of covariance matrix,

Xv = λv

* Xv does not change direction of v.

4 Orthogonalize the set of eigenvectors, normalize each to unit vectors.
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Formulations of PCA

There are two main formulations of PCA:

Maximum variance formulation: The orthogonal projection of the data onto

a lower dimensional linear space (principal subspace) such that the variance

of the projected data is maximized.

Minimum-error formulation: The linear projection that minimizes the

average projection cost, defined as the mean squared distance between the

data points and their projections.x1

x2

x1

x2

x1

x2

x1

x2

u1 u1

u1u1

13 / 40



Formulations of PCA

There are two main formulations of PCA:

Maximum variance formulation: The orthogonal projection of the data onto

a lower dimensional linear space (principal subspace) such that the variance

of the projected data is maximized.

Minimum-error formulation: The linear projection that minimizes the

average projection cost, defined as the mean squared distance between the

data points and their projections.x1

x2

x1

x2

x1

x2

x1

x2

u1 u1

u1u1

13 / 40



Formulations of PCA

There are two main formulations of PCA:

Maximum variance formulation: The orthogonal projection of the data onto

a lower dimensional linear space (principal subspace) such that the variance

of the projected data is maximized.

Minimum-error formulation: The linear projection that minimizes the

average projection cost, defined as the mean squared distance between the

data points and their projections.x1

x2

x1

x2

x1

x2

x1

x2

u1 u1

u1u1

13 / 40



Maximum Variance Formulation

Goal: Project data onto space having dimensionality M < D while maximizing
variance of projected data.

Consider a data set of observations {xn}where n = 1, . . . , N .

Each xn is a Euclidean variable with dimensionality D.

Assume projecting onto a one-dimensional space (M = 1).

Define the direction of this space using u1.

Assume u1 is a unit vector (uT
1 u1 = 1).
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Maximum Variance Formulation

The mean of the projected data is uT
1 x̄ where x̄ is the sample set mean

x̄ =
1

N

N∑
n=1

xn

The variance of the projected data is given by

1

N

N∑
n=1

(
uT
1 xn − uT

1 x̄
)2

= uT
1 Su1

where S is the covariance matrix of the data,

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T .
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Maximum Variance Formulation

To maximize the variance, we solve the following constrained problem

maximize
u1

uT
1 Su1 s.t. uT

1 u1 = 1

The Lagrangian of this problem is given by

L(u1, λ1) = uT
1 Su1 + λ1(1− uT

1 u1).

Differentiating with respect to u1, we have a stationary point when

Su1 = λ1u1.
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Maximum Variance Formulation

By left-multiplying by u1 and using uT
1 u1 = 1, we have

uT
1 Su1 = λ1.

Thus, the maximum variance will occur when we set u1 to the eigenvector

having the largest eigenvalue λ1.

Additional principal components can be defined in an incremental fashion.

A similar problem can be formed for the minimum error formulation.

Solution is in terms of the D −M smallest eigenvalues of the eigenvectors that
are orthogonal to the principal subspace.
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SVD and PCA

The singular value decomposition of a matrix A ∈ IRm×n is given by

A = UΣV T

where

U ∈ IRm×m and V ∈ IRn×n are orthogonal matrices (i.e., UTU = UUT = I)
D ∈ IRm×n diagonal matrix with the singular values of A along the diagonal.

The largest variance is in the direction of the first column of U (the first

principal component)

The largest variance on the subspace orthogonal to the first principal

component is the direction of the second column of U

. . .
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SVD and PCA

Therefore,

B = UTA = ΣV T

represents a better alignment than the given A in terms of variance

differentiation.

Covariance matrix of A is a positive semi-definite matrix,

C = AAT = UΣΣTUT

and the eigenvectors are the columns of U (namely, the singular vectors

which are the principal components).
Application of PCA with respect to SVD:

Solving almost singular linear systems
If the problem is too ill-conditioned, then regularize it.
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Computing the Principal Components

Eigenvalues:

QR algorithm: costs O(D3).

Power Method: Finds first M principal components, costs O(MD2).

Singular values:

SVD costs O(m2n+mn2 + n3) for general matrix A of dimension m× n.

→When D is large, a direct application of PCA will be computationally infeasible.
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PCA for High-Dimensional Data

Let X be an (N ×D)-dimensional centered matrix.

The nth row is (xn − x̄)T .

The covariance matrix can be written as S = 1
NX

TX .
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PCA for High-Dimensional Data

The corresponding eigenvector equation becomes
1

N
XTXui = λiui.

Multiply both sides by X ,
1

N
XXT (Xui) = λi(Xui).

Let vi = Xui to get
1

N
XXTvi = λivi,

which is the eigenvector equation for the N ×N matrix 1
NXX

T .

This has the same N − 1 eigenvalues as the original covariance matrix.

We can solve the eigenvalue problem for cost of O(N3).
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Discussion

PCA is a statistical procedure that uses an orthogonal linear transformation to

reduce the dimension of a dataset while maximizing the variance.

PCs of a dataset X are the eigenvectors of its covariance matrix.

Formulated as a maximum variance problem or a minimum error problem.

Transformation for high-dimensional data.

Allows you to find principal components in smaller subspace.

Extensions:
Probabilistic PCA

Maximum likelihood PCA, EM algorithm for PCA, Bayesian PCA, Factor analysis

Kernel PCA
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Independent Component Analysis

PCA focuses on models with latent variables based on linear-Gaussian
distributions.

The PCs represent a rotation of the coordinate system in data space.
Data distribution in the new coordinates is uncorrelated.

This is a necessary condition for independence, but not a sufficient condition.
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Independent Component Analysis

Independent Component Analysis (ICA):

Similar to PCA, finds a new basis to represent data.

Computational method for separating multivariate signal into additive
subcomponents that are maximally independent.
Observed variables are linear combination of the latent variables.
Assumes subcomponents are non-Gaussian signals and are statistically
independent.
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Example: blind source separation

Example: blind source separation

ICA is used to recover the sources.
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Example: blind source separation

Consider some data s ∈ IRn that is generated via n independent sources

x = As,

where A is an unknown matrix (mixing matrix), x received signal.

Repeated observations gives a data set {x(i), i = 1, . . . ,m}.

Goal: Recover s(i).
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ICA

Given no prior knowledge about the sources or the mixing matrix, some

inherent ambiguities in A are impossible to recover.

Permutation of the sources is ambiguous.

Scalings of W = A−1 cannot be recovered.

Might not matter depending on the application.

We cannot determine the order of the independent

components.

These are the ONLY ambiguities assuming the sources si are non-Gaussian.

As long as the data is non-Gaussian, we can recover the n independent

sources.
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As long as the data is non-Gaussian, we can recover the n independent

sources.
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ICA Algorithm (Bell and Sejnowski)

Suppose the distribution of each source si is given by a density ps.

The joint distribution of the sources s is given by

p(s) =

n∏
i=1

ps(si).

→ By modelling the joint distribution as a product of the marginal, we capture

the assumption that the sources are independent.

This implies the following density on x = As = W−1s :

p(x) =

n∏
i=1

ps(w
T
i x) · |W |.

Need to specify a density for the individual sources ps.
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ICA Algorithm

We need to specify a cdf for it that slowly increases from 0 to 1.

Reasonable default: the sigmoid function

g(s) =
1

(1 + e−s)
.

This yields ps(s) = g′(s).

Given a training set {x(i), i = 1, . . . ,m}, the log likelihood for our parameter

matrix W is

`(W ) =
m∑
i=1

 n∑
j=1

log g′(wT
j x

(i)) + log |W |

 .
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ICA Algorithm

Maximizing this in terms of W , we derive a stochastic gradient ascent

learning rule for training example x(i):

W := W + α




1− 2g(wT

1 x
(i))

1− 2g(wT
2 x

(i))
...

1− 2g(wT
nx

(i))

x(i)
T

+ (W T )−1


where α is the learning rate.

After the algorithm converges, we compute s(i) = Wx(i) to recover the

original sources.
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FastICA Algorithm

FastICA [http://research.ics.aalto.fi/ica/fastica/]

Implements the fast fixed-point algorithm for ICA and projection pursuit.

Can download (for R, C++, Python and Matlab)

32 / 40



FastICA Algorithm
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FastICA Algorithm
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FastICA Algorithm
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FastICA Algorithm

The source signals were sinusoidal

and impulsive noise.

The joint density is the product of
the marginal densities.

Definition of independence.
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Discussion

ICA is a statistical and computational technique used to reveal hidden factors

that underlie sets of random variables, measurements, or signals.

Data assumed to be linear combinations of some unknown latent variables.

Latent variables are assumed to be non-Gaussian and independent.

ICA finds these independent components.

Stochastic gradient ascent learning rule for training example x(i).

FastICA

. . .
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Thank you!
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A. Hyvärinen. What is Independent Component Analysis?
https://www.cs.helsinki.fi/u/ahyvarin/whatisica.shtml

S. Jang. Basics and Examples of Principal Component Analysis (PCA), slecture, 2014
https://www.projectrhea.org/rhea/index.php/PCA_Theory_Examples.

A. Ng. Independent Component Analysis, CS299 Lecture Notes.

FastICA, http://research.ics.aalto.fi/ica/fastica/.
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