Supervised Learning:

- Assume that we are given the features x_i.
- Could also use basis functions or kernels.
Supervised Learning:
- Assume that we are given the features x_i.
- Could also use basis functions or kernels.

Unsupervised Learning:
- Learn a representation z_i based on features x_i.
- Also used for supervised learning: use z_i as features.
Supervised Learning Roadmap

Supervised Learning:
- Assume that we are given the features x_i.
- Could also use basis functions or kernels.

Unsupervised Learning:
- Learn a representation z_i based on features x_i.
- Also used for supervised learning: use z_i as features.

Supervised Learning:
- Learn features z_i that are good for supervised learning.
Supervised Learning Roadmap

Linear Model

$y_i = w_0 x_i + w_1 x_{i1} + w_2 x_{i2} + w_3 x_{i3} + \ldots + w_d x_{id}$

These are all examples of Feedforward Neural Networks.
Supervised Learning Roadmap

Linear Model

\[y_i = w_1 x_{i1} + w_2 x_{i2} + \ldots + w_d x_{id} \]

Change of Basis

\[y_i = \sum_{k=1}^{K} w_k z_{ik} \]

These are all examples of Feedforward Neural Networks.
Supervised Learning Roadmap

Linear Model

\[y_i = w_1 x_{i1} + w_2 x_{i2} + w_3 x_{i3} + \ldots + w_d x_{id} \]

Change of Basis

\[y_i = \sum w_k z_{ik} \]

Basis from Latent-Factor Model

\[w_k = \sum z_{ik} W_{kd} \]

\[w \text{ and } W \text{ are trained separately} \]

These are all examples of Feedforward Neural Networks.
Supervised Learning Roadmap

Linear Model

\[y = \mathbf{x}^T \mathbf{w} \]

\[\mathbf{x} = [x_1, x_2, x_3, \ldots, x_d] \]
\[\mathbf{w} = [w_1, w_2, w_3, \ldots, w_d] \]

Change of Basis

\[z = \mathbf{W} \mathbf{x} \]

\[w = [w_1, w_2, w_3, \ldots, w_d] \]
\[\mathbf{z} = [z_1, z_2, z_3, \ldots, z_k] \]

Basis from Latent-Factor Model

\[z = \mathbf{W} \mathbf{x} \]

\[w = [w_1, w_2, w_3, \ldots, w_d] \]
\[\mathbf{z} = [z_1, z_2, z_3, \ldots, z_k] \]

Simultaneously Learn Features for Task and Regression Model

\[y = \mathbf{W} \mathbf{z} \]

\[\mathbf{W} = [W_{11}, W_{12}, W_{13}, \ldots, W_{1d}] \]
\[\mathbf{z} = [z_1, z_2, z_3, \ldots, z_k] \]
\[\mathbf{x} = [x_1, x_2, x_3, \ldots, x_d] \]

\[w \text{ and } \mathbf{W} \text{ are trained separately} \]
These are all examples of Feedforward Neural Networks.
Information always moves **one direction**.
- No loops.
- Never goes backwards.
- Forms a **directed acyclic graph**.
Information always moves **one direction**.
- No loops.
- Never goes backwards.
- Forms a **directed acyclic graph**.

Each node receives input **only** from immediately preceding layer.

Simplest type of artificial neural network.
1943: McCulloch and Pitts proposed first computational model of neuron
1949: Hebb proposed the first learning rule
1958: Rosenblatt’s work on perceptrons
1969: Minsky and Papert’s paper exposed limits of theory
1970s: Decade of dormancy for neural networks
1980-90s: Neural network return (self-organization, back-propagation algorithms, etc.)
McCulloch and Pitts (1943): “integrate and fire” model (no hidden layers)

Denote the d input values for sample i by $x_{i1}, x_{i2}, \ldots, x_{id}$.

Each of the d inputs has a weight w_1, w_2, \ldots, w_d.

Model of Single Neuron
McCulloch and Pitts (1943): “integrate and fire” model (no hidden layers)

- Denote the d input values for sample i by $x_{i1}, x_{i2}, \ldots, x_{id}$.
- Each of the d inputs has a weight w_1, w_2, \ldots, w_d.
- Compute prediction as weighted sum,

$$\hat{y}_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_d x_{id} = \sum_{j=1}^{d} w_j x_{ij}$$
McCulloch and Pitts (1943): “integrate and fire” model (no hidden layers)

Denote the d input values for sample i by $x_{i1}, x_{i2}, \ldots, x_{id}$.

Each of the d inputs has a weight w_1, w_2, \ldots, w_d.

Compute prediction as weighted sum,

$$\hat{y}_i = w_1 x_{i1} + w_2 x_{i2} + \cdots + w_d x_{id} = \sum_{j=1}^{d} w_j x_{ij}$$

Use \hat{y}_i in some loss function:

$$\frac{1}{2} (y_i - \hat{y}_i)^2$$
Consider **more than one neuron**:
Consider more than one neuron:

- **Input to hidden layer**: function h of features from latent-factor model:

\[z_i = h(Wx_i). \]

- Each neuron has directed connection to **ALL** neurons of a subsequent layer.
Consider **more than one neuron**:

- **Input to hidden layer**: function h of features from latent-factor model:

$$z_i = h(Wx_i).$$

- Each neuron has directed connection to **ALL** neurons of a subsequent layer.
- This function h is often called the **activation function**.
 - Each unit/node applies an activation function.
A linear activation function has the form

\[h(Wx_i) = a + Wx_i, \]

where \(a \) is called bias (intercept).
A **linear activation function** has the form

\[h(Wx_i) = a + Wx_i, \]

where \(a \) is called **bias** (intercept).

Example: linear regression with linear bias (linear-linear model)

- Representation: \(z_i = h(Wx_i) \) (from latent-factor model)
- Prediction: \(\hat{y}_i = w^T z_i \)
- Loss: \(\frac{1}{2}(y_i - \hat{y}_i)^2 \)
A **linear activation function** has the form

\[h(W x_i) = a + W x_i, \]

where \(a \) is called **bias** (intercept).

Example: linear regression with linear bias (linear-linear model)

- **Representation**: \(z_i = h(W x_i) \) (from latent-factor model)
- **Prediction**: \(\hat{y}_i = w^T z_i \)
- **Loss**: \(\frac{1}{2} (y_i - \hat{y}_i)^2 \)

To train this model, we solve:

\[
\arg\min_{w \in \mathbb{R}^k, W \in \mathbb{R}^{k \times d}} \frac{1}{2} \sum_{i=1}^{n} (y_i - w^T z_i)^2 = \frac{1}{2} \sum_{i=1}^{n} (y_i - w^T h(W x_i))^2
\]

linear regression with \(z_i \) as features
A linear activation function has the form

\[h(Wx_i) = a + Wx_i, \]

where \(a \) is called bias (intercept).

Example: linear regression with linear bias (linear-linear model)
- Representation: \(z_i = h(Wx_i) \) (from latent-factor model)
- Prediction: \(\hat{y}_i = w^T z_i \)
- Loss: \(\frac{1}{2} (y_i - \hat{y}_i)^2 \)

To train this model, we solve:

\[
\begin{align*}
\arg\min_{w \in \mathbb{R}^k, W \in \mathbb{R}^{k \times d}} & \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - w^T z_i)^2 \\
\text{linear regression with } z_i \text{ as features}
\end{align*}
\]

But this is just a linear model:

\[w^T (W x_i) = (W^T w)^T x_i = \tilde{w}^T x_i \]
To increase flexibility, something needs to be non-linear.

A Heaviside step function has the form

\[
 h(v) = \begin{cases}
 1 & \text{if } v \geq a \\
 0 & \text{otherwise}
\end{cases}
\]

where \(a \) is the threshold.

Example: Let \(a = 0 \),

This yields a binary \(z_i = h(Wx_i) \).

\(Wx_i \) has a concept encoded by each of its \(2^k \) possible signs.
To increase flexibility, something needs to be non-linear. A Heaviside step function has the form

$$h(v) = \begin{cases}
1 & \text{if } v \geq a \\
0 & \text{otherwise}
\end{cases}$$

where a is the threshold.
To increase flexibility, something needs to be non-linear.

A **Heaviside step function** has the form

\[
h(v) = \begin{cases}
1 & \text{if } v \geq a \\
0 & \text{otherwise}
\end{cases}
\]

where \(a\) is the **threshold**.

Example: Let \(a = 0\),

This yields a binary \(z_i = h(Wx_i)\).
To increase flexibility, something needs to be non-linear.

A **Heaviside step function** has the form

$$h(v) = \begin{cases}
1 & \text{if } v \geq a \\
0 & \text{otherwise}
\end{cases}$$

where \(a\) is the **threshold**.

Example: Let \(a = 0\),

This yields a binary \(z_i = h(Wx_i)\).

\(Wx_i\) has a **concept** encoded by each of its \(2^k\) possible signs.
Minsky and Papert (late 50s).

Algorithm for supervised learning of binary classifiers.

- Decides whether input belongs to a specific class or not.
Minsky and Papert (late 50s).

Algorithm for **supervised learning of binary classifiers.**
 - Decides whether input belongs to a specific class or not.

Uses binary **activation function.**
 - Can learn “AND”, “OR”, “NOT” functions.
Minsky and Papert (late 50s).

Algorithm for **supervised learning of binary classifiers**.
 - Decides whether input belongs to a specific class or not.

Uses binary **activation function**.
 - Can learn “AND”, “OR”, “NOT” functions.

Perceptrons only capable of learning **linearly separable patterns**.
The perceptron learning rule is given as follows:

1. For each x_i and desired output y_i in training set,

2. Calculate output: $\hat{y}_i^{(t)} = h \left((w^{(t)})^T x_i \right)$.
The perceptron learning rule is given as follows:

1. For each x_i and desired output y_i in training set,
 1. Calculate output: $\hat{y}_i^{(t)} = h \left((w^{(t)})^T x_i \right)$.
 2. Update the weights: $w_j^{(t+1)} = w_j^{(t)} + (y_i - \hat{y}_i^{(t)}) x_{ji} \forall 1 \leq j \leq d$.

If training set is linearly separable, then guaranteed to converge. (Rosenblatt, 1962). An upper bound exists on number of times weights adjusted in training. Can also use gradient descent if function is differentiable.
The **perceptron learning rule** is given as follows:

1. For each x_i and desired output y_i in training set,

 1. Calculate output: $\hat{y}_i^{(t)} = h \left((w^{(t)})^T x_i \right)$.

 2. Update the weights: $w_j^{(t+1)} = w_j^{(t)} + (y_i - \hat{y}_i^{(t)})x_{ji} \; \forall \; 1 \leq j \leq d$.

2. Continue these steps until $\frac{1}{2} \sum_{i=1}^{n} |y_i - \hat{y}_i^{(t)}| < \gamma$ (threshold).
The **perceptron learning rule** is given as follows:

1. For each x_i and desired output y_i in training set,
 1. Calculate output: $\hat{y}_i^{(t)} = h \left((w^{(t)})^T x_i \right)$.
 2. Update the weights: $w_j^{(t+1)} = w_j^{(t)} + (y_i - \hat{y}_i^{(t)}) x_{ji} \; \forall \; 1 \leq j \leq d$.

2. Continue these steps until $\frac{1}{2} \sum_{i=1}^{n} |y_i - \hat{y}_i^{(t)}| < \gamma$ (threshold).

- If training set is **linearly separable**, then guaranteed to converge.

 (Rosenblatt, 1962).
The perceptron learning rule is given as follows:

1. For each x_i and desired output y_i in training set,
 1. Calculate output: $\hat{y}_i^{(t)} = h \left((w^{(t)})^T x_i \right)$.
 2. Update the weights: $w_j^{(t+1)} = w_j^{(t)} + (y_i - \hat{y}_i^{(t)})x_{ji} \forall 1 \leq j \leq d$.

2. Continue these steps until $\frac{1}{2} \sum_{i=1}^{n} |y_i - \hat{y}_i^{(t)}| < \gamma$ (threshold).

If training set is linearly separable, then guaranteed to converge.

(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.
The perceptron learning rule is given as follows:

1. For each x_i and desired output y_i in training set,

 1. Calculate output: $\hat{y}_i^{(t)} = h\left(\left(w^{(t)}\right)^T x_i\right)$.

 2. Update the weights: $w_j^{(t+1)} = w_j^{(t)} + (y_i - \hat{y}_i^{(t)}) x_{ji} \forall 1 \leq j \leq d$.

2. Continue these steps until $\frac{1}{2} \sum_{i=1}^{n} |y_i - \hat{y}_i^{(t)}| < \gamma$ (threshold).

If training set is linearly separable, then guaranteed to converge.

(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.

Can also use gradient descent if function is differentiable.
What about a smooth approximation to the step function?

The sigmoid function has the form:

$$h(v) = \frac{1}{1 + e^{-v}}$$

Applying the sigmoid function element-wise,

$$z_{ic} = \frac{1}{1 + e^{-W^Tc_xi}}$$

This is called a multi-layer perceptron or neural network.
What about a smooth approximation to the step function?

A sigmoid function has the form

\[
h(v) = \frac{1}{1 + e^{-v}}
\]
What about a smooth approximation to the step function?

A sigmoid function has the form

\[h(v) = \frac{1}{1 + e^{-v}} \]

Applying the sigmoid function element-wise,

\[z_{ic} = \frac{1}{1 + e^{-W_c^T x_i}}. \]

This is called a multi-layer perceptron or neural network.
Why Neural Network?

- A “typical” neuron.
- Neuron has many dendrites.
 - Each dendrite “takes” input.
- Neuron has a single axon.
 - Axon “sends” output.
A “typical” neuron.

- Neuron has many **dendrites**.
 - Each dendrite “takes” **input**.
- Neuron has a single **axon**.
 - Axon “sends” **output**.

With the “right” input to dendrites:

- **Action potential** along axon.
Why Neural Network?

First neuron:
- Each **dendrite**: $x_{i1}, x_{i2}, \ldots, x_{id}$
- Nucleus: computes $W_c^T x_i$
- Axon: sends **binary signal** \(\frac{1}{1 + e^{-W_c^T x_i}} \)

Axon terminal: **neurotransmitter, synapse**

Second neuron:
- Each **dendrite** receives: $z_{i1}, z_{i2}, \ldots, z_{ik}$
- Nucleus: computes $w^T z_i$
- Axon: sends **signal** \hat{y}_i
First neuron:
- Each dendrite: $x_{i1}, x_{i2}, \ldots, x_{id}$
- Nucleus: computes $W^T_c x_i$
- Axon: sends binary signal $\frac{1}{1+e^{-W^T_c x_i}}$

Axon terminal: neurotransmitter, synapse

Second neuron:
- Each dendrite receives: $z_{i1}, z_{i2}, \ldots, z_{ik}$
- Nucleus: computes $w^T z_i$
- Axon: sends signal \hat{y}_i

Describes a neural network with one hidden layer (2 neurons).
Why Neural Network?

First neuron:
- Each dendrite: $x_{i1}, x_{i1}, \ldots, x_{id}$
- Nucleus: computes $W_c^T x_i$
- Axon: sends binary signal $\frac{1}{1+e^{-W_c^T x_i}}$

Axon terminal: neurotransmitter, synapse

Second neuron:
- Each dendrite receives: $z_{i1}, z_{i2}, \ldots, z_{ik}$
- Nucleus: computes $w^T z_i$
- Axon: sends signal \hat{y}_i

Describes a neural network with one hidden layer (2 neurons).

Human brain has approximately 10^{11} neurons.
Why Neural Network?

First neuron:
- Each **dendrite**: \(x_{i1}, x_{i1}, \ldots, x_{id} \)
- Nucleus: computes \(W_c^T x_i \)
- Axon: sends binary signal \(\frac{1}{1+e^{-W_c^T x_i}} \)

Axon terminal: neurotransmitter, synapse

Second neuron:
- Each **dendrite** receives: \(z_{i1}, z_{i2}, \ldots, z_{ik} \)
- Nucleus: computes \(w^T z_i \)
- Axon: sends signal \(\hat{y}_i \)

Describes a neural network with **one hidden layer** (2 neurons).

Human brain has approximately \(10^{11} \) neurons.

Each neuron connected to approximately \(10^4 \) neurons.
Why Neural Network?

- First neuron:
 - Each dendrite: $x_{i1}, x_{i2}, \ldots, x_{id}$
 - Nucleus: computes $W_c^T x_i$
 - Axon: sends binary signal $\frac{1}{1+e^{-W_c^T x_i}}$
 - Axon terminal: neurotransmitter, synapse

- Second neuron:
 - Each dendrite receives: $z_{i1}, z_{i2}, \ldots, z_{ik}$
 - Nucleus: computes $w^T z_i$
 - Axon: sends signal \hat{y}_i

- Describes a neural network with one hidden layer (2 neurons).
- Human brain has approximately 10^{11} neurons.
- Each neuron connected to approximately 10^4 neurons.
- …
Artificial neural network:
- x_i is measuring of the world.
- z_i is internal representation of the world.
- \hat{y}_i as output of neuron for classification/regression.
Artificial neural network:
- x_i is measuring of the world.
- z_i is internal representation of the world.
- \hat{y}_i as output of neuron for classification/regression.

Real neural networks are more complicated:
- **Timing** of action potentials seems to be important.
 - *Rate coding*: frequency of action potentials simulates continuous output.
Artificial neural network:
- \(x_i\) is measuring of the world.
- \(z_i\) is internal representation of the world.
- \(\hat{y}_i\) as output of neuron for classification/regression.

Real neural networks are more complicated:
- Timing of action potentials seems to be important.
 - Rate coding: frequency of action potentials simulates continuous output.
- Neural networks don’t reflect sparsity of action potentials.
Artificial neural network:
- x_i is measuring of the world.
- z_i is internal representation of the world.
- \hat{y}_i as output of neuron for classification/regression.

Real neural networks are more complicated:
- **Timing** of action potentials seems to be important.
 - **Rate coding**: frequency of action potentials simulates continuous output.
- Neural networks don’t reflect sparsity of action potentials.
- How much computation is done inside neuron?
Artificial neural networks vs. real neural networks

- **Artificial neural network:**
 - \(x_i \) is measuring of the world.
 - \(z_i \) is internal representation of the world.
 - \(\hat{y}_i \) as output of neuron for **classification/regression**.

- **Real neural networks are more complicated:**
 - **Timing** of action potentials seems to be important.
 - **Rate coding**: frequency of action potentials simulates continuous output.
 - Neural networks don’t reflect **sparsity** of action potentials.
 - How much computation is done **inside neuron**?
 - Brain is highly **organized** (e.g., substructures and cortical columns).
 - Connection **structure changes**.
Artificial Neural Nets vs. Real Neural Nets

- **Artificial neural network:**
 - x_i is measuring of the world.
 - z_i is internal representation of the world.
 - \hat{y}_i as output of neuron for **classification/regression.**

- **Real neural networks are more complicated:**
 - **Timing** of action potentials seems to be important.
 - **Rate coding:** frequency of action potentials simulates continuous output.
 - Neural networks don’t reflect **sparsity** of action potentials.
 - How much computation is done **inside neuron?**
 - Brain is highly **organized** (e.g., substructures and cortical columns).
 - Connection **structure changes**.
 - Different types of neurotransmitters.
One of the first versions proven by George Cybenko (1989).
One of the first versions proven by George Cybenko (1989).

For feedforward neural networks, the universal approximation theorem:

“... claims that every continuous function defined on a compact set can be arbitrarily well approximated by a neural network with one hidden layer”.
The Universal Approximation Theorem

- One of the first versions proven by George Cybenko (1989).

For feedforward neural networks, the universal approximation theorem:

"... claims that every continuous function defined on a compact set can be arbitrarily well approximated by a neural network with one hidden layer".

Thus, a simple neural network capable of representing a wide variety of functions when given appropriate parameters.
The Universal Approximation Theorem

- One of the first versions proven by George Cybenko (1989).
- For feedforward neural networks, the universal approximation theorem:
 “... claims that every continuous function defined on a compact set can be arbitrarily well approximated by a neural network with one hidden layer”.

- Thus, a simple neural network capable of representing a wide variety of functions when given appropriate parameters.
 - “Algorithmic learnability” of those parameters?
Artificial Neural Networks

With squared loss, our objective function is:

$$\arg\min_{w \in \mathbb{R}^k, W \in \mathbb{R}^{k \times d}} \frac{1}{2} \sum_{i=1}^{n} (y_i - w^T h(W x_i))^2$$

Usual training procedure: stochastic gradient. Compute gradient of random example i, update w and W.

Computing the gradient is known as backpropagation. Adding regularization to w and/or W is known as weight decay.
With squared loss, our objective function is:

$$\argmin_{w \in \mathbb{R}^k, W \in \mathbb{R}^{k \times d}} \frac{1}{2} \sum_{i=1}^{n} (y_i - w^T h(W x_i))^2$$

Usual training procedure: **stochastic gradient**.
- Compute gradient of random example i, update w and W.
- Computing the gradient is known as **backpropagation**.
With squared loss, our objective function is:

\[
\arg\min_{w \in \mathbb{R}^k, W \in \mathbb{R}^{k \times d}} \frac{1}{2} \sum_{i=1}^{n} (y_i - w^T h(Wx_i))^2
\]

• Usual training procedure: **stochastic gradient**.
 • Compute gradient of random example \(i\), update \(w\) and \(W\).

• Computing the gradient is known as **backpropagation**.

• Adding regularization to \(w\) and/or \(W\) is known as **weight decay**.
Output values \hat{y}_i compared to correct values y_i to compute error.
Output values \hat{y}_i compared to correct values y_i to compute error.

Error is fed back through the network (backpropagation of errors).
- Output values \hat{y}_i compared to correct values y_i to compute error.
- Error is fed back through the network (backpropagation of errors).
- Weights are adjusted to reduce value of error function by small amount.
- Output values \hat{y}_i compared to correct values y_i to compute error.
- Error is fed back through the network (backpropagation of errors).
- Weights are adjusted to reduce value of error function by small amount.
- After number of cycles, network converges to state where error is small.
Output values \hat{y}_i compared to correct values y_i to compute error.

Error is fed back through the network (backpropagation of errors).

Weights are adjusted to reduce value of error function by small amount.

After number of cycles, network converges to state where error is small.

To adjust weights, use non-linear optimization method gradient descent.

→ Backpropagation can only be applied to differentiable activation functions.
repeat

until some stopping criterion is satisfied
Backpropagation Algorithm

repeat
 for each weight \(w_{i,j} \) in the network do
 \(w_{i,j} \leftarrow \) a small random number
 for each example \((x, y)\) do

until some stopping criterion is satisfied
Backpropagation Algorithm

repeat

for each weight \(w_{i,j} \) in the network do

\[w_{i,j} \leftarrow \text{a small random number} \]

for each example \((x, y)\) do

/*Propagate the inputs forward to compute the outputs*/

/*Propagate the deltas backwards from output layer to input layer*/

/*Update every weight in network using deltas*/

until some stopping criterion is satisfied
repeat
 for each weight \(w_{i,j} \) in the network do
 \(w_{i,j} \leftarrow \) a small random number
 for each example \((x, y)\) do
 /*Propagate the inputs forward to compute the outputs*/
 for each node \(i \) in the input layer do
 \(a_i \leftarrow x_i \)
 for \(\ell = 2 \) to \(L \) do
 for each node \(j \) in layer \(\ell \) do
 \(v_j \leftarrow \sum_i w_{i,j} a_i \)
 \(a_j \leftarrow h(v_j) \)
 /*Propagate the deltas backwards from output layer to input layer*/
 /*Update every weight in network using deltas*/
 until some stopping criterion is satisfied
Backpropagation Algorithm

repeat
 for each weight $w_{i,j}$ in the network do
 $w_{i,j} \leftarrow$ a small random number
 for each example (x, y) do
 /*Propagate the inputs forward to compute the outputs*/
 for each node i in the input layer do
 $a_i \leftarrow x_i$
 for $\ell = 2$ to L do
 for each node j in layer ℓ do
 $v_j \leftarrow \sum_i w_{i,j} a_i$
 $a_j \leftarrow h(v_j)$
 /*Propagate the deltas backwards from output layer to input layer*/
 for each node j in output layer do
 $\Delta[j] \leftarrow h'(v_j)(y_j - a_j)$
 for $\ell = L - 1$ to 1 do
 for each node i in layer ℓ do
 $\Delta[i] \leftarrow h'(v_i) \sum_j w_{i,j} \Delta[j]$
 /*Update every weight in network using deltas*/
 until some stopping criterion is satisfied
repeat
 for each weight $w_{i,j}$ in the network do
 $w_{i,j} \leftarrow$ a small random number
 for each example (x, y) do
 /*Propagate the inputs forward to compute the outputs*/
 for each node i in the input layer do
 $a_i \leftarrow x_i$
 for $\ell = 2$ to L do
 for each node j in layer ℓ do
 $v_j \leftarrow \sum_i w_{i,j} a_i$
 $a_j \leftarrow h(v_j)$
 /*Propagate the deltas backwards from output layer to input layer*/
 for each node j in output layer do
 $\Delta[j] \leftarrow h'(v_j)(y_j - a_j)$
 for $\ell = L - 1$ to 1 do
 for each node i in layer ℓ do
 $\Delta[i] \leftarrow h'(v_i) \sum_j w_{i,j} \Delta[j]$
 /*Update every weight in network using deltas*/
 for each weight $w_{i,j}$ in network do
 $w_{i,j} \leftarrow w_{i,j} + \alpha a_i \Delta[j]$
 until some stopping criterion is satisfied
Derivations of the back-propagation equations are very similar to the gradient calculation for logistic regression.

- Uses the multivariable chain rule more than once.
Derivations of the back-propagation equations are very similar to the gradient calculation for logistic regression.

- Uses the multivariable chain rule more than once.

Consider the loss for a single node:

\[f(w, W) = \frac{1}{2} (y_i - \sum_{j=1}^{k} w_j h(W_j x_i))^2. \]
Derivations of the back-propagation equations are very similar to the gradient calculation for logistic regression.

- Uses the multivariable chain rule more than once.

Consider the loss for a single node:

\[f(w, W) = \frac{1}{2} (y_i - \sum_{j=1}^{k} w_j h(W_j x_i))^2. \]

Derivatives with respect to \(w_j \) (weights connect hidden to output layer):

\[\frac{\partial f(w, W)}{\partial w_j} = -(y_i - \sum_{j=1}^{k} w_j h(W_j x_i)) \cdot h(W_j x_i). \]
Backpropagation

- Derivations of the back-propagation equations are very similar to the gradient calculation for logistic regression.
 - Uses the multivariable chain rule more than once.

- Consider the loss for a single node:

 \[f(w, W) = \frac{1}{2} (y_i - \sum_{j=1}^{k} w_j h(W_j x_i))^2. \]

- Derivatives with respect to \(w_j \) (weights connect hidden to output layer):

 \[\frac{\partial f(w, W)}{\partial w_j} = -(y_i - \sum_{j=1}^{k} w_j h(W_j x_i)) \cdot h(W_j x_i) \]

- Derivative with respect to \(W_{ij} \) (weights connect input to hidden layer):

 \[\frac{\partial f(w, W)}{\partial W_{ij}} = -(y_i - \sum_{j=1}^{k} w_j h(W_j x_i)) \cdot w_j h'(W_j x_i) x_{ij} \]
Notice repeated calculations in gradients:

\[
\frac{\partial f(w, W)}{\partial w_j} = -(y_i - \sum_{j=1}^{k} w_j h(W_j x)) \cdot h(W_j x)
\]

\[
\frac{\partial f(w, W)}{\partial W_{ij}} = -(y_i - \sum_{j=1}^{k} w_j h(W_j x)) \cdot w_j h'(W_j x) x_i
\]
Notice repeated calculations in gradients:

\[
\frac{\partial f(w, W)}{\partial w_j} = -(y_i - \sum_{j=1}^{k} w_j h(W_j x)) \cdot h(W_j x)
\]

\[
\frac{\partial f(w, W)}{\partial W_{ij}} = -(y_i - \sum_{j=1}^{k} w_j h(W_j x)) \cdot w_j h'(W_j x) x_i
\]

Same value for \(\frac{\partial f(w, W)}{\partial w_j} \) with all \(j \) and \(\frac{\partial f(w, W)}{\partial W_{ij}} \) for all \(i \) and \(j \).

Same value for \(\frac{\partial f(w, W)}{\partial W_{ij}} \) with all \(i \).
- Cannot be used if very little available data.
Disadvantages of Neural Networks

- Cannot be used if very little available data.
- Many free parameters (e.g., number of hidden nodes, learning rate, minimal error, etc.)
Disadvantages of Neural Networks

- Cannot be used if very little available data.
- Many free parameters (e.g., number of hidden nodes, learning rate, minimal error, etc.)
- Not great for precision calculations.
Disadvantages of Neural Networks

- Cannot be used if very little available data.
- Many free parameters (e.g., number of hidden nodes, learning rate, minimal error, etc.)
- Not great for precision calculations.
- Do not provide explanations (unlike slopes in linear models that represent correlations).
Disadvantages of Neural Networks

- Cannot be used if very little available data.
- Many free parameters (e.g., number of hidden nodes, learning rate, minimal error, etc.)
- Not great for precision calculations.
- Do not provide explanations (unlike slopes in linear models that represent correlations).
- Network overfits training data, fails to capture true statistical process behind the data.
 - Early stopping can be used to avoid this.
Disadvantages of Neural Networks

- Cannot be used if very little available data.
- Many free parameters (e.g., number of hidden nodes, learning rate, minimal error, etc.)
- Not great for precision calculations.
- Do not provide explanations (unlike slopes in linear models that represent correlations).
- Network overfits training data, fails to capture true statistical process behind the data.
 - Early stopping can be used to avoid this.
- Speed of convergence.
- Local minimia.
Advantages of Neural Networks

- Easy to maintain.
- Versatile.
- Used on problems for which *analytical methods do not yet exist.*
Advantages of Neural Networks

- Easy to maintain.
- Versatile.
- Used on problems for which analytical methods do not yet exist.
- Models non-linear dependencies.
- Quickly work out patterns, even with noisy data.
Advantages of Neural Networks

- Easy to maintain.
- Versatile.
- Used on problems for which analytical methods do not yet exist.
- Models non-linear dependencies.
- Quickly work out patterns, even with noisy data.
- Always outputs answer, even when input is incomplete.
Advantages of Neural Networks

- Easy to maintain.
- Versatile.
- Used on problems for which analytical methods do not yet exist.
- Models non-linear dependencies.
- Quickly work out patterns, even with noisy data.
- Always outputs answer, even when input is incomplete.