
Feedforward Neural Nets and Backpropagation

Julie Nutini

University of British Columbia

MLRG

September 28th, 2016

1 / 23



Supervised Learning Roadmap

Supervised Learning:
Assume that we are given the features xi.
Could also use basis functions or kernels.

Unsupervised Learning:
Learn a representation zi based on features xi.
Also used for supervised learning: use zi as features.

Supervised Learning:
Learn features zi that are good for supervised learning.

2 / 23



Supervised Learning Roadmap

Supervised Learning:
Assume that we are given the features xi.
Could also use basis functions or kernels.

Unsupervised Learning:
Learn a representation zi based on features xi.
Also used for supervised learning: use zi as features.

Supervised Learning:
Learn features zi that are good for supervised learning.

2 / 23



Supervised Learning Roadmap

Supervised Learning:
Assume that we are given the features xi.
Could also use basis functions or kernels.

Unsupervised Learning:
Learn a representation zi based on features xi.
Also used for supervised learning: use zi as features.

Supervised Learning:
Learn features zi that are good for supervised learning.

2 / 23



Supervised Learning Roadmap

Linear Model

yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

→ These are all examples of Feedforward Neural Networks.

3 / 23



Supervised Learning Roadmap

Linear Model

yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

Change of Basis
 

xi1 xi2 xi3 xid…

…

w3w2w1 wk

yi

Basis

zi1 zi2 zi3 zik

→ These are all examples of Feedforward Neural Networks.

3 / 23



Supervised Learning Roadmap

Linear Model

yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

Change of Basis
 

xi1 xi2 xi3 xid…

…

w3w2w1 wk

yi

Basis

zi1 zi2 zi3 zik

Basis from Latent-Factor
Model

 

…

w3w2w1 wk

zi1 zi2 zi3 zik

yi

…

zi1 zi2 zi3 zik

Wkd

xi1 xi2 xi3 xid

w and W are trained separately

W11

→ These are all examples of Feedforward Neural Networks.

3 / 23



Supervised Learning Roadmap

Linear Model

yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

Change of Basis
 

xi1 xi2 xi3 xid…

…

w3w2w1 wk

yi

Basis

zi1 zi2 zi3 zik

Basis from Latent-Factor
Model

 

…

w3w2w1 wk

zi1 zi2 zi3 zik

yi

…

zi1 zi2 zi3 zik

Wkd

xi1 xi2 xi3 xid

w and W are trained separately

W11

Simultaneously Learn
Features for Task and

Regression Model

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

→ These are all examples of Feedforward Neural Networks.

3 / 23



Supervised Learning Roadmap

Linear Model

yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

Change of Basis
 

xi1 xi2 xi3 xid…

…

w3w2w1 wk

yi

Basis

zi1 zi2 zi3 zik

Basis from Latent-Factor
Model

 

…

w3w2w1 wk

zi1 zi2 zi3 zik

yi

…

zi1 zi2 zi3 zik

Wkd

xi1 xi2 xi3 xid

w and W are trained separately

W11

Simultaneously Learn
Features for Task and

Regression Model

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

→ These are all examples of Feedforward Neural Networks.

3 / 23



Feed-forward Neural Network

Information always moves one direction.
No loops.
Never goes backwards.
Forms a directed acyclic graph.

Each node receives input only from immediately preceding layer.

Simplest type of artificial neural network.

4 / 23



Feed-forward Neural Network

Information always moves one direction.
No loops.
Never goes backwards.
Forms a directed acyclic graph.

Each node receives input only from immediately preceding layer.

Simplest type of artificial neural network.

4 / 23



Neural Networks - Historical Background

1943: McCulloch and Pitts proposed first computational model of neuron

1949: Hebb proposed the first learning rule

1958: Rosenblatt’s work on perceptrons

1969: Minsky and Papert’s paper exposed limits of theory

1970s: Decade of dormancy for neural networks

1980-90s: Neural network return (self-organization, back-propagation
algorithms, etc.)

5 / 23



Model of Single Neuron

McCulloch and Pitts (1943): “integrate and fire” model (no hidden layers)
yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

Denote the d input values for sample i by xi1, xi2, . . . , xid.

Each of the d inputs has a weight w1, w2, . . . , wd.

Compute prediction as weighted sum,

ŷi = w1xi1 + w2xi2 + · · ·+ wdxid =
d∑

j=1

wjxij

Use ŷi in some loss function:

1

2
(yi − ŷi)

2

6 / 23



Model of Single Neuron

McCulloch and Pitts (1943): “integrate and fire” model (no hidden layers)
yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

Denote the d input values for sample i by xi1, xi2, . . . , xid.

Each of the d inputs has a weight w1, w2, . . . , wd.

Compute prediction as weighted sum,

ŷi = w1xi1 + w2xi2 + · · ·+ wdxid =

d∑
j=1

wjxij

Use ŷi in some loss function:

1

2
(yi − ŷi)

2

6 / 23



Model of Single Neuron

McCulloch and Pitts (1943): “integrate and fire” model (no hidden layers)
yi

xi1 xi2 xi3 xid

w1 w2 w3 wd

…

Denote the d input values for sample i by xi1, xi2, . . . , xid.

Each of the d inputs has a weight w1, w2, . . . , wd.

Compute prediction as weighted sum,

ŷi = w1xi1 + w2xi2 + · · ·+ wdxid =

d∑
j=1

wjxij

Use ŷi in some loss function:

1

2
(yi − ŷi)

2

6 / 23



Incorporating Hidden Layers

Consider more than one neuron:

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Input to hidden layer: function h of features from latent-factor model:

zi = h(Wxi).

Each neuron has directed connection to ALL neurons of a subsequent layer.

This function h is often called the activation function.
Each unit/node applies an activation function.

7 / 23



Incorporating Hidden Layers

Consider more than one neuron:

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Input to hidden layer: function h of features from latent-factor model:

zi = h(Wxi).

Each neuron has directed connection to ALL neurons of a subsequent layer.

This function h is often called the activation function.
Each unit/node applies an activation function.

7 / 23



Incorporating Hidden Layers

Consider more than one neuron:

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Input to hidden layer: function h of features from latent-factor model:

zi = h(Wxi).

Each neuron has directed connection to ALL neurons of a subsequent layer.

This function h is often called the activation function.
Each unit/node applies an activation function.

7 / 23



Linear Activation Function

A linear activation function has the form

h(Wxi) = a+Wxi,

where a is called bias (intercept).

Example: linear regression with linear bias (linear-linear model)
Representation: zi = h(Wxi) (from latent-factor model)
Prediction: ŷi = wT zi

Loss: 1
2
(yi − ŷi)2

To train this model, we solve:

argmin
w∈IRk,W∈IRk×d

1

2

n∑
i=1

(yi − wT zi)
2

︸ ︷︷ ︸
linear regression with zi as features

=
1

2

n∑
i=1

(yi − wTh(Wxi))
2

But this is just a linear model:

wT (Wxi) = (WTw)Txi = w̃Txi

8 / 23



Linear Activation Function

A linear activation function has the form

h(Wxi) = a+Wxi,

where a is called bias (intercept).

Example: linear regression with linear bias (linear-linear model)
Representation: zi = h(Wxi) (from latent-factor model)
Prediction: ŷi = wT zi

Loss: 1
2
(yi − ŷi)2

To train this model, we solve:

argmin
w∈IRk,W∈IRk×d

1

2

n∑
i=1

(yi − wT zi)
2

︸ ︷︷ ︸
linear regression with zi as features

=
1

2

n∑
i=1

(yi − wTh(Wxi))
2

But this is just a linear model:

wT (Wxi) = (WTw)Txi = w̃Txi

8 / 23



Linear Activation Function

A linear activation function has the form

h(Wxi) = a+Wxi,

where a is called bias (intercept).

Example: linear regression with linear bias (linear-linear model)
Representation: zi = h(Wxi) (from latent-factor model)
Prediction: ŷi = wT zi

Loss: 1
2
(yi − ŷi)2

To train this model, we solve:

argmin
w∈IRk,W∈IRk×d

1

2

n∑
i=1

(yi − wT zi)
2

︸ ︷︷ ︸
linear regression with zi as features

=
1

2

n∑
i=1

(yi − wTh(Wxi))
2

But this is just a linear model:

wT (Wxi) = (WTw)Txi = w̃Txi

8 / 23



Linear Activation Function

A linear activation function has the form

h(Wxi) = a+Wxi,

where a is called bias (intercept).

Example: linear regression with linear bias (linear-linear model)
Representation: zi = h(Wxi) (from latent-factor model)
Prediction: ŷi = wT zi

Loss: 1
2
(yi − ŷi)2

To train this model, we solve:

argmin
w∈IRk,W∈IRk×d

1

2

n∑
i=1

(yi − wT zi)
2

︸ ︷︷ ︸
linear regression with zi as features

=
1

2

n∑
i=1

(yi − wTh(Wxi))
2

But this is just a linear model:

wT (Wxi) = (WTw)Txi = w̃Txi

8 / 23



Binary Activation Function

To increase flexibility, something needs to be non-linear.

A Heaviside step function has the form

h(v) =

1 if v ≥ a

0 otherwise

where a is the threshold.
Example: Let a = 0,

 

This yields a binary zi = h(Wxi).
Wxi has a concept encoded by each of its 2k possible signs.

9 / 23



Binary Activation Function

To increase flexibility, something needs to be non-linear.
A Heaviside step function has the form

h(v) =

1 if v ≥ a

0 otherwise

where a is the threshold.

Example: Let a = 0,
 

This yields a binary zi = h(Wxi).
Wxi has a concept encoded by each of its 2k possible signs.

9 / 23



Binary Activation Function

To increase flexibility, something needs to be non-linear.
A Heaviside step function has the form

h(v) =

1 if v ≥ a

0 otherwise

where a is the threshold.
Example: Let a = 0,

 

This yields a binary zi = h(Wxi).

Wxi has a concept encoded by each of its 2k possible signs.

9 / 23



Binary Activation Function

To increase flexibility, something needs to be non-linear.
A Heaviside step function has the form

h(v) =

1 if v ≥ a

0 otherwise

where a is the threshold.
Example: Let a = 0,

 

This yields a binary zi = h(Wxi).
Wxi has a concept encoded by each of its 2k possible signs.

9 / 23



Perceptrons

Minsky and Papert (late 50s).

Algorithm for supervised learning of binary classifiers.
Decides whether input belongs to a specific class or not.

Uses binary activation function.
Can learn “AND”, “OR”, “NOT” functions.

Perceptrons only capable of learning linearly separable patterns.

10 / 23



Perceptrons

Minsky and Papert (late 50s).

Algorithm for supervised learning of binary classifiers.
Decides whether input belongs to a specific class or not.

Uses binary activation function.
Can learn “AND”, “OR”, “NOT” functions.

Perceptrons only capable of learning linearly separable patterns.

10 / 23



Perceptrons

Minsky and Papert (late 50s).

Algorithm for supervised learning of binary classifiers.
Decides whether input belongs to a specific class or not.

Uses binary activation function.
Can learn “AND”, “OR”, “NOT” functions.

Perceptrons only capable of learning linearly separable patterns.

10 / 23



Learning Algorithm for Perceptrons

The perceptron learning rule is given as follows:
1 For each xi and desired output yi in training set,

1 Calculate output: ŷ(t)i = h

((
w(t)

)T
xi

)
.

2 Update the weights: w(t+1)
j = w

(t)
j + (yi − ŷ(t)i )xji ∀ 1 ≤ j ≤ d.

2 Continue these steps until 1
2

∑n
i=1

∣∣∣yi − ŷ(t)i

∣∣∣ < γ (threshold).

If training set is linearly separable, then guaranteed to converge.
(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.

Can also use gradient descent if function is differentiable.

11 / 23



Learning Algorithm for Perceptrons

The perceptron learning rule is given as follows:
1 For each xi and desired output yi in training set,

1 Calculate output: ŷ(t)i = h

((
w(t)

)T
xi

)
.

2 Update the weights: w(t+1)
j = w

(t)
j + (yi − ŷ(t)i )xji ∀ 1 ≤ j ≤ d.

2 Continue these steps until 1
2

∑n
i=1

∣∣∣yi − ŷ(t)i

∣∣∣ < γ (threshold).

If training set is linearly separable, then guaranteed to converge.
(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.

Can also use gradient descent if function is differentiable.

11 / 23



Learning Algorithm for Perceptrons

The perceptron learning rule is given as follows:
1 For each xi and desired output yi in training set,

1 Calculate output: ŷ(t)i = h

((
w(t)

)T
xi

)
.

2 Update the weights: w(t+1)
j = w

(t)
j + (yi − ŷ(t)i )xji ∀ 1 ≤ j ≤ d.

2 Continue these steps until 1
2

∑n
i=1

∣∣∣yi − ŷ(t)i

∣∣∣ < γ (threshold).

If training set is linearly separable, then guaranteed to converge.
(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.

Can also use gradient descent if function is differentiable.

11 / 23



Learning Algorithm for Perceptrons

The perceptron learning rule is given as follows:
1 For each xi and desired output yi in training set,

1 Calculate output: ŷ(t)i = h

((
w(t)

)T
xi

)
.

2 Update the weights: w(t+1)
j = w

(t)
j + (yi − ŷ(t)i )xji ∀ 1 ≤ j ≤ d.

2 Continue these steps until 1
2

∑n
i=1

∣∣∣yi − ŷ(t)i

∣∣∣ < γ (threshold).

If training set is linearly separable, then guaranteed to converge.
(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.

Can also use gradient descent if function is differentiable.

11 / 23



Learning Algorithm for Perceptrons

The perceptron learning rule is given as follows:
1 For each xi and desired output yi in training set,

1 Calculate output: ŷ(t)i = h

((
w(t)

)T
xi

)
.

2 Update the weights: w(t+1)
j = w

(t)
j + (yi − ŷ(t)i )xji ∀ 1 ≤ j ≤ d.

2 Continue these steps until 1
2

∑n
i=1

∣∣∣yi − ŷ(t)i

∣∣∣ < γ (threshold).

If training set is linearly separable, then guaranteed to converge.
(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.

Can also use gradient descent if function is differentiable.

11 / 23



Learning Algorithm for Perceptrons

The perceptron learning rule is given as follows:
1 For each xi and desired output yi in training set,

1 Calculate output: ŷ(t)i = h

((
w(t)

)T
xi

)
.

2 Update the weights: w(t+1)
j = w

(t)
j + (yi − ŷ(t)i )xji ∀ 1 ≤ j ≤ d.

2 Continue these steps until 1
2

∑n
i=1

∣∣∣yi − ŷ(t)i

∣∣∣ < γ (threshold).

If training set is linearly separable, then guaranteed to converge.
(Rosenblatt, 1962).

An upper bound exists on number of times weights adjusted in training.

Can also use gradient descent if function is differentiable.

11 / 23



Non-Linear Continuous Activation Function

What about a smooth approximation to the step function?

A sigmoid function has the form

h(v) =
1

1 + e−v

 

Applying the sigmoid function element-wise,

zic =
1

1 + e−WT
c xi

.

This is called a multi-layer perceptron or neural network.

12 / 23



Non-Linear Continuous Activation Function

What about a smooth approximation to the step function?

A sigmoid function has the form

h(v) =
1

1 + e−v

 

Applying the sigmoid function element-wise,

zic =
1

1 + e−WT
c xi

.

This is called a multi-layer perceptron or neural network.

12 / 23



Non-Linear Continuous Activation Function

What about a smooth approximation to the step function?

A sigmoid function has the form

h(v) =
1

1 + e−v

 

Applying the sigmoid function element-wise,

zic =
1

1 + e−WT
c xi

.

This is called a multi-layer perceptron or neural network.
12 / 23



Why Neural Network?

A “typical” neuron.

Neuron has many dendrites.
Each dendrite “takes” input.

Neuron has a single axon.
Axon “sends” output.

With the “right” input to dendrites:
Action potential along axon.

13 / 23



Why Neural Network?

A “typical” neuron.

Neuron has many dendrites.
Each dendrite “takes” input.

Neuron has a single axon.
Axon “sends” output.

With the “right” input to dendrites:
Action potential along axon.

13 / 23



Why Neural Network?

First neuron:
Each dendrite: xi1, xi1, . . . , xid
Nucleus: computes WT

c xi

Axon: sends binary signal 1

1+e−WT
c xi

Axon terminal: neurotransmitter, synapse

Second neuron:
Each dendrite receives: zi1, zi2, . . . , zik
Nucleus: computes wT zi

Axon: sends signal ŷi

Describes a neural network with one hidden layer (2 neurons).

Human brain has approximately 1011 neurons.

Each neuron connected to approximately 104 neurons.

. . .

14 / 23



Why Neural Network?

First neuron:
Each dendrite: xi1, xi1, . . . , xid
Nucleus: computes WT

c xi

Axon: sends binary signal 1

1+e−WT
c xi

Axon terminal: neurotransmitter, synapse

Second neuron:
Each dendrite receives: zi1, zi2, . . . , zik
Nucleus: computes wT zi

Axon: sends signal ŷi

Describes a neural network with one hidden layer (2 neurons).

Human brain has approximately 1011 neurons.

Each neuron connected to approximately 104 neurons.

. . .

14 / 23



Why Neural Network?

First neuron:
Each dendrite: xi1, xi1, . . . , xid
Nucleus: computes WT

c xi

Axon: sends binary signal 1

1+e−WT
c xi

Axon terminal: neurotransmitter, synapse

Second neuron:
Each dendrite receives: zi1, zi2, . . . , zik
Nucleus: computes wT zi

Axon: sends signal ŷi

Describes a neural network with one hidden layer (2 neurons).

Human brain has approximately 1011 neurons.

Each neuron connected to approximately 104 neurons.

. . .

14 / 23



Why Neural Network?

First neuron:
Each dendrite: xi1, xi1, . . . , xid
Nucleus: computes WT

c xi

Axon: sends binary signal 1

1+e−WT
c xi

Axon terminal: neurotransmitter, synapse

Second neuron:
Each dendrite receives: zi1, zi2, . . . , zik
Nucleus: computes wT zi

Axon: sends signal ŷi

Describes a neural network with one hidden layer (2 neurons).

Human brain has approximately 1011 neurons.

Each neuron connected to approximately 104 neurons.

. . .

14 / 23



Why Neural Network?

First neuron:
Each dendrite: xi1, xi1, . . . , xid
Nucleus: computes WT

c xi

Axon: sends binary signal 1

1+e−WT
c xi

Axon terminal: neurotransmitter, synapse

Second neuron:
Each dendrite receives: zi1, zi2, . . . , zik
Nucleus: computes wT zi

Axon: sends signal ŷi

Describes a neural network with one hidden layer (2 neurons).

Human brain has approximately 1011 neurons.

Each neuron connected to approximately 104 neurons.

. . .

14 / 23



Artificial Neural Nets vs. Real Neural Nets

Artificial neural network:
xi is measuring of the world.
zi is internal representation of the world.
ŷi as output of neuron for classification/regression.

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Real neural networks are more complicated:
Timing of action potentials seems to be important.

Rate coding: frequency of action potentials simulates continuous output.

Neural networks don’t reflect sparsity of action potentials.
How much computation is done inside neuron?
Brain is highly organized (e.g., substructures and cortical columns).
Connection structure changes.
Different types of neurotransmitters.

15 / 23



Artificial Neural Nets vs. Real Neural Nets

Artificial neural network:
xi is measuring of the world.
zi is internal representation of the world.
ŷi as output of neuron for classification/regression.

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Real neural networks are more complicated:
Timing of action potentials seems to be important.

Rate coding: frequency of action potentials simulates continuous output.

Neural networks don’t reflect sparsity of action potentials.
How much computation is done inside neuron?
Brain is highly organized (e.g., substructures and cortical columns).
Connection structure changes.
Different types of neurotransmitters.

15 / 23



Artificial Neural Nets vs. Real Neural Nets

Artificial neural network:
xi is measuring of the world.
zi is internal representation of the world.
ŷi as output of neuron for classification/regression.

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Real neural networks are more complicated:
Timing of action potentials seems to be important.

Rate coding: frequency of action potentials simulates continuous output.

Neural networks don’t reflect sparsity of action potentials.

How much computation is done inside neuron?
Brain is highly organized (e.g., substructures and cortical columns).
Connection structure changes.
Different types of neurotransmitters.

15 / 23



Artificial Neural Nets vs. Real Neural Nets

Artificial neural network:
xi is measuring of the world.
zi is internal representation of the world.
ŷi as output of neuron for classification/regression.

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Real neural networks are more complicated:
Timing of action potentials seems to be important.

Rate coding: frequency of action potentials simulates continuous output.

Neural networks don’t reflect sparsity of action potentials.
How much computation is done inside neuron?

Brain is highly organized (e.g., substructures and cortical columns).
Connection structure changes.
Different types of neurotransmitters.

15 / 23



Artificial Neural Nets vs. Real Neural Nets

Artificial neural network:
xi is measuring of the world.
zi is internal representation of the world.
ŷi as output of neuron for classification/regression.

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Real neural networks are more complicated:
Timing of action potentials seems to be important.

Rate coding: frequency of action potentials simulates continuous output.

Neural networks don’t reflect sparsity of action potentials.
How much computation is done inside neuron?
Brain is highly organized (e.g., substructures and cortical columns).
Connection structure changes.

Different types of neurotransmitters.

15 / 23



Artificial Neural Nets vs. Real Neural Nets

Artificial neural network:
xi is measuring of the world.
zi is internal representation of the world.
ŷi as output of neuron for classification/regression.

 

w1

WkdW11

wkw3w2

…

…zi1 zi2 zi3 zik

yi

xidxi2 xi3xi1

Real neural networks are more complicated:
Timing of action potentials seems to be important.

Rate coding: frequency of action potentials simulates continuous output.

Neural networks don’t reflect sparsity of action potentials.
How much computation is done inside neuron?
Brain is highly organized (e.g., substructures and cortical columns).
Connection structure changes.
Different types of neurotransmitters.

15 / 23



The Universal Approximation Theorem

One of the first versions proven by George Cybenko (1989).

For feedforward neural networks, the universal approximation theorem:
“... claims that every continuous function defined on a compact set can be
arbitrarily well approximated by a neural network with one hidden layer”.

Thus, a simple neural network capable of representing a wide variety of
functions when given appropriate parameters.

“Algorithmic learnability” of those parameters?

16 / 23



The Universal Approximation Theorem

One of the first versions proven by George Cybenko (1989).

For feedforward neural networks, the universal approximation theorem:
“... claims that every continuous function defined on a compact set can be
arbitrarily well approximated by a neural network with one hidden layer”.

Thus, a simple neural network capable of representing a wide variety of
functions when given appropriate parameters.

“Algorithmic learnability” of those parameters?

16 / 23



The Universal Approximation Theorem

One of the first versions proven by George Cybenko (1989).

For feedforward neural networks, the universal approximation theorem:
“... claims that every continuous function defined on a compact set can be
arbitrarily well approximated by a neural network with one hidden layer”.

Thus, a simple neural network capable of representing a wide variety of
functions when given appropriate parameters.

“Algorithmic learnability” of those parameters?

16 / 23



The Universal Approximation Theorem

One of the first versions proven by George Cybenko (1989).

For feedforward neural networks, the universal approximation theorem:
“... claims that every continuous function defined on a compact set can be
arbitrarily well approximated by a neural network with one hidden layer”.

Thus, a simple neural network capable of representing a wide variety of
functions when given appropriate parameters.

“Algorithmic learnability” of those parameters?

16 / 23



Artificial Neural Networks

With squared loss, our objective function is:

argmin
w∈IRk,W∈IRk×d

1

2

n∑
i=1

(yi − wTh(Wxi))
2

Usual training procedure: stochastic gradient.
Compute gradient of random example i, update w and W .

Computing the gradient is known as backpropagation.

Adding regularization to w and/or W is known as weight decay.

17 / 23



Artificial Neural Networks

With squared loss, our objective function is:

argmin
w∈IRk,W∈IRk×d

1

2

n∑
i=1

(yi − wTh(Wxi))
2

Usual training procedure: stochastic gradient.
Compute gradient of random example i, update w and W .

Computing the gradient is known as backpropagation.

Adding regularization to w and/or W is known as weight decay.

17 / 23



Artificial Neural Networks

With squared loss, our objective function is:

argmin
w∈IRk,W∈IRk×d

1

2

n∑
i=1

(yi − wTh(Wxi))
2

Usual training procedure: stochastic gradient.
Compute gradient of random example i, update w and W .

Computing the gradient is known as backpropagation.

Adding regularization to w and/or W is known as weight decay.

17 / 23



Backpropagation

Output values ŷi compared to correct values yi to compute error.

Error is fed back through the network (backpropagation of errors).

Weights are adjusted to reduce value of error function by small amount.

After number of cycles, network converges to state where error is small.

To adjust weights, use non-linear optimization method gradient descent.
→ Backpropagation can only be applied to differentiable activation functions.

18 / 23



Backpropagation

Output values ŷi compared to correct values yi to compute error.

Error is fed back through the network (backpropagation of errors).

Weights are adjusted to reduce value of error function by small amount.

After number of cycles, network converges to state where error is small.

To adjust weights, use non-linear optimization method gradient descent.
→ Backpropagation can only be applied to differentiable activation functions.

18 / 23



Backpropagation

Output values ŷi compared to correct values yi to compute error.

Error is fed back through the network (backpropagation of errors).

Weights are adjusted to reduce value of error function by small amount.

After number of cycles, network converges to state where error is small.

To adjust weights, use non-linear optimization method gradient descent.
→ Backpropagation can only be applied to differentiable activation functions.

18 / 23



Backpropagation

Output values ŷi compared to correct values yi to compute error.

Error is fed back through the network (backpropagation of errors).

Weights are adjusted to reduce value of error function by small amount.

After number of cycles, network converges to state where error is small.

To adjust weights, use non-linear optimization method gradient descent.
→ Backpropagation can only be applied to differentiable activation functions.

18 / 23



Backpropagation

Output values ŷi compared to correct values yi to compute error.

Error is fed back through the network (backpropagation of errors).

Weights are adjusted to reduce value of error function by small amount.

After number of cycles, network converges to state where error is small.

To adjust weights, use non-linear optimization method gradient descent.
→ Backpropagation can only be applied to differentiable activation functions.

18 / 23



Backpropagation Algorithm

repeat

for each weight wi,j in the network do
wi,j ← a small random number

for each example (x, y) do
/*Propagate the inputs forward to compute the outputs*/
for each node i in the input layer do

ai ← xi

for ` = 2 to L do
for each node j in layer ` do

vj ←
∑

i wi,jai

aj ← h(vj)

/*Propagate the deltas backwards from output layer to input layer*/
for each node j in output layer do

∆[j]← h′(vj)(yj − aj)

for ` = L− 1 to 1 do
for each node i in layer ` do

∆[i]← h′(vi)
∑

j wi,j∆[j]

/*Update every weight in network using deltas*/
for each weight wi,j in network do

wi,j ← wi,j + αai∆[j]

until some stopping criterion is satisfied

19 / 23



Backpropagation Algorithm

repeat
for each weight wi,j in the network do

wi,j ← a small random number

for each example (x, y) do

/*Propagate the inputs forward to compute the outputs*/
for each node i in the input layer do

ai ← xi

for ` = 2 to L do
for each node j in layer ` do

vj ←
∑

i wi,jai

aj ← h(vj)

/*Propagate the deltas backwards from output layer to input layer*/
for each node j in output layer do

∆[j]← h′(vj)(yj − aj)

for ` = L− 1 to 1 do
for each node i in layer ` do

∆[i]← h′(vi)
∑

j wi,j∆[j]

/*Update every weight in network using deltas*/
for each weight wi,j in network do

wi,j ← wi,j + αai∆[j]

until some stopping criterion is satisfied

19 / 23



Backpropagation Algorithm

repeat
for each weight wi,j in the network do

wi,j ← a small random number

for each example (x, y) do
/*Propagate the inputs forward to compute the outputs*/

for each node i in the input layer do
ai ← xi

for ` = 2 to L do
for each node j in layer ` do

vj ←
∑

i wi,jai

aj ← h(vj)

/*Propagate the deltas backwards from output layer to input layer*/

for each node j in output layer do
∆[j]← h′(vj)(yj − aj)

for ` = L− 1 to 1 do
for each node i in layer ` do

∆[i]← h′(vi)
∑

j wi,j∆[j]

/*Update every weight in network using deltas*/

for each weight wi,j in network do
wi,j ← wi,j + αai∆[j]

until some stopping criterion is satisfied

19 / 23



Backpropagation Algorithm

repeat
for each weight wi,j in the network do

wi,j ← a small random number

for each example (x, y) do
/*Propagate the inputs forward to compute the outputs*/
for each node i in the input layer do

ai ← xi

for ` = 2 to L do
for each node j in layer ` do

vj ←
∑

i wi,jai

aj ← h(vj)

/*Propagate the deltas backwards from output layer to input layer*/

for each node j in output layer do
∆[j]← h′(vj)(yj − aj)

for ` = L− 1 to 1 do
for each node i in layer ` do

∆[i]← h′(vi)
∑

j wi,j∆[j]

/*Update every weight in network using deltas*/

for each weight wi,j in network do
wi,j ← wi,j + αai∆[j]

until some stopping criterion is satisfied

19 / 23



Backpropagation Algorithm

repeat
for each weight wi,j in the network do

wi,j ← a small random number

for each example (x, y) do
/*Propagate the inputs forward to compute the outputs*/
for each node i in the input layer do

ai ← xi

for ` = 2 to L do
for each node j in layer ` do

vj ←
∑

i wi,jai

aj ← h(vj)

/*Propagate the deltas backwards from output layer to input layer*/
for each node j in output layer do

∆[j]← h′(vj)(yj − aj)

for ` = L− 1 to 1 do
for each node i in layer ` do

∆[i]← h′(vi)
∑

j wi,j∆[j]

/*Update every weight in network using deltas*/

for each weight wi,j in network do
wi,j ← wi,j + αai∆[j]

until some stopping criterion is satisfied

19 / 23



Backpropagation Algorithm

repeat
for each weight wi,j in the network do

wi,j ← a small random number

for each example (x, y) do
/*Propagate the inputs forward to compute the outputs*/
for each node i in the input layer do

ai ← xi

for ` = 2 to L do
for each node j in layer ` do

vj ←
∑

i wi,jai

aj ← h(vj)

/*Propagate the deltas backwards from output layer to input layer*/
for each node j in output layer do

∆[j]← h′(vj)(yj − aj)

for ` = L− 1 to 1 do
for each node i in layer ` do

∆[i]← h′(vi)
∑

j wi,j∆[j]

/*Update every weight in network using deltas*/
for each weight wi,j in network do

wi,j ← wi,j + αai∆[j]

until some stopping criterion is satisfied

19 / 23



Backpropagation

Derivations of the back-propagation equations are very similar to the
gradient calculation for logistic regression.

Uses the multivariable chain rule more than once.

Consider the loss for a single node:

f(w,W ) =
1

2
(yi −

k∑
j=1

wjh(Wjxi))
2.

Derivatives with respect to wj (weights connect hidden to output layer):

∂f(w,W )

∂wj
= −(yi −

k∑
j=1

wjh(Wjxi)) · h(Wjxi)

Derivative with respect to Wij (weights connect input to hidden layer):

∂f(w,W )

∂Wij
= −(yi −

k∑
j=1

wjh(Wjxi)) · wjh
′(Wjxi)xij

20 / 23



Backpropagation

Derivations of the back-propagation equations are very similar to the
gradient calculation for logistic regression.

Uses the multivariable chain rule more than once.

Consider the loss for a single node:

f(w,W ) =
1

2
(yi −

k∑
j=1

wjh(Wjxi))
2.

Derivatives with respect to wj (weights connect hidden to output layer):

∂f(w,W )

∂wj
= −(yi −

k∑
j=1

wjh(Wjxi)) · h(Wjxi)

Derivative with respect to Wij (weights connect input to hidden layer):

∂f(w,W )

∂Wij
= −(yi −

k∑
j=1

wjh(Wjxi)) · wjh
′(Wjxi)xij

20 / 23



Backpropagation

Derivations of the back-propagation equations are very similar to the
gradient calculation for logistic regression.

Uses the multivariable chain rule more than once.

Consider the loss for a single node:

f(w,W ) =
1

2
(yi −

k∑
j=1

wjh(Wjxi))
2.

Derivatives with respect to wj (weights connect hidden to output layer):

∂f(w,W )

∂wj
= −(yi −

k∑
j=1

wjh(Wjxi)) · h(Wjxi)

Derivative with respect to Wij (weights connect input to hidden layer):

∂f(w,W )

∂Wij
= −(yi −

k∑
j=1

wjh(Wjxi)) · wjh
′(Wjxi)xij

20 / 23



Backpropagation

Derivations of the back-propagation equations are very similar to the
gradient calculation for logistic regression.

Uses the multivariable chain rule more than once.

Consider the loss for a single node:

f(w,W ) =
1

2
(yi −

k∑
j=1

wjh(Wjxi))
2.

Derivatives with respect to wj (weights connect hidden to output layer):

∂f(w,W )

∂wj
= −(yi −

k∑
j=1

wjh(Wjxi)) · h(Wjxi)

Derivative with respect to Wij (weights connect input to hidden layer):

∂f(w,W )

∂Wij
= −(yi −

k∑
j=1

wjh(Wjxi)) · wjh
′(Wjxi)xij

20 / 23



Backpropagation

Notice repeated calculations in gradients:

∂f(w,W )

∂wj
= −(yi −

k∑
j=1

wjh(Wjx)) · h(Wjx)

∂f(w,W )

∂Wij
= −(yi −

k∑
j=1

wjh(Wjx)) · wjh
′(Wjx)xi

Same value for ∂f(w,W )
∂wj

with all j and ∂f(w,W )
∂Wij

for all i and j.

Same value for ∂f(w,W )
∂Wij

with all i.

21 / 23



Backpropagation

Notice repeated calculations in gradients:

∂f(w,W )

∂wj
= −(yi −

k∑
j=1

wjh(Wjx)) · h(Wjx)

∂f(w,W )

∂Wij
= −(yi −

k∑
j=1

wjh(Wjx)) · wjh
′(Wjx)xi

Same value for ∂f(w,W )
∂wj

with all j and ∂f(w,W )
∂Wij

for all i and j.

Same value for ∂f(w,W )
∂Wij

with all i.

21 / 23



Disadvantages of Neural Networks

Cannot be used if very little available data.

Many free parameters (e.g., number of hidden nodes, learning rate,
minimal error, etc.)

Not great for precision calculations.

Do not provide explanations (unlike slopes in linear models that
represent correlations).

Network overfits training data, fails to capture true statistical process
behind the data.

Early stopping can be used to avoid this.

Speed of convergence.

Local minimia.

22 / 23



Disadvantages of Neural Networks

Cannot be used if very little available data.

Many free parameters (e.g., number of hidden nodes, learning rate,
minimal error, etc.)

Not great for precision calculations.

Do not provide explanations (unlike slopes in linear models that
represent correlations).

Network overfits training data, fails to capture true statistical process
behind the data.

Early stopping can be used to avoid this.

Speed of convergence.

Local minimia.

22 / 23



Disadvantages of Neural Networks

Cannot be used if very little available data.

Many free parameters (e.g., number of hidden nodes, learning rate,
minimal error, etc.)

Not great for precision calculations.

Do not provide explanations (unlike slopes in linear models that
represent correlations).

Network overfits training data, fails to capture true statistical process
behind the data.

Early stopping can be used to avoid this.

Speed of convergence.

Local minimia.

22 / 23



Disadvantages of Neural Networks

Cannot be used if very little available data.

Many free parameters (e.g., number of hidden nodes, learning rate,
minimal error, etc.)

Not great for precision calculations.

Do not provide explanations (unlike slopes in linear models that
represent correlations).

Network overfits training data, fails to capture true statistical process
behind the data.

Early stopping can be used to avoid this.

Speed of convergence.

Local minimia.

22 / 23



Disadvantages of Neural Networks

Cannot be used if very little available data.

Many free parameters (e.g., number of hidden nodes, learning rate,
minimal error, etc.)

Not great for precision calculations.

Do not provide explanations (unlike slopes in linear models that
represent correlations).

Network overfits training data, fails to capture true statistical process
behind the data.

Early stopping can be used to avoid this.

Speed of convergence.

Local minimia.

22 / 23



Disadvantages of Neural Networks

Cannot be used if very little available data.

Many free parameters (e.g., number of hidden nodes, learning rate,
minimal error, etc.)

Not great for precision calculations.

Do not provide explanations (unlike slopes in linear models that
represent correlations).

Network overfits training data, fails to capture true statistical process
behind the data.

Early stopping can be used to avoid this.

Speed of convergence.

Local minimia.

22 / 23



Advantages of Neural Networks

Easy to maintain.

Versatile.

Used on problems for which analytical methods do not yet exist.

Models non-linear dependencies.

Quickly work out patterns, even with noisy data.

Always outputs answer, even when input is incomplete.

23 / 23



Advantages of Neural Networks

Easy to maintain.

Versatile.

Used on problems for which analytical methods do not yet exist.

Models non-linear dependencies.

Quickly work out patterns, even with noisy data.

Always outputs answer, even when input is incomplete.

23 / 23



Advantages of Neural Networks

Easy to maintain.

Versatile.

Used on problems for which analytical methods do not yet exist.

Models non-linear dependencies.

Quickly work out patterns, even with noisy data.

Always outputs answer, even when input is incomplete.

23 / 23



Advantages of Neural Networks

Easy to maintain.

Versatile.

Used on problems for which analytical methods do not yet exist.

Models non-linear dependencies.

Quickly work out patterns, even with noisy data.

Always outputs answer, even when input is incomplete.

23 / 23


