

Julie Nutini

Machine Learning Reading Group

November 3rd, 2015

Motivation

- Projected-Gradient Methods
 - ✓ Rewrite non-smooth problem as smooth constrained problem:

 $\min_{x\in\mathcal{C}}f(x)$

- X Only handles 'simple' constraints, e.g., bound constraints.
- → Franke-Wolfe Algorithm: minimize linear function over C.
- Proximal-Gradient Methods
 - ✓ Generalizes projected-gradient:

$$\min_{x} f(x) + r(x),$$

where f is smooth, r is general convex function (proximable).

- **X** Dealing with $r(x) = \phi(Ax)$ difficult, even when ϕ simple.
- → Alternating Direction Method of Multipliers
- * **TODAY**: We focus on coordinate descent, which is for the case where *r* is separable and *f* has some special structure.

- Suitable for large-scale optimization (dimension *d* is large):
 - Certain smooth (unconstrained) problems.
 - Non-smooth problems with *separable* constraints/regularizers.
 - e.g., ℓ_1 -regularization, bound constraints
- * Faster than gradient descent if iterations d times cheaper.

Problems Suitable for Coordinate Descent

Coordinate update d times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^d g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

- f and f_{ij} smooth, convex
- A is a matrix
- $\{V,E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1 : least squares, logistic regression, lasso, ℓ_2 -norm SVMs.

e.g.,
$$\min_{x \in \mathbb{R}^d} \frac{1}{2} \|Ax - b\|^2 + \lambda \sum_{i=1}^d |x_i|.$$

Examples h_2 : quadratics, graph-based label prop., graphical models.

e.g.,
$$\min_{x \in \mathbb{R}^d} \frac{1}{2} x^T A x + b^T x = \frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d a_{ij} x_i x_j + \sum_{i=1}^d b_i x_i.$$

Notation and Assumptions

We focus on the convex optimization problem

 $\min_{x \in \mathbb{R}^d} f(x)$

• ∇f coordinate-wise *L*-Lipschitz continuous

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L|\alpha|$$

• $f \mu$ -strongly convex, i.e.,

$$x \mapsto f(x) - \frac{\mu}{2} \|x\|^2$$

is convex for some $\mu > 0$.

• If f is twice-differentiable, equivalent to

$$\nabla_{ii}^2 f(x) \le L, \qquad \nabla^2 f(x) \succeq \mu \mathbb{I}.$$

Coordinate Descent vs. Gradient Descent

$$x^{k+1} = x^k - \frac{1}{L}\nabla_{i_k} f(x^k) e_{i_k} \qquad x^{k+1} = x^k - \alpha \nabla f(x^k)$$

• Global convergence rate for randomized i_k selection [Nesterov]:

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{Ld}\right)[f(x^k) - f(x^*)]$$

• Global convergence rate for gradient descent:

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{L_f}\right) [f(x^k) - f(x^*)]$$

 Since Ld ≥ L_f ≥ L, coordinate descent is slower per iteration, but d coordinate iterations are faster than one gradient iteration.

Proximal Coordinate Descent

$$\min_{x \in \mathbb{R}^d} F(x) \equiv f(x) + \sum_i g_i(x_i)$$

where f is smooth and g_i might be non-smooth.

- e.g., $\ell_1\text{-regularization, bound constraints}$
- Apply proximal-gradient style update,

$$x^{k+1} = \mathbf{prox}_{\frac{1}{L}g_{i_k}} \bigg[x^k - \tfrac{1}{L} \nabla_{i_k} f(x^k) e_{i_k} \bigg]$$

where $\mathbf{prox}_{\alpha g}[y] = \operatorname*{argmin}_{x \in \mathbb{R}^d} \frac{1}{2} \|x-y\|^2 + \alpha g(x).$

• Convergence for randomized *i_k*:

$$\mathbb{E}[F(x^{k+1})] - F(x^*) \le \left(1 - \frac{\mu}{dL}\right) \left[F(x^k) - F(x^*)\right]$$

Sampling Rules

- Cyclic: Cycle through i in order, i.e., $i_1 = 1, i_2 = 2$, etc.
- **Uniform random**: Sample i_k uniformly from $\{1, 2, \ldots, d\}$.
- Lipschitz sampling: Sample i_k proportional to L_i .
- Gauss-Southwell: Select $i_k = \operatorname{argmax}_i |\nabla_i f(x^k)|$.
- Gauss-Southwell-Lipschitz: Select $i_k = \operatorname{argmax}_i \frac{|\nabla_i f(x^k)|}{\sqrt{L_i}}$.

$\begin{array}{|c|c|c|c|} \hline & \mathsf{Gauss-Southwell\ Rules} \\ \hline & \mathsf{GSL:\ argmax}_i \, \frac{|\nabla_i f(x^k)|}{\sqrt{L_i}} \\ \hline & \mathsf{GS:\ argmax}_i \, |\nabla_i f(x^k)| \\ \hline \end{array}$

Intuition: if gradients are similar, more progress if L_i is small.

- Feasible for problems where A is super sparse or for a graph with mean nNeighbours approximately equals maximum nNeighbours.
- Show GS and GSL up to *d* times faster than randomized by measuring strong convexity in the 1-norm or *L*-norm, respectively.

Exact Optimization

$$x^{k+1} = x^k - \alpha_k \nabla_{i_k} f(x^k) e_{i_k}, \quad \text{for some } i_k$$

• Exact coordinate optimization chooses the step size minimizing f:

$$f(x^{k+1}) = \min_{\alpha} \{ f(x^k - \alpha \nabla_{i_k} f(x^k) e_{i_k}) \}$$

- Alternatives:
 - Line search: find $\alpha > 0$ such that $f(x^k \alpha \nabla_{i_k} f(x^k) e_{i_k}) < f(x^k)$.
 - Select step size based on global knowledge of f, e.g., 1/L.

- Suitable for large-scale supervised learning (large # loss functions n):
 - Primal formulated as sum of convex loss functions.
 - Operates on the dual.
- * Achieves faster linear rate than SGD for smooth loss functions.
- * Theoretically equivalent to SSG for non-smooth loss functions.

The Big Picture...

- Stochastic Gradient Descent (SGD):
 - Strong theoretical guarantees.
 - **×** Hard to tune step size (requires $\alpha \rightarrow 0$).
 - X No clear stopping criterion (Stochastic Sub-Gradient method (SSG)).
 - X Converges fast at first, then slow to more accurate solution.
- Stochastic Dual Coordinate Ascent (SDCA):
 - ✓ Strong theoretical guarantees that are comparable to SGD.
 - ✓ Easy to tune step size (line search).
 - ✓ Terminate when the duality gap is sufficiently small.
 - ✓ Converges to accurate solution faster than SGD.

Primal Problem

(P)
$$\min_{w \in \mathbb{R}^d} P(w) = \frac{1}{n} \sum_{i=1}^n \phi_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2$$

where x_1, \ldots, x_n vectors in \mathbb{R}^d , ϕ_1, \ldots, ϕ_n sequence of scalar convex functions, $\lambda > 0$ regularization parameter.

Examples: (for given labels $y_1, \ldots, y_n \in \{-1, 1\}$)

- SVMs: $\phi_i(a) = \max\{0, 1 y_i a\}$ (*L*-Lipschitz)
- Regularized logistic regression: $\phi_i(a) = \log(1 + \exp(-y_i a))$
- Ridge regression: $\phi_i(a) = (a y_i)^2$ (smooth)
- Regression: $\phi_i(a) = |a y_i|$
- Support vector regression: $\phi_i(a) = \max\{0, |a y_i| \nu\}$

Dual Problem

(P)
$$\min_{w \in \mathbb{R}^d} P(w) = \frac{1}{n} \sum_{i=1}^n \phi_i(w^T x_i) + \frac{\lambda}{2} ||w||^2$$

(D)
$$\max_{\alpha \in \mathbb{R}^n} D(\alpha) = \frac{1}{n} \sum_{i=1}^n -\phi_i^*(-\alpha_i) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i x_i \right\|^2$$

where $\phi_i^*(u) = \max_z(zu - \phi_i(z))$ is the convex conjugate of ϕ_i .

• Different dual variable associated with each example in training set.

Duality Gap

(P)
$$\min_{w \in \mathbb{R}^d} P(w) = \frac{1}{n} \sum_{i=1}^n \phi_i(w^T x_i) + \frac{\lambda}{2} \|w\|^2$$

(D)
$$\max_{\alpha \in \mathbb{R}^n} D(\alpha) = \frac{1}{n} \sum_{i=1}^n -\phi_i^*(-\alpha_i) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i x_i \right\|^2$$

- Define $w(\alpha) = \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_i x_i$, then it is known that $w(\alpha^*) = w^*$.
- $P(w^*) = D(\alpha^*)$, which implies $P(w) \ge D(\alpha)$ for all w, α .
- Duality gap is defined by $P(w(\alpha)) D(\alpha)$:

→ Upper bound on the primal sub-optimality: $P(w(\alpha)) - P(w^*)$.

SDCA Algorithm

- (1) Select a training example i at random.
- (2) Do exact line search in the dual, i.e., find $\Delta \alpha_i$:

$$\text{maximize } -\phi_i^*(-(\alpha_i^{(t-1)} + \Delta \alpha_i)) - \frac{\lambda n}{2} \| w^{(t-1)} + (\lambda n)^{-1} \Delta \alpha_i x_i \|^2$$

(3) Update the dual variable $\alpha^{(t)}$ and the primal variable $w^{(t)}$:

$$\alpha^{(t)} \leftarrow \alpha^{(t-1)} + \Delta \alpha_i e_i$$

$$w^{(t)} \leftarrow w^{(t-1)} + (\lambda n)^{-1} \Delta \alpha_i x_i$$

- * Terminate when duality gap is sufficiently small.
- * There are ways to get the rate without a line search that use the primal gradient/subgradient directions.

SGD vs. SDCA

- Alternative to SGD/SSG.
- If primal is smooth, get faster linear rate on duality gap than SGD.
- If primal is non-smooth, get sublinear rate on duality gap.
 - \rightarrow SDCA has similar update to SSG on primal.
 - **X** SSG sensitive to step-size.
 - ✓ Do line search in the dual with coordinate ascent.
- SDCA may not perform as well as SGD for first few epochs (full pass)
 - SGD takes larger step size than SDCA earlier on, helps performance.
 - Using modified SGD on first epoch followed by SDCA obtains faster convergence when regularization parameter λ >> log(n)/n.

Comparison of Rates

Lipschitz loss function (e.g., hinge-loss, $\phi_i(a) = \max\{0, 1 - y_i a\}$):

Algorithm	convergence type	rate
SGD	primal	$\tilde{O}(1/(\lambda \varepsilon_p))$
online EG (Collins et al., 2008) (for SVM)	dual	$\tilde{O}(n/\varepsilon_d)$
Stochastic Frank-Wolfe (Lacoste-Julien et al., 2012)	primal-dual	$\tilde{O}(n + 1/(\lambda \varepsilon))$
SDCA	primal-dual	$ ilde{O}(n+1/(\lambda \varepsilon))$ or faster

Smooth loss function (e.g., ridge-regression, $\phi_i(a) = (a - y_i)^2$):

Algorithm	convergence type	rate
SGD	primal	$\tilde{O}(1/(\lambda \varepsilon_p))$
online EG (Collins et al., 2008) (for LR)	dual	$\tilde{O}((n+1/\lambda)\log(1/\varepsilon_d))$
SAG (Le Roux et al., 2012) (assuming $n\geq 8/(\lambda\gamma)$)	primal	$\tilde{O}((n+1/\lambda)\log(1/\varepsilon_p))$
SDCA	primal-dual	$\tilde{O}((n+1/\lambda)\log(1/\varepsilon))$

* Even if α is ε_d -sub-optimal in the dual, i.e.,

$$D(\alpha) - D(\alpha^*) \le \varepsilon_d,$$

the primal solution $w(\alpha)$ might be far from optimal.

- * Bound on duality-gap is upper bound on primal sub-optimality.
- * Recent results have shown improvements upon some of the rates in the above tables.

Accelerated Coordinate Descent

- Inspired by Nesterov's accelerated gradient method.
- Uses multi-step strategy, carries momentum from previous iterations.
- For accelerated randomized coordinate descent:
 - e.g., for a convex function: $O(1/k^2)$ rate, instead of O(1/k).

Block Coordinate Descent

 $x^{k+1} = x^k - \frac{1}{L} \nabla_{b_k} f(x^k) e_{b_k}$, for some block of indices b_k

- Search along coordinate hyperplane.
- Fixed blocks, adaptive blocks.
- Randomized/proximal CD easily extended to the block case.
 - For proximal case, choice of block must be consistent with block-separable structure of regularization function g.

Parallel Coordinate Descent

• Synchronous parallelism:

• Divide iterate updates between processors (block), followed by synchronization step.

• Asynchronous parallelism:

- Each processor:
 - Has access to x.
 - Chooses an index i, loads components of x that are needed to compute the gradient component ∇_if(x), then updates the ith component x_i.
 - No attempt to coordinate or synchronize with other processors.
 - Always using 'stale' x: convergence results restrict how stale.

Discussion

• Coordinate Descent:

- Suitable for large-scale optimization (when d is large).
- Operates on the primal objective.
- Faster than gradient descent if iterations *d* times cheaper.
- Stochastic Dual Coordinate Ascent:
 - Suitable for large-scale optimization (when *n* is large).
 - Operates on the dual objective.
 - If primal is smooth, obtains faster linear rate on duality gap than SGD.
 - If primal is non-smooth, obtain sublinear rate on duality gap.
 - $\rightarrow\,$ Do line search in the dual with coordinate ascent.
 - Outperforms SGD when relatively high solution accuracy is required.
 - Terminate when duality-gap is sufficiently small.
- Variations: acceleration, block, parallel.