
Research Proficiency Exam:

Putting the curvature back into sparse solvers

Julie Nutini

November 28, 2013

Abstract

Many problems in signal and image processing seek a sparse solution to an underdetermined linear
system. A common problem formulation for such applications is the basis pursuit denoising problem.
Many of the most used approaches for this problem – such as iterative soft thresholding and SPGL1 – are
first-order methods. As a result, these methods can sometimes be slow to converge. In this paper, a general
two-phase method is presented, which takes advantage of easily-obtainable second-order information for
problems that can be expressed as the sum of a convex quadratic function and a closed convex (not
necessarily differentiable) function. The details are presented for the use of the general algorithm on a
basis pursuit denoising problem, as well as a convex quadratic bound-constrained problem. For the basis
pursuit denoising problem, by exploiting the second-order information of the quadratic function, we put
the curvature back into sparse solvers and improve upon convergence rates of existing first-order methods.
The promise of the proposed method is explored in an application of seismic data interpolation and signal
reconstruction.

1 Introduction

We consider the problem
minimize
x∈IRn

f(x) + g(x) ≡ F (x), (1)

where f : IRn → IR is a convex quadratic function of the form f(x) = 1
2
x>Hx + b>x, with H ∈ Sn×n+

(symmetric positive definite) and b ∈ IRn, and g : IRn → IR is a closed convex (not necessarily differentiable)
function with an inexpensive proximal operator.

We propose a two-phase algorithm for problems of the form (1). Because g is not necessarily
differentiable, conventional gradient base methods are not applicable. There are generalizations, such
as the proximal gradient method, that are applicable to (1). However, these generalizations inherit the
slow convergence of the underlying steepest descent methods. Our algorithm combines the proximal
gradient method with the fast converging conjugate gradient method to create an efficient, second-order
optimization algorithm.

One formulation of problem (1) replaces the function g with the 1-norm. This formulation is known
as the basis pursuit denoising problem (BPDN). Applications of the BPDN problem include compressive
sensing [6] and model selection in statistics [7]. Many of the most used approaches to this problem—such
as iterative soft thresholding [5] and SPGL1 [4]—are first-order methods. As a result, these methods
can be slow to converge. By applying our proposed method to the BPDN problem, we are able to take
advantage of the easily-obtainable second-order information of the quadratic term in our use of the
conjugate gradient method, and improve upon the convergence rates of existing methods.

The remainder of this paper is organized as follows. In Section 2, we present the details of our
two-phase algorithm. In Section 3, we show how our algorithm specializes to the gradient projection
conjugate gradient method of Moré and Toraldo [10] when g is the indicator function on the generalized
box, forming a large-scale quadratic bound-constrained problem. We then show how our algorithm
specializes to the basis pursuit denoising problem when g is equal to the 1-norm. In Section 4, we present
the details of our implementation for the case when g is the 1-norm and the results of applying it to a
seismic data interpolation example. In Section 5, we summarize our results and present several potential
avenues for future work.
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2 A Proximal Gradient Conjugate Gradient Algorithm

In this section, we present the proximal gradient conjugate gradient (pgcg) algorithm. We start by
describing each of the two methods used separately, and then present them together as a complete
two-phase method. For the remainder of this paper, we use the notation ‖ · ‖ = ‖ · ‖2.

2.1 The Proximal Gradient Method

The proximal gradient (PG) method is a fixed-point iterative method that can be applied to any convex
unconstrained optimization problem of the form (1). The PG iteration exploits the inexpensive proximal
operator of g. At each iteration, it solves a convex subproblem involving a linearization of f at x. The
proximal mapping (or proximal operator) for a convex function g is defined as

proxαg(x) = argmin
u

g(u) +
1

2α
‖u− x‖2, (2)

and the proximal gradient iteration is given by

xk+1 = proxαkg
(xk − αk∇f(xk)),

where αk > 0 is a step size selected in a line search step to ensure sufficient function value decrease. The
following theorem states that the PG method is a fixed-point method.

Theorem 1 (§4.2.1, Parikh and Boyd, [11]). The point x∗ solves problem (1) if and only if

x∗ = proxαg(x
∗ − α∇f(x∗)) for any α > 0.

The convergence theory for the PG method proves that given ∇f Lipschitz continuous with constant
L and fixed step size α ∈ (0, 1/L], the PG iteration provides function value decrease at each iteration,
and converges to a fixed point of problem (1); see [11] for details. There are variations of this method
that allow for L to be unknown.

2.2 The Conjugate Gradient Method

The conjugate gradient (CG) method is a non-stationary iterative optimization method for solving linear
systems of the form Ax = b, where A ∈ Sm×n+ . The CG method minimizes the A norm of the error at

each iteration, i.e., min ‖ek‖A =
√
e>k Aek, where ek = ‖x∗ − xk‖. The following result states that the

CG method converges to the exact minimizer of the linear system in a number of iterations less than or
equal to the dimension of the problem (assuming exact arithmetic).

Theorem 2 (§7.4, Ascher and Greif, [1]). Given the linear system Ax = b with A ∈ Sm×n+ , the CG
method finds the optimal solution after at most n iterations.

The CG method is designed for smooth problems. Thus, in order to apply CG to problem (1), we
need to consider some smooth restriction of our problem. To do this, we use the idea of an active set at a
point x with respect to the non-differentiable function g. We define the active set as the set of indices

A(x) = {i : [∂g(x)]i is not a singleton}. (3)

In other words, the active set is the set of indices corresponding to the variables xi where g is non-
differentiable. We denote the set of indices corresponding to the variables that are not active, i.e., those
variables that are free, by

F(x) = {i : i 6∈ A(x)} = {i : [∂g(x)]i = [∇g(x)]i}.

By these definitions, g is differentiable with respect to the free variables. Thus, we can use CG to solve a
differentiable subproblem in terms of the free variables at each iteration. To formulate a subproblem in
terms of the free variables, we consider evaluating the function F at the point xk + d, where d is some
search direction in IRn:

F (xk + d) =
1

2
(xk + d)>H(xk + d) + b>(xk + d) + g(xk + d)

=
1

2
x>k Hxk + x>k Hd+

1

2
d>Hd+ b>xk + b>d + g(xk + d)

=
1

2
d>Hd+ (Hxk + b)>︸ ︷︷ ︸

∇f(xk)

d+
1

2
x>k Hxk + b>xk︸ ︷︷ ︸

constant

+ g(xk + d).
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We use a reduced identity matrix, Zk, to reduce the search direction to the dimensions corresponding to
the free variables at the current iteration, i.e., Zk = I[:,F(xk)], and

d = Zkw =

{
wi, i ∈ F(xk);

0, i ∈ A(xk).

Eliminating the constant term above and making the substitution d = Zkw, we define the following
function of w:

Fk(w) =
1

2
(Zkw)>H(Zkw) +∇f(xk)>(Zkw) + g(xk + Zkw).

The CG method requires a smooth problem. Hence, the final step in our subproblem formulation is the
linearization of g(xk + Zkw) about xk:

g(xk + Zkw) ≥ g(xk) +
〈
gxk , (xk + Zkw)− xk

〉
= g(xk) + g>xkZkw,

where gxk ∈ ∂g(xk). Eliminating the constant term g(xk), we redefine Fk(w) by its quadratic underesti-
mation (modulo constant terms):

Fk(w) =
1

2
(Zkw)>H(Zkw) +∇f(xk)>Zkw + g>xkZkw.

Letting Hk = Z>k HZk (reduced Hessian) and rk = Z>k (∇f(xk) + gxk) (reduced gradient of F ), we can
exploit the available second-order information of the quadratic function f by using a truncated (early
terminating) CG method to approximately solve the following smooth subproblem in terms of the free
variables, i.e.,

minimize
w

Fk(w) =
1

2
w>Hkw + r>k w. (4)

Remark 1. We note that Z>k gxk = [∇g(xk)]F(xk) is defined and unique because [∂g(x)]i = [∇g(x)]i is
defined and unique for every i ∈ F(xk). Additionally, if xk lies in the same face as the solution to problem
(1), and w solves (4), then x∗ = xk + αZkw solves problem (1) for some α > 0.

2.3 Conceptual Algorithm

The pgcg algorithm is a two-phase algorithm. In Phase 1, the PG method is used with a proximal
backtracking line search to determine a new working set of the problem, where we define a working set by
the active variables. This phase sets up the algorithm to form the reduced subproblem for the conjugate
gradient method. Once a new working set is determined, we move to Phase 2 and define the reduced
subproblem (4). Using a truncated CG method, we find an approximately optimal search direction in
terms of the free variables. A backtracking line search is used to update the iteration of the full problem.
Since truncated CG is not solved to optimality, there is a possibility that the algorithm would benefit
from continuing in Phase 2 with additional CG iterations. To decide, we use

B(x) =
{
i : i ∈ A(x) and [−∇f(x)]i ∈ [∂g(x)]i

}
(5)

as the definition of the binding set of F at a point x. This is the set of indices corresponding to the active
variables that satisfy the optimality conditions of the original problem. In other words, the corresponding
variables have reached optimality. If the active set and the binding set at the updated iterate are equal,
then we continue to explore the current working set using CG iterations. The intuition is that we may be
solving a subproblem in the optimal working set. Thus, we should continue exploiting the fast converging
properties of the CG method. If these sets are not equal, then we loop back to Phase 1 and find a new
working set.

The line searches used in the pgcg must generalize to a non-differentiable g. We replace the gradient
of F at x in a typical line search with the directional derivative of F at x along a direction d, defined by

F ′(x; d) = lim
h→0

F (x+ hd)− F (x)

h
.

We note that if the function F (x) is differentiable, then the directional derivative is equal to the inner
product of d with the gradient of F evaluated at x, i.e.,

F ′(x; d) = d>∇F (x).
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In Phase 1, we use a proximal iteration backtracking line search, which finds an α such that the
following sufficient decrease condition is satisfied for some fixed constant µ ∈ (0, 1], [letting p0 = proxg(xk)
and pk = proxαg(xk − α∇f(xk))]

F (pk) ≤ F (p0) + µF ′(xk; pk − xk). (6)

In Phase 2, the backtracking line search requires the following sufficient decrease condition be satisfied:

F (xk + αdk) ≤ F (xk) + µαF ′(xk; dk). (7)

In both phases, if the sufficient decrease condition is not satisfied, then α is reduced by a factor of 0.5.
We now present a formal description of the two-phase proximal gradient conjugate gradient method

for problems of the form (1).

Conceptual Algorithm: [pgcg]

0. Initialize: Set k = 0 and

x0 ← proxg(x0): starting point

η1, η2 ∈ (0, 1]: CG and PG sufficient decrease parameters

µ ∈ (0, 1]: line search sufficient decrease parameter

τCG > 0: CG optimality tolerance

τopt > 0: optimality tolerance

1. Phase 1: Determine new working set via proximal gradient iteration.
Set y0 = xk. Generate a sequence {yj} by setting

yj+1 = proxαjg

(
yj − αj∇f(yj)

)
where αj > 0 is chosen by a proximal iteration backtracking line search so that equation (6) is
satisfied. Set xk equal to the first yj that satisfies one of the following conditions:

A(yj) = A(yj−1) (8)

OR
F (yj−1)− F (yj) ≤ η2 max{F (yl−1)− F (yl) : 1 ≤ l < j}. (9)

2. Phase 2: Explore current working set via truncated conjugate gradient.
Set w0 = 0. Set initial residual r0 = Z>k (∇f(xk) + gxk), where gxk ∈ ∂g(xk). Generate a sequence
of search directions {wj} using a truncated CG method. Set dk = Zkwj for the first wj that satisfies

‖rk‖2 ≤ τCG (CG optimality condition) (10)

OR
Fk(wj−1)− Fk(wj) ≤ η1 max{Fk(wl−1)− Fk(wl) : 1 ≤ l < j}. (11)

3. Update and Loop:
Set xk+1 = xk + αkdk for some αk > 0 chosen using a backtracking line search such that equation
(7) holds. Check optimality condition∥∥proxg(xk+1 −∇f(xk+1)

)
− xk+1

∥∥ ≤ τopt

∥∥proxg(x0 −∇f(x0)
)
− x0

∥∥. (12)

If the above condition holds, STOP.
Else, if A(xk+1) = B(xk+1), then set k = k + 1 and loop to Phase 2.
Else, set k = k + 1 and loop to Phase 1.

The pgcg method combines two well-known algorithms, both of which have supporting convergence
theory. Although we do not present the formal convergence theory for the pgcg method, we discuss the
structure of the pgcg method and the intuition behind why the pgcg should converge in practice.

In each PG iteration, given α small enough in the line search, the function value of the objective
monotonically decreases, i.e.,

F
(
proxαg(xk − α∇f(xk)

)
< F (xk).

4



Although the proximal iteration guarantees function value decrease, the progress may be very slow,
depending on the conditioning of the problem.

For an n dimensional symmetric positive definite matrix A, we know that the CG method converges
(produces the exact solution) in at most n iterations. The truncated CG method provides a monotonically
improving sequence of approximations {wj} for the reduced subproblem.

The combination of these two methods does not interfere with the required convergence conditions for
either the PG or the CG method; the pgcg method simply inherits the convergence of each phase in the
active working set. For example, suppose the proximal iteration finds a set of active variables. If the
proximal iteration is progressing slowly in terms of sufficient decrease, or has two consecutive iterations
with equal active sets, then we propose using the fast converging CG method on a reduced smooth
subproblem in terms of the free variables to explore this working set. When truncated CG terminates, it
has found an approximately optimal solution in this working set. It is important to note that even if
CG only carries out one iteration, then the resulting direction is the direction of steepest descent for the
free variables, thus, function value decrease is guaranteed for some α > 0. However, it is possible that
CG finds a direction that does not result in function value decrease for α greater than some step size
tolerance. This is not a problem; as long as the function value is non-increasing in both phases of the
algorithm, convergence should hold.

3 Adapting the pgcg Method for Specific g

To specialize the pgcg method for a specific function g, we simply need to show that there exist
corresponding definitions of the following four properties:

• a proximal operator for g, as defined in (2);

• an active set of g, as defined in (3);

• a binding set of F , as defined in (5); and

• an equivalent reduced subproblem of the form (4).

We present the details for two specific functions g: the indicator function on the generalized box and the
1-norm.

3.1 The Gradient Projection Conjugate Gradient Method

The gradient projection conjugate gradient was proposed by Moré and Toraldo in 1991, [10]. It solves the
convex quadratic bound-constrained problem:

minimize
x∈Ω

f(x),

where f(x) is a convex quadratic function and Ω = {y : l ≤ y ≤ u} for some l, u ∈ IRn. Letting the
function g in problem (1) be the indicator function on Ω, we get an equivalent formulation of the above
problem:

minimize
x∈IRn

f(x) + δΩ(x) ≡ F (x). (13)

The proximal operator for g(x) = δΩ(x) is simply the projection operator PΩ(x), where by the Projection
Theorem

p = PΩ(x) ⇐⇒ p ∈ Ω and 〈x− p, z − p〉 ≤ 0 for all z ∈ Ω.

(See Theorem 3.14 in [2] for details.) In other words, the proximal operator ensures the current iteration
is feasible by projecting it onto the set Ω, resulting in δΩ(x) = 0. To see that proxδΩ(·)(x) is equal to
PΩ(x) for some x ∈ Ω, consider the proximal mapping

proxδΩ(·)(x) = argmin
u

δΩ(u) +
1

2
‖u− x‖2.

Optimality conditions require the condition

x− u ∈ ∂δΩ(u)

be satisfied. The subdifferential of the indicator function on Ω is equal to the normal cone to the set Ω,
which for any u ∈ Ω is defined as

NΩ(u) = {n : 〈n, z − u〉 ≤ 0 for all z ∈ Ω}.

Thus, for any u ∈ Ω, the optimality condition is satisfied if
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〈x− u, z − u〉 ≤ 0, ∀z ∈ Ω
⇐⇒ u = PΩ(x) (by the Projection Theorem).

To define the active set of F , we note that for any point x ∈ Ω, either xi ∈ (li, ui), in which case,
[∂g(x)]i = NΩ(xi) = 0, or

[∂g(x)]i ∈

{
(−∞, 0], if xi = li, or

[0,+∞), if xi = ui.

Hence, according to the definition given in (3), we define the active set of (13) at a point x ∈ Ω to be the
set of indices

A(x) = {i : xi = li, or xi = ui}.
Those indices that are not in the active set correspond to the free variables of the problem and are defined
by

F(x) = {i : xi ∈ (li, ui)}.
According to the definition given in equation (5), the binding set of the quadratic bound-constrained
problem is the set of active indices that satisfy

−∇f(x) ∈ NΩ(x)

⇐⇒ 〈∇f(x), y − x〉 ≥ 0, ∀ y ∈ Ω.

Analyzing the above inequality component-wise for some arbitrary y ∈ Ω, we require for each i ∈ A(x)
that

[∇f(x)]i(yi − xi) ≥ 0.

There are 2 cases to consider:

xi = li ⇒ (yi − xi) ≥ 0 ⇒ [∇f(x)]i ≥ 0

xi = ui ⇒ (yi − xi) ≤ 0 ⇒ [∇f(x)]i ≤ 0.

Thus,

B(x) =

{
i :

xi = li and [∇f(x)]i ≥ 0;

xi = ui and [∇f(x)]i ≤ 0

}
.

Finally, the reduced subproblem for the convex quadratic bound-constrained problem is equivalent to
problem (4), with rk = Z>k ∇f(xk).

3.2 A Sparse Second-Order Method

We now consider the case when g(x) = ‖x‖1 in problem (1), forming the basis pursuit denoising problem
(BPDN)

minimize
x∈IRn

f(x) + λ‖x‖1 ≡ F (x), (14)

where λ is a non-negative regularization constant. The proximal operator for g(x) = ‖x‖1 is called soft
thresholding. As before, we consider the proximal mapping

proxλ‖·‖1(x) = argmin
u

λ‖u‖1 +
1

2
‖u− x‖2.

Observing that the proximal mapping objective is separable, we consider each component individually:

proxλ|·|(x) = argmin
u

λ|u|+ 1

2
|u− x|2.

Optimality conditions require
x− u ∈ λ∂(|u|). (15)

Since

∂(|u|) = sgn(u) =

{
+1 if u > 0;

−1 if u < 0,

when u 6= 0, we have
x− u = λsgn(u)

⇐⇒ x = λsgn(u) + u

⇐⇒ sgn(x) = sgn(u).
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This gives us
u = x− λsgn(x)

⇐⇒ u = sgn(x)(|x| − λ).

Now, when u = 0, λ∂(|u|) = [−λ, λ]. Hence, by equation (15), if x ∈ [−λ, λ], then it must be true that
u = 0. Thus, in the above equation, we take only the positive part of (|x| − λ), denoted by a subscript
‘+’. Thus, we have the component-wise soft thresholding iteration[

proxλ|·|(x)
]
i

= sgn(xi)
[
|xi| − λ

]
+
.

We define the active set of (14) at x to be the set of indices

A(x) = {i : xi = 0}.

It is clear from the above derivation of the soft thresholding iteration that xi = 0 corresponds to the only
value of xi that satisfies the active set definition given in (3). The free variables of the problem are then
clearly defined by the set of indices

F(x) = {i : xi 6= 0}.
To define the binding set for problem (14) using equation (5), we require

−∇f(x) ∈ λ∂(‖x‖1).

Since the only active indices for problem (14) correspond to when xi = 0, we define the binding set as

B(x) =
{
i : xi = 0 and [∇f(x)]i ∈ (−λ, λ)

}
.

An equivalent formulation of the reduced subproblem (4) for the BPDN problem is attained with
rk = Z>k ∇f(xk) + sgn(Z>k xk), which is defined, as Zk eliminates all of the zero entries of xk.

4 Numerical Results

4.1 Hardware and Software

All testing was performed on a 1.3 GHz Intel Core i5 Macbook Air. We present results for a seismic
dataset interpolation example. The implementation was done in MATLAB (v.7.14.0.739, R2012a).

4.2 Initialization, Implementation and Stopping Conditions

Our implementation of the pgcg method allows for a cold start, where the initial iterate, x0, is set equal
to zero, or a warm start, where the initialization of x0 is given as an input. For the following example, we
cold start our algorithm.

We employ a different initial step size for each of the line searches used in the pgcg method:

Phase 1: proximal line search, α0 =
r>r

r>Hr
, where r = ∇f(xk), and

Phase 2: regular line search, α0 = 1.

These choices of α are derived from the minimization of f(xk + αdk) over α for different selections of dk.
In Phase 1, dk = −∇f(xk) and we get the above ratio. In Phase 2, dk = Zkwk, and by the conjugacy
properties of the conjugate gradient method, α0 reduces to 1.

We note that matrix-vector products are expensive computations. As is well-known, the CG method
only requires one matrix-vector product, Hkpj , for a CG iteration update wj+1 = wj + γ pj , where for
ease of notation, γ = γj+1. However, in our truncated CG method, we evaluate the sufficient decrease
condition in (11) at each iteration, which requires the calculation of Fk(wj + γ pj). The following analysis
shows that this calculation does not require the evaluation of any additional matrix-vector product:

Fk(wj + γ pj) =
1

2
(wj + γ pj)

>Hk(wj + γ pj) + (wj + γ pj)
>gk

=
1

2
w>j Hkwj + w>j gk︸ ︷︷ ︸

Fk(wj)

+ γ p>j (Hkwj + gk)︸ ︷︷ ︸
rj−1

+
1

2
γ 2p>j Hkpj

= Fk(wj) + γ p>j rj−1 +
1

2
γ 2p>j Hkpj︸ ︷︷ ︸

previously evaluated

.
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As a failsafe, in addition to the stopping conditions given in Algorithm 2.3, we implement a maximum
iteration condition for each step of the pgcg method. For the results presented in the next section, we
used the following values:

Step Maximum # of iterations

per PG step 15
per CG step min(n, 20)
total PG 100
total CG 200

As well, if in either of the back tracking line searches α is reduced so that α < 10−10, then the algorithm
sets xk+1 = xk and exits the line search. We note that in Phase 1, this results in the equal active sets
condition in (8) being satisfied, and the algorithm continues onto Phase 2. In Phase 2, if the line search
cannot find a suitable step size for the direction generated by the CG method, then we are either not in
the optimal working set, in which case the condition A(xk+1) = B(xk+1) will not be satisfied, and the
algorithm loops to Phase 1, or we are in the optimal working set and the optimality condition (12) is
satisfied.

4.3 Results

The following example is an application of seismic data interpolation in sequential source acquisition
from a technical report by Kumar, Aravkin, and Herrmann, [9]. For our dataset, we use a frequency
slice at 10 Hz of size 354× 354 from a larger 2D seismic data set from the Gulf of Suez. A restriction
matrix operator M is constructed to randomly extract 60% of the columns of the original data set; y
represents the vectorized columns of the restricted data set and is referred to as the signal of the data set.
We want to find a sparse representation of the signal y in a curvelet operator B. To do so, we must solve
the BPDN problem

minimize
x

1

2
‖MB>x− y‖22 + λ‖x‖1.

The linear system of equations MB>x = y is an underdetermined system, and is often ill posed. Hence, a
sparse solution x is possible. The solution x is a representation of y in the curvelet operator B. Thus, our
final solution is given by x∗ = B>x.

We compare the performance of pgcg against the first-order solver SPGL1, [4]. We note that SPGL1
solves the following basis pursuit problem:

minimize ‖x‖1 s.t. ‖Ax− b‖ ≤ σ. (16)

To ensure that our comparison is valid, we choose a value for the regularization parameter λ that makes the
problems (14) and (16) equivalent. To do this, suppose SPGL1 exits with solution xσ and corresponding
residual rσ = Axσ − b. Then the equivalent problem of form (14) requires λσ = ‖A>rσ‖∞ (from Lagrange
multiplier theory).

In our example, we ran SPGL1 with a basis pursuit solution tolerance and optimality tolerance of
10−3, and a maximum iteration cap of 100. The algorithm terminated with an exit flag of too many
iterations. Based on the solution found by SPGL1, we chose λ ≈ 16. Additionally, we used the following
pgcg parameter values:

η1 = 0.1, η2 = 0.25, µ = 0.1, τCG = max{10−4, 10−2‖r0‖}.

We recall that η1 and η2 are the sufficient decrease parameters used in equations (11) and (9) for the
CG method and the PG method, respectively, µ is the sufficient decrease line search parameter used in
equations (6) and (7), and τCG is the CG optimality parameter used in equation (10). Other choices for
the parameter values are possible, but these give good results for the given problem.

The pgcg method terminates at an optimal solution for τopt = 10−2. The numbers of matrix vector
products required by each method are given below:

pgcg : products with A = 253, products with A> = 254

SPGL1: products with A = 139, products with A> = 102.

We can see from the results in Figures 1(c) and 1(e) that both methods interpolated the data well. In
both cases, as shown in Figures 1(d) and 1(f), the missing data traces shown in Figure 1(b) were recovered
with relatively low reconstruction error except for along the diagonal, where SPGL1 did better than the
pgcg method at capturing the details. We note that the results obtained by SPGL1 exactly solve the
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problem we applied pgcg to. Thus, using an optimality tolerance of 10−2, we do not expect the results of
the pgcg method to better the results of SPGL1. Rather, we acknowledge the promise the pgcg method
shows with respect to the application of image reconstruction by the results that were obtained.

5 Conclusions and Future Work

We presented a two phase optimization method pgcg for problems that can be expressed as the sum
of a convex quadratic function and a closed convex (not necessarily differentiable) function. The first
phase employs the proximal gradient method to find a working set of the problem, and the second
phase uses the conjugate gradient method to explore the working set by approximately solving a reduced
subproblem in terms of the free variables. Specializations of the general method for the convex quadratic
bound-constrained problem and the basis pursuit denoising problem are presented. An application in
seismic data interpolation is explored, showing the promise of the pgcg method in seismic imaging
applications.

There are many avenues of future work for the method presented. In terms of analysis, a formal
proof of the convergence of the pgcg method is necessary. The ‘hybrid’ structure of the pgcg method
allows for the extension of using alternative methods in each phase. For example, we could replace
the proximal gradient method in Phase 1 with the fast iterative shrinkage-thresholding algorithm [3].
In Phase 2, we could consider alternative exit conditions for the CG method to ensure it is making
sufficient progress with respect to the full problem, rather than just the subproblem. For example, rather
than completing a backtracking line search after exiting the CG method, we could potentially reduce
matrix vector computations by having a check inside the CG method on the progress of the full problem.
We touched on the selection of the regularization parameter λ in Section 4.3. Incorporating an active
update of λ in the pgcg method, where λk → λ, could lead to faster convergence of the method. Finally,
specializing the pgcg method for additional choices of g, as well as adapting the pgcg method to handle
complex data are extensions that should to be considered in all of the above suggestions and adaptations.
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(a) Original (b) Missing Traces

(c) Interpolated: SPGL1 (d) Error: SPGL1

(e) Interpolated: pgcg (f) Error: pgcg

Figure 1: Gulf of Suez dataset: frequency 10 Hz
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