Julie Nutini, Mark Schmidt, Issam Laradji,
Michael Friedlander, Hoyt Koepke

University of British Columbia

International Conference on Machine Learning
Lille, France

July 6"-11, 2015

Qe

Funded by NSERC Canada Graduate Scholarship
1/20

Random vs. Greedy

We consider coordinate descent for large-scale optimization.

2/20

Random vs. Greedy

We consider coordinate descent for large-scale optimization.

Recent interest began with Nesterov [2012]:

2/20

Random vs. Greedy

We consider coordinate descent for large-scale optimization.
Recent interest began with Nesterov [2012]:

@ Global convergence rate for randomized ;. selection.

2/20

Random vs. Greedy

We consider coordinate descent for large-scale optimization.
Recent interest began with Nesterov [2012]:
@ Global convergence rate for randomized ;. selection.

o Faster than gradient descent if iterations n times cheaper.

2/20

Random vs. Greedy

We consider coordinate descent for large-scale optimization.
Recent interest began with Nesterov [2012]:

@ Global convergence rate for randomized ;. selection.

o Faster than gradient descent if iterations n times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

argmax |V f(z)|.

2/20

Random vs. Greedy

We consider coordinate descent for large-scale optimization.
Recent interest began with Nesterov [2012]:

@ Global convergence rate for randomized ;. selection.

o Faster than gradient descent if iterations n times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

argmax |V f(z)|.

2/20

Random vs. Greedy

We consider coordinate descent for large-scale optimization.
Recent interest began with Nesterov [2012]:

@ Global convergence rate for randomized ;. selection.

o Faster than gradient descent if iterations n times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

argmax |V f(z)|.

— = == == == ===

2/20

Random vs. Greedy

@ GS at least as expensive as random.

3/20

Random vs. Greedy

@ GS at least as expensive as random.

o Nesterov showed same rate as random.

3/20

Random vs. Greedy

@ GS at least as expensive as random.
o Nesterov showed same rate as random.

o But theory disagrees with practice...

3/20

Random vs. Greedy

Uy -regularized sparse least squares

Objective
o o o
N n o

o
©

0.2 | | | | |
‘0 10 20 30 40 50 60 70 80 90 100

Epochs
@ All rules have similar costs for this problem.

4/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

5/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

hl() A-T +Zgz -'157, or h2 Zgl 372 Z fij(xivmj)

i=1 eV (i,j)€E
o fand f;; smooth
o Ais a matrix
o {V,E}is agraph
@ g; general non-degenerate convex functions

5/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

hl() Al' +Zgz -'157, or h2 Zgl xz Z fij("rivl‘j)

=1 eV (i,5)€E
o fand f;; smooth
o Ais a matrix
o {V,E}is agraph
@ g; general non-degenerate convex functions

Examples h,: least squares, logistic regression, lasso, SVMs.

5/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

hl() Al' +Zgz -'157, or h? Zgl xz Z fij(xivxj)

i=1 eV (i,j)€E
o fand f;; smooth
o Ais a matrix
o {V,E}is agraph
@ g; general non-degenerate convex functions

Examples h,: least squares, logistic regression, lasso, SVMs.

Examples h.: quadratics, graph-based label propagation, graphical models.

5/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

hl() Al' +Zgz -'157, or h? Zgl xz Z fij(xivxj)

=1 eV (i,7)eE
o fand f;; smooth
o Ais a matrix
o {V,E}isagraph
@ g; general non-degenerate convex functions
Examples h,: least squares, logistic regression, lasso, SVMs.

— Often solvable in O(crlogn) with ¢ and r non-zeros per column/row.

Examples h.: quadratics, graph-based label propagation, graphical models.

5/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

hl() Al' +Zgz -'157, or h2 Zgl xz Z fij(xivxj)

=1 eV (i,j)€E
o fand f;; smooth
o Ais a matrix
o {V,E}isagraph
@ g; general non-degenerate convex functions

Examples h,: least squares, logistic regression, lasso, SVMs.

— Often solvable in O(crlogn) with ¢ and r non-zeros per column/row.

— GS rule can be formulated as a maximum inner-product search (MIPS).

Examples h.: quadratics, graph-based label propagation, graphical models.

5/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

hl() Al' +Zgz 357, or h2 Zgl xz Z fij(xivxj)

=1 eV (i,j)€E
o fand f;; smooth
o Ais a matrix
o {V,E}isagraph
@ g; general non-degenerate convex functions

Examples h,: least squares, logistic regression, lasso, SVMs.

— Often solvable in O(crlogn) with ¢ and r non-zeros per column/row.

— GS rule can be formulated as a maximum inner-product search (MIPS).
Examples h.: quadratics, graph-based label propagation, graphical models.

— GS efficient if maximum degree similar to average degree.

5/20

Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

hl() Al' +Zgz 357, or h2 Zgl xz Z fij(xivxj)

=1 eV (i,7)eE
o fand f;; smooth
o Ais a matrix
o {V,E}isagraph
@ g; general non-degenerate convex functions

Examples h,: least squares, logistic regression, lasso, SVMs.
— Often solvable in O(crlogn) with ¢ and r non-zeros per column/row.
— GS rule can be formulated as a maximum inner-product search (MIPS).
Examples h.: quadratics, graph-based label propagation, graphical models.
— GS efficient if maximum degree similar to average degree.

— E.g., lattice-structured graphs and complete graphs.

5/20

Notation and Assumptions

We focus on the convex optimization problem

)

6/20

Notation and Assumptions

We focus on the convex optimization problem

Jnin, f(z)

@ Vf coordinate-wise L-Lipschitz continuous

Vif(x + ae;) = Vif(z)| < Llal

6/20

Notation and Assumptions

We focus on the convex optimization problem

)

@ Vf coordinate-wise L-Lipschitz continuous
IVif(z + ae;) — Vif(z)| < Lla]
o f u-strongly convex, i.e.,
z = f(a) = Sl

is convex for some p > 0.

6/20

Notation and Assumptions

We focus on the convex optimization problem

)

@ Vf coordinate-wise L-Lipschitz continuous
IVif(z + ae;) — Vif(z)| < Lla]
o f u-strongly convex, i.e.,
z = f(a) = Sl
is convex for some p > 0.
o If f is twice-differentiable, equivalent to

V2 flz) <L, V2 f(z) = pul

6/20

Randomized Coordinate Descent

Coordinate descent with constant step-size % update:

1)
gl = gk 7 Vi f(z¥)e;,, for some iy.

7/20

Randomized Coordinate Descent

Coordinate descent with constant step-size % update:

1
A S AL f(z")e;,, for some iy.

@ With i, chosen uniformly from {1, ..., n} [Nesterov, 2012],

L) -) < (1) 76 - 1),

7/20

Randomized Coordinate Descent

Coordinate descent with constant step-size % update:

1
A S AL f(z")e;,, for some iy.

@ With i, chosen uniformly from {1, ..., n} [Nesterov, 2012],

L) -) < (1) 76 - 1),

o Compare to rate of gradient descent,

FEY — fa*) < (1 - Lif) @) — F(a)).

7/20

Randomized Coordinate Descent

Coordinate descent with constant step-size % update:

1 .
o S fvik f(x*)e;,, for some iy.

@ With i, chosen uniformly from {1, ..., n} [Nesterov, 2012],

L) -) < (1) 76 - 1),

o Compare to rate of gradient descent,

P - o) < (1 - Lﬂf) () — £
@ Since Ln > Ly > L, coordinate descent is slower per
iteration, but n coordinate iterations are faster than one
gradient iteration.

7/20

Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ix = argmax |V f (¥)].

8/20

Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ix = argmax |V f (¥)].
From Lipschitz-continuity assumption this rule satisfies

P <) — IV

8/20

Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ix = argmax |V f (¥)].
From Lipschitz-continuity assumption this rule satisfies

P <) — IV

From strong-convexity we have

ququ%—iﬂVﬂﬁm?

8/20

Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ix = argmax |V f (¥)].
From Lipschitz-continuity assumption this rule satisfies

P <) — IV

From strong-convexity we have
1
fla®) > f(aF) - ﬂllvf(:v’“)II?
Using ||V f(«")[|” < n[|V f(«")[5 we get
P =) < (1= 22) 6H) - 1)

8/20

Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

9/20

Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

f(a*) = f(a*) - %anw’wuio.

9/20

Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

f(a*) = f(a*) - %anu’wuio.

This gives a rate of

IN
7N
—_
|

=

=

N———

=
—~

-
~

|
~
—~
8

*

=

F@F) — f(2%)

where
H
n

9/20

Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

,ﬂf>2f@*y—§%MVﬂfm@y

This gives a rate of

Pt - 1) < (1= 5 b)),
where
b

See paper and poster for:
@ an explicit formula for 1 for separable quadratic;

9/20

Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.
We now have
N 1
F@®) = @) = VM5
M1
This gives a rate of

F@F) — f(2%)

IN
7N
—_
|

=
=
N———
=
—~
-
S~—
|
~
—~
8
*
=

where
H
n

See paper and poster for:
@ an explicit formula for 1 for separable quadratic;
@ results showing line-search gives faster rate for sparse problems;

9/20

Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

ﬂf)zf@ﬂ—§iﬂvﬂﬂﬂﬁ-

This gives a rate of

Pt - 1) < (1= 5 b)),
where
b

See paper and poster for:
@ an explicit formula for 1 for separable quadratic;
@ results showing line-search gives faster rate for sparse problems; and

@ analysis for approximate Gauss-Southwell rules.
9/20

Lipschitz Sampling

Consider the case where we have an L; for each coordinate
[Vif(z 4 ae;) — Vif(z)| < Lilal,
and we use a coordinate-dependent step-size,

1
Pl = oF — —V, f(xk)eik.
L,

10/20

Lipschitz Sampling

Consider the case where we have an L; for each coordinate
|Vif(z + ae;) — Vif(z)| < Lilal,

and we use a coordinate-dependent step-size,

1

Sampling proportional to L; yields [Nesterov, 2012]

Bl - 1) < (1=)16 - £

where L =151 L,

10/20

Lipschitz Sampling

Consider the case where we have an L; for each coordinate
|Vif(z + ae;) — Vif(z)| < Lilal,

and we use a coordinate-dependent step-size,

1
pFtl = oh — —V, f(xk)eik.
L,

Sampling proportional to L; yields [Nesterov, 2012]

Bl - 1) < (1=)16 - £

where L =151 L,

o Faster than uniform sampling when L; are distinct.

10/20

Lipschitz Sampling

Consider the case where we have an L; for each coordinate
|Vif(z + ae;) — Vif(z)| < Lilal,

and we use a coordinate-dependent step-size,

1
pFtl = oh — —V, f(xk)eik.
L,

Sampling proportional to L; yields [Nesterov, 2012]

Bl - 1) < (1=)16 - £

where L =151 L,

o Faster than uniform sampling when L; are distinct.
@ Could be faster or slower than GS rule.

10/20

Lipschitz Sampling

Consider the case where we have an L; for each coordinate
|Vif(z + ae;) — Vif(z)| < Lilal,
and we use a coordinate-dependent step-size,

1
pFtl = oh — —V, f(xk)eik.
L,

Sampling proportional to L; yields [Nesterov, 2012]

Bl - 1) < (1=)16 - £

where L =151 L,

o Faster than uniform sampling when L; are distinct.
@ Could be faster or slower than GS rule.
@ So which should we use?

10/20

Lipschitz Sampling

Consider the case where we have an L; for each coordinate
|Vif(z + ae;) — Vif(z)| < Lilal,
and we use a coordinate-dependent step-size,
1
ot = gk — Fvik f(xk)eik.
1k
Sampling proportional to L; yields [Nesterov, 2012]

Bl - 1) < (1=)16 - £

where L =151 L,

o Faster than uniform sampling when L; are distinct.
@ Could be faster or slower than GS rule.

@ So which should we use?

o The answer is neither!

10/20

Gauss-Southwell-Lipschitz Rule

We obtain a faster rate by using L; in the GS rule,

ook
i = argmax —N’\J/cg)|,

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

11/20

Gauss-Southwell-Lipschitz Rule

We obtain a faster rate by using L; in the GS rule,

f(k
i = argznax %,

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L; is small.

11/20

Gauss-Southwell-Lipschitz Rule

We obtain a faster rate by using L; in the GS rule,

g (ok
i = argmax —leg)|,

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L; is small.

11/20

Gauss-Southwell-Lipschitz Rule

We obtain a faster rate by using L; in the GS rule,

g (ok
i = argmax _!szg)|,

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L; is small.

11/20

Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of

FEM) = fa*) < (1= po)lf (@) = f@)],

where p;, satisfies the inequality

moop M1
— =y < < —.
maX{nL’ L } = HBL = min;{L;}

12/20

Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of

FEM) = fa*) < (1= po)lf (@) = f@)],

where p;, satisfies the inequality

moop M1
— =y < < —.
maX{nL’ L } = HBL = min;{L;}

o GSL is at least as fast as GS and Lipschitz sampling.

12/20

Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of

FEM) = fa*) < (1= po)lf (@) = f@)],

where p;, satisfies the inequality

moop M1
— =y < < —.
maX{nL’ L } = HBL = min;{L;}

o GSL is at least as fast as GS and Lipschitz sampling.

@ GSL is unimprovable for quadratic functions using LL
k

f(zF) = argmin{ f (z* + ae;)}.

7,00

12/20

Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of
F@H) = f(a*) < (1= po)[f(aF) = f@)],
where p;, satisfies the inequality

2! M1
el et O 77 T e
maX{nL’ L } =P ing (L)

o GSL is at least as fast as GS and Lipschitz sampling.

@ GSL is unimprovable for quadratic functions using LL
k

f(zF) = argmin{ f (z* + ae;)}.

7,00

@ Gives tighter bound for maximum improvement rule.

12/20

Gauss-Southwell-Lipschitz as Nearest Neighbour

Consider a special case of h; (no g; functions),

m:gn hi(x) = f(Azx).

13/20

Gauss-Southwell-Lipschitz as Nearest Neighbour

Consider a special case of h; (no g; functions),
min hy(z) = f(Az).
The GS rule has the form

ir, = argmax |a; r(z")|.
i

13/20

Gauss-Southwell-Lipschitz as Nearest Neighbour

Consider a special case of h; (no g; functions),
min hy(z) = f(Az).
The GS rule has the form

ir, = argmax |a; r(z")|.
i

. B
T L o r(x) -
! / : E
' zf L -
! A . :
r y I ai
I} i -
4 -
oy, ¢ ~
i 7 -
/ s -
1y s -
H// e
‘l"f/ //
e~ -+

13/20

Gauss-Southwell-Lipschitz as Nearest Neighbour

Dhillon et al. [2011] approximate GS as nearest neighbour,

) 1
argmin (") — o] = argma { 9:(a4)| - o}

14/20

Gauss-Southwell-Lipschitz as Nearest Neighbour

Dhillon et al. [2011] approximate GS as nearest neighbour,
. 1
argmin () — o = argmax { |9 ()] - g o}

@ Approximation is exact if ||a;|| = 1 for all .

14/20

Gauss-Southwell-Lipschitz as Nearest Neighbo

Dhillon et al. [2011] approximate GS as nearest neighbour,
. 1
argmin () — o = argmax { |9 ()] - g o}
@ Approximation is exact if ||a;|| = 1 for all .

Usually L; = v||a;||?, in this case exact GSL is a nearest
neighbour problem,

argmina) — ity | < argmin {720

@ See paper and poster for numerical results on the nearest neighbour.

14/20

Proximal Coordinate Descent

Consider the following problem

where f is smooth and g; might be non-smooth.

15/20

Proximal Coordinate Descent

Consider the following problem

min F(z (z;)
xEIlR" +Zgz !

where f is smooth and g; might be non-smooth.

o e.g., ¢;-regularization, bound constraints

15/20

Proximal Coordinate Descent

Consider the following problem

min F(z (z;)
zelR"™ +ZQZ !

where f is smooth and g; might be non-smooth.

o e.g., ¢;-regularization, bound constraints
Apply proximal-gradient style update,
1
xk—H = prox%gik xk - szkf(xk)ezk)

where

prox,, 4] = argmin & |z~ y|[* + ag(a)

15/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

16/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,

i, = argmax { min |V, f(z") + s|} :
i s€0g;

16/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,
i, = argmax { min |V, f(z") + s|} :
i s€0g;

— Commonly-used for ¢;-regularization, but ||z**' — z*|| could be tiny.

16/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,
i, = argmax { min |V, f(z") + s|} :
i s€0g;

— Commonly-used for ¢;-regularization, but ||z**' — z*|| could be tiny.

@ GS-r: Maximize how far we move,

1
ak — prox, [:cf -7 Vi f(l’k)} ’} :

i = argmax {
7

16/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,
i, = argmax { min |V, f(z") + s|} :
i s€0g;

— Commonly-used for ¢;-regularization, but ||z — 2*|| could be tiny.

@ GS-r: Maximize how far we move,

1
ak — prox, [:cf -7 Vi f(l’k)} ’} :

i = argmax {
7

— Effective for bound constraints, but ignores g; (z*™') — g:(xF).

16/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,
i, = argmax { min |V, f(z") + s|} :
i s€0g;

— Commonly-used for ¢;-regularization, but ||z**' — z*|| could be tiny.

@ GS-r: Maximize how far we move,

1
ak — prox, [:cf -7 Vi f(l’k)} ’} :

i = argmax {
7

— Effective for bound constraints, but ignores g; (z*™') — g:(xF).

k3

@ GS-¢q: Maximize progress under quadratic approximation of f,

2
i = argmin {mdinf(xk) + Vi)t B gl) - gi(:vf)} .

16/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,
i, = argmax { min |V, f(z") + s|} :
i s€0g;

— Commonly-used for ¢;-regularization, but ||z**' — z*|| could be tiny.

@ GS-r: Maximize how far we move,

. 1
i = argrl_nax{ ak — prox, [:cf AL f(mk)} ’} .

— Effective for bound constraints, but ignores g; (z*™') — g:(xF).

@ GS-¢q: Maximize progress under quadratic approximation of f,
2
i, = argmin {mdin F(a®) + Vif(z¥)d + % + gi(a¥ +d) - gz(:cf)} .

— Least intuitive, but has the best theoretical properties.

16/20

Proximal Gauss-Southwell

Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,
i, = argmax { min |V, f(z") + s|} :
i s€0g;

— Commonly-used for ¢;-regularization, but ||z — 2*|| could be tiny.

@ GS-r: Maximize how far we move,

1
ak — prox, [:cf -7 Vi f(l’k)} ’} :

i = argmax {
7

— Effective for bound constraints, but ignores g; (z*™') — g:(xF).

@ GS-¢q: Maximize progress under quadratic approximation of f,

2
is, = argmin {mdinf(wk) F Vi + B b gt d) gi(w?)} :

— Least intuitive, but has the best theoretical properties.

— If you use L; in the GS-q rule, it is a generalization of GSL rule.

16/20

Proximal Gauss-Southwell Convergence Rate

For random selection, Richtarik and Takac¢ [2014] show

Bl)] - Fat) < (1= 2) (PG - PG

17/20

Proximal Gauss-Southwell Convergence Rate

For random selection, Richtarik and Takac¢ [2014] show

Bl)] - Fat) < (1= 2) (PG - PG

@ the same rate as if non-smooth g; was not there.

17/20

Proximal Gauss-Southwell Convergence Rate

For random selection, Richtarik and Takac¢ [2014] show
BP0 - P < (1= 1) [P - PG

@ the same rate as if non-smooth g; was not there.
For the GS-q rule, we show that

Fa*+) — F(ab) < min{ (1 - ﬁ) [F(z*) — F(z*)],
(1 - %) [F(2%) — F(z*)] + ek},

where ¢, — 0 measures non-linearity of g; that are not updated.

17/20

Proximal Gauss-Southwell Convergence Rate

For random selection, Richtarik and Takac¢ [2014] show

Bl)] - Fat) < (1= 1)P - PG

@ the same rate as if non-smooth g; was not there.
For the GS-q rule, we show that

Fa*+) — F(ab) < min{ (1 - ﬁ) [F(z*) — F(z*)],

(1 _ %) [F(z") — F(z*)] + ek},

where ¢, — 0 measures non-linearity of g; that are not updated.

o But, again theory disagrees with practice...

17/20

Comparison of Proximal Gauss-Southwell Rules

{1 -regularized underdetermined sparse least squares

R,
\Engn

Objective

10 20 30 40 50 60 70 80 90 100

18/20

Discussion

@ GS not always practical.

19/20

Discussion

@ GS not always practical.
o But if you can compute GS efficiently, you should use it.

19/20

Discussion

@ GS not always practical.
o But if you can compute GS efficiently, you should use it.
@ We proposed GSL rule.

19/20

Discussion

@ GS not always practical.

o But if you can compute GS efficiently, you should use it.
@ We proposed GSL rule.

o If we know/can approximate L;, should use GSL.

19/20

Discussion

@ GS not always practical.

o But if you can compute GS efficiently, you should use it.
@ We proposed GSL rule.

o If we know/can approximate L;, should use GSL.
@ Analyzed proximal variants of GS rule.

19/20

Discussion

@ GS not always practical.
o But if you can compute GS efficiently, you should use it.
@ We proposed GSL rule.
o If we know/can approximate L;, should use GSL.
@ Analyzed proximal variants of GS rule.
o GSL-q rule least intuitive, has best empirical performance.

19/20

@ GS not always practical.

o But if you can compute GS efficiently, you should use it.
@ We proposed GSL rule.

o If we know/can approximate L;, should use GSL.
@ Analyzed proximal variants of GS rule.

o GSL-q rule least intuitive, has best empirical performance.
@ See paper and poster for:

o details on problem types for coordinate descent and GS

o analysis of u vs u for separable quadratic

o results for exact optimization (chain-structured graph)

o details on GSL and nearest neighbour analysis

@ convergence rates for approximate GS rules

o experimental results (e.g., graph-based label propagation)

19/20

@ GS not always practical.
o But if you can compute GS efficiently, you should use it.
@ We proposed GSL rule.
o If we know/can approximate L;, should use GSL.
@ Analyzed proximal variants of GS rule.
o GSL-q rule least intuitive, has best empirical performance.
@ See paper and poster for:
details on problem types for coordinate descent and GS

©

analysis of 1 vs p; for separable quadratic
results for exact optimization (chain-structured graph)
details on GSL and nearest neighbour analysis
convergence rates for approximate GS rules
o experimental results (e.g., graph-based label propagation)
@ Current/future work:
o accelerated/parallel methods [Fercocq & Richtarik, 2013]
o primal-dual methods [Shalev-Schwartz & Zhang, 2013]

o without strong-convexity [Luo & Tseng, 1993] 19720

Thank you!

