Is Greedy Coordinate Descent a Terrible Algorithm?

Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke

University of British Columbia

International Conference on Machine Learning Lille, France July 6th-11th, 2015

Random vs. Greedy

We consider coordinate descent for large-scale optimization.

• Global convergence rate for randomized i_k selection.

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations *n* times cheaper.

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations *n* times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

```
\underset{i}{\operatorname{argmax}} |\nabla_i f(x)|.
```

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations *n* times cheaper.
- Contrast random with classic Gauss-Southwell (GS) rule:

$$\underset{i}{\operatorname{argmax}} |\nabla_i f(x)|.$$

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations *n* times cheaper.
- Contrast random with classic Gauss-Southwell (GS) rule:

$$\underset{i}{\operatorname{argmax}} |\nabla_i f(x)|.$$

• GS at least as expensive as random.

- GS at least as expensive as random.
- Nesterov showed same rate as random.

- GS at least as expensive as random.
- Nesterov showed same rate as random.
- But theory disagrees with practice...

Random vs. Greedy

All rules have similar costs for this problem.

Coordinate update n times faster than gradient update for:

Coordinate update n times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

• f and f_{ij} smooth

m

- A is a matrix
- $\{V, E\}$ is a graph
- g_i general non-degenerate convex functions

Coordinate update *n* times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

• f and f_{ij} smooth

m

- A is a matrix
- $\{V, E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1 : least squares, logistic regression, lasso, SVMs.

Coordinate update n times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

• f and f_{ij} smooth

m

- A is a matrix
- $\{V, E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1 : least squares, logistic regression, lasso, SVMs.

Coordinate update *n* times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

• f and f_{ij} smooth

m

- A is a matrix
- $\{V, E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1 : least squares, logistic regression, lasso, SVMs.

 \rightarrow Often solvable in $O(cr \log n)$ with c and r non-zeros per column/row.

Coordinate update *n* times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

• f and f_{ij} smooth

m

- A is a matrix
- $\{V, E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1 : least squares, logistic regression, lasso, SVMs.

- \rightarrow Often solvable in $O(cr \log n)$ with c and r non-zeros per column/row.
- \rightarrow GS rule can be formulated as a maximum inner-product search (MIPS).

Coordinate update n times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

• f and f_{ij} smooth

m

- A is a matrix
- $\{V, E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1 : least squares, logistic regression, lasso, SVMs.

- \rightarrow Often solvable in $O(cr \log n)$ with c and r non-zeros per column/row.
- \rightarrow GS rule can be formulated as a maximum inner-product search (MIPS).

Examples h_2 : quadratics, graph-based label propagation, graphical models.

 \rightarrow GS efficient if maximum degree similar to average degree.

Coordinate update n times faster than gradient update for:

$$h_1(x) = f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$$

• f and f_{ij} smooth

m

- A is a matrix
- $\{V, E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1 : least squares, logistic regression, lasso, SVMs.

- \rightarrow Often solvable in $O(cr \log n)$ with c and r non-zeros per column/row.
- \rightarrow GS rule can be formulated as a maximum inner-product search (MIPS).

- \rightarrow GS efficient if maximum degree similar to average degree.
- $\rightarrow~$ E.g., lattice-structured graphs and complete graphs.

We focus on the convex optimization problem

 $\min_{x\in {\rm I\!R}^n} f(x)$

We focus on the convex optimization problem

 $\min_{x\in {\rm I\!R}^n} f(x)$

• ∇f coordinate-wise L-Lipschitz continuous

 $\left|\nabla_{i}f(x+\alpha e_{i})-\nabla_{i}f(x)\right| \leq L|\alpha|$

We focus on the convex optimization problem

 $\min_{x\in {\rm I\!R}^n} f(x)$

• ∇f coordinate-wise L-Lipschitz continuous

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L|\alpha|$$

• $f \mu$ -strongly convex, i.e.,

$$x \mapsto f(x) - \frac{\mu}{2} \|x\|^2$$

is convex for some $\mu > 0$.

We focus on the convex optimization problem

 $\min_{x\in {\rm I\!R}^n} f(x)$

• ∇f coordinate-wise L-Lipschitz continuous

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L|\alpha|$$

• $f \mu$ -strongly convex, i.e.,

$$x \mapsto f(x) - \frac{\mu}{2} \|x\|^2$$

is convex for some $\mu > 0$.

• If f is twice-differentiable, equivalent to

$$\nabla_{ii}^2 f(x) \le L, \qquad \nabla^2 f(x) \succeq \mu \mathbb{I}.$$

Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}, \quad \text{for some } i_k.$$

Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}, \quad \text{for some } i_k.$$

• With i_k chosen uniformly from $\{1, \ldots, n\}$ [Nesterov, 2012],

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{Ln}\right)[f(x^k) - f(x^*)].$$

Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}, \quad \text{for some } i_k.$$

• With *i_k* chosen uniformly from {1,...,*n*} [Nesterov, 2012],

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{Ln}\right)[f(x^k) - f(x^*)].$$

Compare to rate of gradient descent,

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{L_f}\right) [f(x^k) - f(x^*)].$$

Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}, \quad \text{for some } i_k.$$

• With *i_k* chosen uniformly from {1,...,*n*} [Nesterov, 2012],

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{Ln}\right)[f(x^k) - f(x^*)].$$

Compare to rate of gradient descent,

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{L_f}\right) [f(x^k) - f(x^*)].$$

 Since Ln ≥ L_f ≥ L, coordinate descent is slower per iteration, but n coordinate iterations are faster than one gradient iteration.

GS rule chooses coordinate with largest directional derivative,

$$i_k = \operatorname*{argmax}_i |\nabla_i f(x^k)|.$$

GS rule chooses coordinate with largest directional derivative,

$$i_k = \underset{i}{\operatorname{argmax}} |\nabla_i f(x^k)|.$$

From Lipschitz-continuity assumption this rule satisfies

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|_{\infty}^2.$$

GS rule chooses coordinate with largest directional derivative,

$$i_k = \underset{i}{\operatorname{argmax}} |\nabla_i f(x^k)|.$$

From Lipschitz-continuity assumption this rule satisfies

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|_{\infty}^2.$$

From strong-convexity we have

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu} \|\nabla f(x^k)\|^2$$

GS rule chooses coordinate with largest directional derivative,

$$i_k = \underset{i}{\operatorname{argmax}} |\nabla_i f(x^k)|.$$

From Lipschitz-continuity assumption this rule satisfies

$$f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|_{\infty}^2.$$

From strong-convexity we have

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu} \|\nabla f(x^k)\|^2.$$

Using $\| \nabla f(x^k) \|^2 \leq n \| \nabla f(x^k) \|_\infty^2$ we get

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{Ln}\right) [f(x^k) - f(x^*)].$$

Avoid norm inequality, measure strong-convexity in 1-norm.

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_{\infty}^2.$$

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_{\infty}^2.$$

This gives a rate of

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu_1}{L}\right) [f(x^k) - f(x^*)],$$

where

$$\frac{\mu}{n} \le \mu_1 \le \mu.$$

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_{\infty}^2.$$

This gives a rate of

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu_1}{L}\right) [f(x^k) - f(x^*)],$$

where

$$\frac{\mu}{n} \le \mu_1 \le \mu.$$

See paper and poster for:

• an explicit formula for μ_1 for separable quadratic;
Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_{\infty}^2.$$

This gives a rate of

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu_1}{L}\right) [f(x^k) - f(x^*)],$$

where

$$\frac{\mu}{n} \le \mu_1 \le \mu.$$

See paper and poster for:

- an explicit formula for μ_1 for separable quadratic;
- results showing line-search gives faster rate for sparse problems;

Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \ge f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_{\infty}^2.$$

This gives a rate of

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu_1}{L}\right) [f(x^k) - f(x^*)],$$

where

$$\frac{\mu}{n} \le \mu_1 \le \mu.$$

See paper and poster for:

- an explicit formula for μ_1 for separable quadratic;
- results showing line-search gives faster rate for sparse problems; and
- analysis for approximate Gauss-Southwell rules.

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{n\bar{L}}\right)[f(x^k) - f(x^*)],$$

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{n\overline{L}}\right)[f(x^k) - f(x^*)],$$

where $\bar{L} = \frac{1}{n} \sum_{i=1}^{n} L_i$.

• Faster than uniform sampling when L_i are distinct.

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{n\overline{L}}\right)[f(x^k) - f(x^*)],$$

- Faster than uniform sampling when L_i are distinct.
- Could be faster or slower than GS rule.

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{n\bar{L}}\right) [f(x^k) - f(x^*)],$$

- Faster than uniform sampling when L_i are distinct.
- Could be faster or slower than GS rule.
- So which should we use?

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{n\bar{L}}\right) [f(x^k) - f(x^*)],$$

- Faster than uniform sampling when L_i are distinct.
- Could be faster or slower than GS rule.
- So which should we use?
- The answer is neither!

We obtain a faster rate by using L_i in the GS rule,

$$i_k = \operatorname*{argmax}_i rac{|
abla_i f(x^k)|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

We obtain a faster rate by using L_i in the GS rule,

$$i_k = \operatorname*{argmax}_i \frac{|
abla_i f(x^k)|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L_i is small.

We obtain a faster rate by using L_i in the GS rule,

$$i_k = \operatorname*{argmax}_i rac{|
abla_i f(x^k)|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L_i is small.

We obtain a faster rate by using L_i in the GS rule,

$$i_k = \operatorname*{argmax}_i rac{|
abla_i f(x^k)|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L_i is small.

The GSL rule obtains a rate of

$$f(x^{k+1}) - f(x^*) \le (1 - \mu_L)[f(x^k) - f(x^*)],$$

where μ_L satisfies the inequality

$$\max\left\{\frac{\mu}{n\bar{L}},\frac{\mu_1}{L}\right\} \le \mu_L \le \frac{\mu_1}{\min_i\{L_i\}}.$$

The GSL rule obtains a rate of

$$f(x^{k+1}) - f(x^*) \le (1 - \mu_L)[f(x^k) - f(x^*)],$$

where μ_L satisfies the inequality

$$\max\left\{\frac{\mu}{n\bar{L}},\frac{\mu_1}{L}\right\} \le \mu_L \le \frac{\mu_1}{\min_i\{L_i\}}$$

• GSL is at least as fast as GS and Lipschitz sampling.

The GSL rule obtains a rate of

$$f(x^{k+1}) - f(x^*) \le (1 - \mu_L)[f(x^k) - f(x^*)],$$

where μ_L satisfies the inequality

$$\max\left\{\frac{\mu}{n\bar{L}},\frac{\mu_1}{L}\right\} \le \mu_L \le \frac{\mu_1}{\min_i\{L_i\}}.$$

- GSL is at least as fast as GS and Lipschitz sampling.
- GSL is unimprovable for quadratic functions using $\frac{1}{L_{i_k}}$,

$$f(x^{k+1}) = \underset{i,\alpha}{\operatorname{argmin}} \{ f(x^k + \alpha e_i) \}.$$

The GSL rule obtains a rate of

$$f(x^{k+1}) - f(x^*) \le (1 - \mu_L)[f(x^k) - f(x^*)],$$

where μ_L satisfies the inequality

$$\max\left\{\frac{\mu}{n\bar{L}},\frac{\mu_1}{L}\right\} \le \mu_L \le \frac{\mu_1}{\min_i\{L_i\}}.$$

- GSL is at least as fast as GS and Lipschitz sampling.
- GSL is unimprovable for quadratic functions using $\frac{1}{L_{i_k}}$,

$$f(x^{k+1}) = \underset{i,\alpha}{\operatorname{argmin}} \{ f(x^k + \alpha e_i) \}.$$

• Gives tighter bound for maximum improvement rule.

Consider a special case of h_1 (no g_i functions),

 $\min_{x} \frac{h_1(x)}{x} = f(Ax).$

Consider a special case of h_1 (no g_i functions),

$$\min_{x} \frac{h_1(x)}{h_1(x)} = f(Ax).$$

The GS rule has the form

$$i_k = \underset{i}{\operatorname{argmax}} |a_i^T r(x^k)|.$$

Consider a special case of h_1 (no g_i functions),

$$\min_{x} \frac{h_1(x)}{h_1(x)} = f(Ax).$$

The GS rule has the form

$$i_k = \underset{i}{\operatorname{argmax}} |a_i^T r(x^k)|.$$

Dhillon et al. [2011] approximate GS as nearest neighbour,

$$\underset{i}{\operatorname{argmin}} \|r(x^{k}) - a_{i}\| = \underset{i}{\operatorname{argmax}} \left\{ |\nabla_{i} f(x^{k})| - \frac{1}{2} \|a_{i}\|^{2} \right\}.$$

Dhillon et al. [2011] approximate GS as nearest neighbour,

$$\underset{i}{\operatorname{argmin}} \|r(x^{k}) - a_{i}\| = \underset{i}{\operatorname{argmax}} \left\{ |\nabla_{i} f(x^{k})| - \frac{1}{2} \|a_{i}\|^{2} \right\}.$$

• Approximation is exact if $||a_i|| = 1$ for all *i*.

Dhillon et al. [2011] approximate GS as nearest neighbour,

$$\underset{i}{\operatorname{argmin}} \|r(x^{k}) - a_{i}\| = \underset{i}{\operatorname{argmax}} \left\{ |\nabla_{i} f(x^{k})| - \frac{1}{2} \|a_{i}\|^{2} \right\}.$$

• Approximation is exact if $||a_i|| = 1$ for all *i*.

Usually $L_i = \gamma ||a_i||^2$, in this case exact GSL is a nearest neighbour problem,

$$\underset{i}{\operatorname{argmin}} \left\| r(x^k) - \frac{a_i}{\|a_i\|} \right\| = \underset{i}{\operatorname{argmin}} \left\{ \frac{|\nabla_i f(x^k)|}{\sqrt{L_i}} \right\}.$$

See paper and poster for numerical results on the nearest neighbour.

Proximal Coordinate Descent

Consider the following problem

$$\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \sum_i g_i(x_i),$$

where f is smooth and g_i might be non-smooth.

Proximal Coordinate Descent

Consider the following problem

$$\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \sum_i g_i(x_i),$$

where f is smooth and g_i might be non-smooth.

• e.g., ℓ_1 -regularization, bound constraints

Proximal Coordinate Descent

Consider the following problem

$$\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \sum_i g_i(x_i),$$

where f is smooth and g_i might be non-smooth.

• e.g., ℓ_1 -regularization, bound constraints

Apply proximal-gradient style update,

$$x^{k+1} = \operatorname{prox}_{\frac{1}{L}g_{i_k}} \left[x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k} \right],$$

where

$$\operatorname{prox}_{\alpha g}[y] = \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|x - y\|^2 + \alpha g(x).$$

Several generalizations of GS to this setting:

Several generalizations of GS to this setting:

• GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s|
ight\}.$$

Several generalizations of GS to this setting:

• GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s|
ight\}.$$

 \rightarrow Commonly-used for ℓ_1 -regularization, but $||x^{k+1} - x^k||$ could be tiny.

Several generalizations of GS to this setting:

• GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s|
ight\}.$$

- \rightarrow Commonly-used for ℓ_1 -regularization, but $||x^{k+1} x^k||$ could be tiny.
 - GS-*r*: Maximize how far we move,

$$i_k = \operatorname*{argmax}_{i} \left\{ \left| x_i^k - \operatorname{prox}_{\frac{1}{L}g_{i_k}} \left[x_i^k - \frac{1}{L} \nabla_{i_k} f(x^k) \right] \right| \right\}.$$

Several generalizations of GS to this setting:

• GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s|
ight\}.$$

- \rightarrow Commonly-used for ℓ_1 -regularization, but $||x^{k+1} x^k||$ could be tiny.
 - GS-*r*: Maximize how far we move,

$$i_k = \operatorname*{argmax}_{i} \left\{ \left| x_i^k - \operatorname{prox}_{\frac{1}{L}g_{i_k}} \left[x_i^k - \frac{1}{L} \nabla_{i_k} f(x^k) \right] \right| \right\}.$$

 \rightarrow Effective for bound constraints, but ignores $g_i(x_i^{k+1}) - g_i(x_i^k)$.

Several generalizations of GS to this setting:

• GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}.$$

- \rightarrow Commonly-used for ℓ_1 -regularization, but $||x^{k+1} x^k||$ could be tiny.
- GS-r: Maximize how far we move,

$$i_k = \operatorname*{argmax}_{i} \left\{ \left| x_i^k - \operatorname{prox}_{\frac{1}{L}g_{i_k}} \left[x_i^k - \frac{1}{L} \nabla_{i_k} f(x^k) \right] \right| \right\}.$$

- \rightarrow Effective for bound constraints, but ignores $g_i(x_i^{k+1}) g_i(x_i^k)$.
- GS-q: Maximize progress under quadratic approximation of f,

$$i_{k} = \operatorname*{argmin}_{i} \left\{ \min_{d} f(x^{k}) + \nabla_{i} f(x^{k}) d + \frac{Ld^{2}}{2} + g_{i}(x_{i}^{k} + d) - g_{i}(x_{i}^{k}) \right\}.$$

Several generalizations of GS to this setting:

• GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}.$$

- \rightarrow Commonly-used for ℓ_1 -regularization, but $||x^{k+1} x^k||$ could be tiny.
- GS-r: Maximize how far we move,

$$i_k = \operatorname*{argmax}_{i} \left\{ \left| x_i^k - \operatorname{prox}_{\frac{1}{L}g_{i_k}} \left[x_i^k - \frac{1}{L} \nabla_{i_k} f(x^k) \right] \right| \right\}.$$

- \rightarrow Effective for bound constraints, but ignores $g_i(x_i^{k+1}) g_i(x_i^k)$.
- GS-q: Maximize progress under quadratic approximation of f,

$$i_{k} = \operatorname*{argmin}_{i} \left\{ \min_{d} f(x^{k}) + \nabla_{i} f(x^{k}) d + \frac{Ld^{2}}{2} + g_{i}(x_{i}^{k} + d) - g_{i}(x_{i}^{k}) \right\}.$$

 \rightarrow Least intuitive, but has the best theoretical properties.

Several generalizations of GS to this setting:

• GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}.$$

- \rightarrow Commonly-used for ℓ_1 -regularization, but $||x^{k+1} x^k||$ could be tiny.
 - GS-r: Maximize how far we move,

$$i_k = \operatorname*{argmax}_{i} \left\{ \left| x_i^k - \operatorname{prox}_{\frac{1}{L}g_{i_k}} \left[x_i^k - \frac{1}{L} \nabla_{i_k} f(x^k) \right] \right| \right\}.$$

- \rightarrow Effective for bound constraints, but ignores $g_i(x_i^{k+1}) g_i(x_i^k)$.
- GS-q: Maximize progress under quadratic approximation of f,

$$i_{k} = \arg\min_{i} \left\{ \min_{d} f(x^{k}) + \nabla_{i} f(x^{k}) d + \frac{Ld^{2}}{2} + g_{i}(x_{i}^{k} + d) - g_{i}(x_{i}^{k}) \right\}.$$

- $\rightarrow\,$ Least intuitive, but has the best theoretical properties.
- \rightarrow If you use L_i in the GS-q rule, it is a generalization of GSL rule.

Proximal Gauss-Southwell Convergence Rate

For random selection, Richtárik and Takáč [2014] show

$$\mathbb{E}[F(x^{k+1})] - F(x^k) \le \left(1 - \frac{\mu}{Ln}\right)[F(x^k) - F(x^*)].$$

Proximal Gauss-Southwell Convergence Rate

For random selection, Richtárik and Takáč [2014] show

$$\mathbb{E}[F(x^{k+1})] - F(x^k) \le \left(1 - \frac{\mu}{Ln}\right)[F(x^k) - F(x^*)].$$

• the same rate as if non-smooth g_i was not there.

Proximal Gauss-Southwell Convergence Rate

For random selection, Richtárik and Takáč [2014] show

$$\mathbb{E}[F(x^{k+1})] - F(x^k) \le \left(1 - \frac{\mu}{Ln}\right)[F(x^k) - F(x^*)].$$

• the same rate as if non-smooth g_i was not there. For the GS-q rule, we show that

$$F(x^{k+1}) - F(x^k) \le \min\left\{ \left(1 - \frac{\mu}{Ln}\right) [F(x^k) - F(x^*)], \\ \left(1 - \frac{\mu_1}{L}\right) [F(x^k) - F(x^*)] + \epsilon_k \right\},$$

where $\epsilon_k \rightarrow 0$ measures non-linearity of g_i that are not updated.
Proximal Gauss-Southwell Convergence Rate

For random selection, Richtárik and Takáč [2014] show

$$\mathbb{E}[F(x^{k+1})] - F(x^k) \le \left(1 - \frac{\mu}{Ln}\right)[F(x^k) - F(x^*)].$$

• the same rate as if non-smooth g_i was not there. For the GS-q rule, we show that

$$F(x^{k+1}) - F(x^k) \le \min\left\{ \left(1 - \frac{\mu}{Ln}\right) [F(x^k) - F(x^*)], \\ \left(1 - \frac{\mu_1}{L}\right) [F(x^k) - F(x^*)] + \epsilon_k \right\},$$

where $\epsilon_k \rightarrow 0$ measures non-linearity of g_i that are not updated.

But, again theory disagrees with practice...

Comparison of Proximal Gauss-Southwell Rules

• GS not always practical.

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.

• GS not always practical.

• But if you can compute GS efficiently, you should use it.

• We proposed GSL rule.

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i , should use GSL.

• GS not always practical.

• But if you can compute GS efficiently, you should use it.

- We proposed GSL rule.
 - If we know/can approximate L_i , should use GSL.
- Analyzed proximal variants of GS rule.

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i , should use GSL.
- Analyzed proximal variants of GS rule.
 - GSL-*q* rule least intuitive, has best empirical performance.

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i , should use GSL.
- Analyzed proximal variants of GS rule.
 - GSL-*q* rule least intuitive, has best empirical performance.
- See paper and poster for:
 - details on problem types for coordinate descent and GS
 - analysis of μ vs μ_1 for separable quadratic
 - results for exact optimization (chain-structured graph)
 - details on GSL and nearest neighbour analysis
 - convergence rates for approximate GS rules
 - experimental results (e.g., graph-based label propagation)

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i , should use GSL.
- Analyzed proximal variants of GS rule.
 - GSL-*q* rule least intuitive, has best empirical performance.
- See paper and poster for:
 - details on problem types for coordinate descent and GS
 - analysis of μ vs μ_1 for separable quadratic
 - results for exact optimization (chain-structured graph)
 - details on GSL and nearest neighbour analysis
 - convergence rates for approximate GS rules
 - experimental results (e.g., graph-based label propagation)
- Current/future work:
 - accelerated/parallel methods [Fercocq & Richtárik, 2013]
 - primal-dual methods [Shalev-Schwartz & Zhang, 2013]
 - without strong-convexity [Luo & Tseng, 1993]

Thank you!