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Random vs. Greedy

Uy -regularized sparse least squares

Objective
o o o
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@ All rules have similar costs for this problem.
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@ g; general non-degenerate convex functions

Examples h,: least squares, logistic regression, lasso, SVMs.
— Often solvable in O(crlogn) with ¢ and r non-zeros per column/row.
— GS rule can be formulated as a maximum inner-product search (MIPS).
Examples h.: quadratics, graph-based label propagation, graphical models.
— GS efficient if maximum degree similar to average degree.

— E.g., lattice-structured graphs and complete graphs.
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Notation and Assumptions

We focus on the convex optimization problem

)

@ Vf coordinate-wise L-Lipschitz continuous
IVif(z + ae;) — Vif(z)| < Lla]
o f u-strongly convex, i.e.,
z = f(a) = Sl
is convex for some p > 0.
o If f is twice-differentiable, equivalent to

V2 flz) <L, V2 f(z) = pul
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Randomized Coordinate Descent

Coordinate descent with constant step-size % update:

1 .
o S fvik f(x*)e;,, for some iy.

@ With i, chosen uniformly from {1, ..., n} [Nesterov, 2012],

L) - ) < (1 ) 76 - 1),

o Compare to rate of gradient descent,

P - o) < (1 - Lﬂf) () — £
@ Since Ln > Ly > L, coordinate descent is slower per
iteration, but n coordinate iterations are faster than one
gradient iteration.
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Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ix = argmax |V f (¥)].
From Lipschitz-continuity assumption this rule satisfies

P < ) — IV

From strong-convexity we have
1
fla®) > f(aF) - ﬂllvf(:v’“)II?
Using ||V f(«")[|” < n[|V f(«")[5 we get
P = ) < (1= 22 ) 6H) - 1)
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Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

ﬂf)zf@ﬂ—§iﬂvﬂﬂﬂﬁ-

This gives a rate of

Pt - 1) < (1= 5 b)),
where
b

See paper and poster for:
@ an explicit formula for 1 for separable quadratic;
@ results showing line-search gives faster rate for sparse problems; and

@ analysis for approximate Gauss-Southwell rules.
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Lipschitz Sampling

Consider the case where we have an L; for each coordinate
|Vif(z + ae;) — Vif(z)| < Lilal,
and we use a coordinate-dependent step-size,
1
ot = gk — Fvik f(xk)eik.
1k
Sampling proportional to L; yields [Nesterov, 2012]

Bl - 1) < (1= )16 - £

where L =151 L,

o Faster than uniform sampling when L; are distinct.
@ Could be faster or slower than GS rule.

@ So which should we use?

o The answer is neither!
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Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of
F@H) = f(a*) < (1= po)[f(aF) = f@)],
where p;, satisfies the inequality

2! M1
el et O 77 T e
maX{nL’ L } =P ing (L)

o GSL is at least as fast as GS and Lipschitz sampling.

@ GSL is unimprovable for quadratic functions using LL
k

f(zF) = argmin{ f (z* + ae;)}.

7,00

@ Gives tighter bound for maximum improvement rule.
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Consider a special case of h; (no g; functions),
min hy(z) = f(Az).
The GS rule has the form

ir, = argmax |a; r(z")|.
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Gauss-Southwell-Lipschitz as Nearest Neighbo

Dhillon et al. [2011] approximate GS as nearest neighbour,
. 1
argmin () — o = argmax { |9 ()] - g o}
@ Approximation is exact if ||a;|| = 1 for all .

Usually L; = v||a;||?, in this case exact GSL is a nearest
neighbour problem,

argmina) — ity | < argmin {720

@ See paper and poster for numerical results on the nearest neighbour.
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Proximal Coordinate Descent

Consider the following problem

min F(z (z;)
zelR"™ +ZQZ !

where f is smooth and g; might be non-smooth.

o e.g., ¢;-regularization, bound constraints
Apply proximal-gradient style update,
1
xk—H = prox%gik xk - szkf(xk)ezk )

where

prox,, 4] = argmin & |z~ y|[* + ag(a)
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Several generalizations of GS to this setting:

@ GS-s: Minimize directional derivative,
i, = argmax { min |V, f(z") + s|} :
i s€0g;

— Commonly-used for ¢;-regularization, but ||z — 2*|| could be tiny.

@ GS-r: Maximize how far we move,

1
ak — prox, [:cf -7 Vi f(l’k)} ’} :

i = argmax {
7

— Effective for bound constraints, but ignores g; (z*™') — g:(xF).

@ GS-¢q: Maximize progress under quadratic approximation of f,

2
is, = argmin {mdinf(wk) F Vi + B b gt d) gi(w?)} :

— Least intuitive, but has the best theoretical properties.

— If you use L; in the GS-q rule, it is a generalization of GSL rule.
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For the GS-q rule, we show that

Fa*+) — F(ab) < min{ (1 - ﬁ) [F(z*) — F(z*)],

(1 _ %) [F(z") — F(z*)] + ek},

where ¢, — 0 measures non-linearity of g; that are not updated.

o But, again theory disagrees with practice...
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Comparison of Proximal Gauss-Southwell Rules

{1 -regularized underdetermined sparse least squares
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@ GS not always practical.
o But if you can compute GS efficiently, you should use it.
@ We proposed GSL rule.
o If we know/can approximate L;, should use GSL.
@ Analyzed proximal variants of GS rule.
o GSL-q rule least intuitive, has best empirical performance.
@ See paper and poster for:
details on problem types for coordinate descent and GS

©

analysis of 1 vs p; for separable quadratic
results for exact optimization (chain-structured graph)
details on GSL and nearest neighbour analysis
convergence rates for approximate GS rules
o experimental results (e.g., graph-based label propagation)
@ Current/future work:
o accelerated/parallel methods [Fercocq & Richtarik, 2013]
o primal-dual methods [Shalev-Schwartz & Zhang, 2013]

o without strong-convexity [Luo & Tseng, 1993] 19720
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