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Random vs. Greedy

We consider coordinate descent for large-scale optimization.

Recent interest began with Nesterov [2012]:

Global convergence rate for randomized ik selection.

Faster than gradient descent if iterations n times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

argmax
i
|∇if(x)|.

x1 x2 x3
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Random vs. Greedy

GS at least as expensive as random.

Nesterov showed same rate as random.

But theory disagrees with practice...
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Random vs. Greedy
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All rules have similar costs for this problem.
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Problems Suitable for Coordinate Descent

Coordinate update n times faster than gradient update for:

h1(x) = f(Ax)+
n∑
i=1

gi(xi), or h2(x) =
∑
i∈V

gi(xi)+
∑

(i,j)∈E

fij(xi, xj)

f and fij smooth

A is a matrix

{V,E} is a graph

gi general non-degenerate convex functions

Examples h1: least squares, logistic regression, lasso, SVMs.

→ Often solvable in O(cr logn) with c and r non-zeros per column/row.

→ GS rule can be formulated as a maximum inner-product search (MIPS).

Examples h2: quadratics, graph-based label propagation, graphical models.

→ GS efficient if maximum degree similar to average degree.

→ E.g., lattice-structured graphs and complete graphs.
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Notation and Assumptions

We focus on the convex optimization problem

min
x∈IRn

f(x)

∇f coordinate-wise L-Lipschitz continuous

|∇if(x+ αei)−∇if(x)| ≤ L|α|

f µ-strongly convex, i.e.,

x 7→ f(x)− µ

2
‖x‖2

is convex for some µ > 0.

If f is twice-differentiable, equivalent to

∇2
ii f(x) ≤ L, ∇2 f(x) � µI.

6 / 20



Notation and Assumptions

We focus on the convex optimization problem

min
x∈IRn

f(x)

∇f coordinate-wise L-Lipschitz continuous

|∇if(x+ αei)−∇if(x)| ≤ L|α|

f µ-strongly convex, i.e.,

x 7→ f(x)− µ

2
‖x‖2

is convex for some µ > 0.

If f is twice-differentiable, equivalent to

∇2
ii f(x) ≤ L, ∇2 f(x) � µI.

6 / 20



Notation and Assumptions

We focus on the convex optimization problem

min
x∈IRn

f(x)

∇f coordinate-wise L-Lipschitz continuous

|∇if(x+ αei)−∇if(x)| ≤ L|α|

f µ-strongly convex, i.e.,

x 7→ f(x)− µ

2
‖x‖2

is convex for some µ > 0.

If f is twice-differentiable, equivalent to

∇2
ii f(x) ≤ L, ∇2 f(x) � µI.

6 / 20



Notation and Assumptions

We focus on the convex optimization problem

min
x∈IRn

f(x)

∇f coordinate-wise L-Lipschitz continuous

|∇if(x+ αei)−∇if(x)| ≤ L|α|

f µ-strongly convex, i.e.,

x 7→ f(x)− µ

2
‖x‖2

is convex for some µ > 0.

If f is twice-differentiable, equivalent to

∇2
ii f(x) ≤ L, ∇2 f(x) � µI.

6 / 20



Randomized Coordinate Descent

Coordinate descent with constant step-size 1
L update:

xk+1 = xk − 1

L
∇ik f(xk)eik , for some ik.

With ik chosen uniformly from {1, . . . , n} [Nesterov, 2012],

E[f(xk+1)]− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)].

Compare to rate of gradient descent,

f(xk+1)− f(x∗) ≤
(

1− µ

Lf

)
[f(xk)− f(x∗)].

Since Ln ≥ Lf ≥ L, coordinate descent is slower per

iteration, but n coordinate iterations are faster than one

gradient iteration.
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Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

ik = argmax
i
|∇if(xk)|.

From Lipschitz-continuity assumption this rule satisfies

f(xk+1) ≤ f(xk)− 1

2L
‖∇f(xk)‖2∞.

From strong-convexity we have

f(x∗) ≥ f(xk)− 1

2µ
‖∇f(xk)‖2.

Using ‖∇f(xk)‖2 ≤ n‖∇f(xk)‖2∞ we get

f(xk+1)− f(x∗) ≤
(

1− µ

Ln

)
[f(xk)− f(x∗)].
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Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

f(x∗) ≥ f(xk)− 1

2µ1
‖∇f(xk)‖2∞.

This gives a rate of

f(xk+1)− f(x∗) ≤
(

1− µ1
L

)
[f(xk)− f(x∗)],

where
µ

n
≤ µ1 ≤ µ.

See paper and poster for:

an explicit formula for µ1 for separable quadratic;

results showing line-search gives faster rate for sparse problems; and

analysis for approximate Gauss-Southwell rules.
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Lipschitz Sampling

Consider the case where we have an Li for each coordinate

|∇if(x+ αei)−∇if(x)| ≤ Li|α|,

and we use a coordinate-dependent step-size,

xk+1 = xk − 1

Lik
∇ik f(xk)eik .

Sampling proportional to Li yields [Nesterov, 2012]

E[f(xk+1)]− f(x∗) ≤
(

1− µ

nL̄

)
[f(xk)− f(x∗)],

where L̄ = 1
n

∑n
i=1 Li.

Faster than uniform sampling when Li are distinct.

Could be faster or slower than GS rule.

So which should we use?

The answer is neither!
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Gauss-Southwell-Lipschitz Rule

We obtain a faster rate by using Li in the GS rule,

ik = argmax
i

|∇if(xk)|√
Li

,

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if Li is small.

x1
x2
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Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of

f(xk+1)− f(x∗) ≤ (1− µL)[f(xk)− f(x∗)],

where µL satisfies the inequality

max

{
µ

nL̄
,
µ1
L

}
≤ µL ≤

µ1
mini{Li}

.

GSL is at least as fast as GS and Lipschitz sampling.

GSL is unimprovable for quadratic functions using 1
Lik

,

f(xk+1) = argmin
i,α

{f(xk + αei)}.

Gives tighter bound for maximum improvement rule.
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Gauss-Southwell-Lipschitz as Nearest Neighbour

Consider a special case of h1 (no gi functions),

min
x
h1(x) = f(Ax).

The GS rule has the form

ik = argmax
i
|aTi r(xk)|.

13 / 20



Gauss-Southwell-Lipschitz as Nearest Neighbour

Consider a special case of h1 (no gi functions),

min
x
h1(x) = f(Ax).

The GS rule has the form

ik = argmax
i
|aTi r(xk)|.

13 / 20



Gauss-Southwell-Lipschitz as Nearest Neighbour

Consider a special case of h1 (no gi functions),

min
x
h1(x) = f(Ax).

The GS rule has the form

ik = argmax
i
|aTi r(xk)|.

13 / 20



Gauss-Southwell-Lipschitz as Nearest Neighbour

Dhillon et al. [2011] approximate GS as nearest neighbour,

argmin
i
‖r(xk)− ai‖ = argmax

i

{
|∇if(xk)| − 1

2
‖ai‖2

}
.

Approximation is exact if ‖ai‖ = 1 for all i.

Usually Li = γ‖ai‖2, in this case exact GSL is a nearest
neighbour problem,

argmin
i

∥∥∥∥r(xk)− ai
‖ai‖

∥∥∥∥ = argmin
i

{
|∇if(xk)|√

Li

}
.

See paper and poster for numerical results on the nearest neighbour.
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Proximal Coordinate Descent

Consider the following problem

min
x∈IRn

F (x) ≡ f(x) +
∑
i

gi(xi),

where f is smooth and gi might be non-smooth.

e.g., `1-regularization, bound constraints

Apply proximal-gradient style update,

xk+1 = prox 1
L
gik

[
xk − 1

L
∇ikf(xk)eik

]
,

where
proxαg[y] = argmin

x∈IRn

1

2
‖x− y‖2 + αg(x).
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Proximal Gauss-Southwell

Several generalizations of GS to this setting:

GS-s: Minimize directional derivative,

ik = argmax
i

{
min
s∈∂gi

|∇if(x
k) + s|

}
.

→ Commonly-used for `1-regularization, but ‖xk+1 − xk‖ could be tiny.

GS-r: Maximize how far we move,

ik = argmax
i

{∣∣∣∣xki − prox 1
L
gik

[
xki −

1

L
∇ik f(x

k)

]∣∣∣∣} .
→ Effective for bound constraints, but ignores gi(xk+1

i )− gi(xki ).

GS-q: Maximize progress under quadratic approximation of f ,

ik = argmin
i

{
min
d
f(xk) +∇if(x

k)d+
Ld2

2
+ gi(x

k
i + d)− gi(xki )

}
.

→ Least intuitive, but has the best theoretical properties.

→ If you use Li in the GS-q rule, it is a generalization of GSL rule.
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Proximal Gauss-Southwell Convergence Rate

For random selection, Richtárik and Takáč [2014] show

E[F (xk+1)]− F (xk) ≤
(

1− µ

Ln

)
[F (xk)− F (x∗)].

the same rate as if non-smooth gi was not there.
For the GS-q rule, we show that

F (xk+1)− F (xk) ≤ min

{(
1− µ

Ln

)
[F (xk)− F (x∗)],(

1− µ1
L

)
[F (xk)− F (x∗)] + εk

}
,

where εk → 0 measures non-linearity of gi that are not updated.

But, again theory disagrees with practice...
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Comparison of Proximal Gauss-Southwell Rules
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Discussion
GS not always practical.

But if you can compute GS efficiently, you should use it.
We proposed GSL rule.

If we know/can approximate Li, should use GSL.
Analyzed proximal variants of GS rule.

GSL-q rule least intuitive, has best empirical performance.
See paper and poster for:

details on problem types for coordinate descent and GS
analysis of µ vs µ1 for separable quadratic
results for exact optimization (chain-structured graph)
details on GSL and nearest neighbour analysis
convergence rates for approximate GS rules
experimental results (e.g., graph-based label propagation)

Current/future work:
accelerated/parallel methods [Fercocq & Richtárik, 2013]
primal-dual methods [Shalev-Schwartz & Zhang, 2013]
without strong-convexity [Luo & Tseng, 1993]
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primal-dual methods [Shalev-Schwartz & Zhang, 2013]
without strong-convexity [Luo & Tseng, 1993]

19 / 20



Discussion
GS not always practical.

But if you can compute GS efficiently, you should use it.
We proposed GSL rule.

If we know/can approximate Li, should use GSL.
Analyzed proximal variants of GS rule.

GSL-q rule least intuitive, has best empirical performance.
See paper and poster for:

details on problem types for coordinate descent and GS
analysis of µ vs µ1 for separable quadratic
results for exact optimization (chain-structured graph)
details on GSL and nearest neighbour analysis
convergence rates for approximate GS rules
experimental results (e.g., graph-based label propagation)

Current/future work:
accelerated/parallel methods [Fercocq & Richtárik, 2013]
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Thank you!
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