

Coordinate descent converges faster with the Gauss-Southwell rule than random selection

Julie Nutini (UBC), Mark Schmidt (UBC), Issam Laradji (UBC), Michael Friedlander (UC Davis) and Hoyt Koepke (Dato)

OVERVIEW: Revisiting the Gauss-Southwell Rule

- ► Nesterov [2012] shows random selection has same rate as Gauss-Southwell (GS) rule.
- ► Empirically, if costs are similar, GS is faster.

In this work, we present:

- * new analysis of GS (can be much faster than random);
- * improved GS rate with exact coordinate optimization;
- ★ faster rule: Gauss-Southwell-Lipschitz;
- * analysis for approximate GS rules; and
- * analysis for proximal-gradient GS rules.

Problems for Coordinate Descent and Gauss-Southwell

Coordinate descent is faster than gradient descent when coordinate update is n faster than gradient calculation. Key problem classes:

$$h_1(x) := f(Ax) + \sum_{i=1}^n g_i(x_i), \text{ or } h_2(x) := \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_{ij}),$$

where f is smooth and cheap, f_{ij} are smooth, g_i are convex, $\{V, E\}$ is a graph, A is a matrix.

- \blacktriangleright h_1 includes least squares, logistic regression, lasso, and SVMs.
- \rightarrow Often solvable in $O(cr\log n)$ with c and r non-zeros per column/row.
- \rightarrow Or can formulate as a maximum inner-product search (MIPS).
- $lacktriangleright h_2$ includes graph-based label propagation and graphical models.
- \rightarrow GS efficient if maximum degree similar to average degree.
- → E.g., lattice-structured graphs and complete graphs.

Assumptions, Algorithm, and Basic Bounds

We consider the convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x),$$

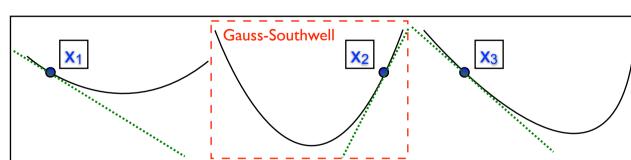
where ∇f is coordinate-wise L-Lipschitz continuous

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \le L|\alpha|, \quad \forall x \in \mathbb{R}^n \text{ and } \alpha \in \mathbb{R}.$$

We consider coordinate descent with a constant step-size,

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}.$$

GS chooses the coordinate with largest directional derivative:



Under any rule, we have the following upper bound on progress,

$$\begin{split} f(x^{k+1}) &\leq f(x^k) + \nabla_{i_k} f(x^k) (x^{k+1} - x^k)_{i_k} + \frac{L}{2} (x^{k+1} - x^k)_{i_k}^2 \\ &= f(x^k) - \frac{1}{L} (\nabla_{i_k} f(x^k))^2 + \frac{L}{2} \left[\frac{1}{L} \nabla_{i_k} f(x^k) \right]^2 \\ &= f(x^k) - \frac{1}{2L} [\nabla_{i_k} f(x^k)]^2. \end{split}$$

We also assume f is strongly convex with constant μ ,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2, \quad \forall x, y \in \mathbb{R}^n,$$

which minimizing both sides in terms of \boldsymbol{y} gives the lower bound

$$f(x^*) \ge f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2. \tag{9}$$

Convergence Analysis Randomized Coordinate Descent

Expectation of (1) when choosing i_k with uniform sampling gives

$$\mathbb{E}[f(x^{k+1})] \le f(x^k) - \frac{1}{2Ln} \|\nabla f(x^k)\|^2.$$

Using (2) and subtracting $f(x^*)$ from both sides we get

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{Ln}\right) [f(x^k) - f(x^*)].$$

Classic Convergence Analysis of Gauss-Southwell

Choosing i_k using GS rule. Using $(\nabla_{i_k} f(x^k))^2 = \|\nabla f(x^k)\|_{\infty}^2$ in (1) we have $f(x^{k+1}) \le f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|_{\infty}^2. \tag{3}$

Now use that

$$\|\nabla f(x^k)\|_{\infty}^2 \ge \frac{1}{n} \|\nabla f(x^k)\|^2$$

which together with (2) implies the same rate as random,

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu}{Ln}\right) [f(x^k) - f(x^*)].$$

Refined Convergence Analysis of Gauss-Southwell

Avoid using (4) by measuring strong-convexity in ℓ_1 -norm, i.e.,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu_1}{2} ||y - x||_1^2.$$

Minimizing both sides with respect to y we get

$$f(x^*) \ge f(x) - \sup_{y} \{ \langle -\nabla f(x), y - x \rangle - \frac{\mu_1}{2} \|y - x\|_1^2 \}$$

$$= f(x) - \left(\frac{\mu_1}{2} \|\cdot\|_1^2\right)^* (-\nabla f(x))$$

$$= f(x) - \frac{1}{2\mu_1} \|\nabla f(x)\|_{\infty}^2.$$

Combining this with (3),

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu_1}{L}\right) [f(x^k) - f(x^*)]. \tag{5}$$

Using norm inequalities we can show that

$$\frac{\mu}{n} \le \mu_1 \le \mu.$$

Separable Quadratic: μ vs. μ_1

Consider a quadratic f with diagonal Hessian:

$$\mu = \min_i \lambda_i, \quad \mathsf{and} \quad \mu_1 = \bigg(\sum_{i=1}^n rac{1}{\lambda_i}\bigg)^{-1}.$$

Constant μ_1 is the harmonic mean of λ_i divided by n:

- ▶ All λ_i equal: GS and random have same rates.
- ▶ One large λ_i : GS only slightly faster than random.
- ▶ One small λ_i : GS almost n times faster than random.

'Time need when working together' is μ_1 (dominated by smallest).

Gauss-Southwell with Different Lipschitz Constants

With a different Lipschitz constant L_i for each coordinate, we have

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

This gives a rate of

$$\mathbb{E}[f(x^k)] - f(x^*) \le \left[\prod_{j=1}^k \left(1 - \frac{\mu_1}{L_{i_j}} \right) \right] [f(x^0) - f(x^*)].$$

• As $L = \max_i L_i$, this is faster if $L_{i_k} < L$ for any i_k .

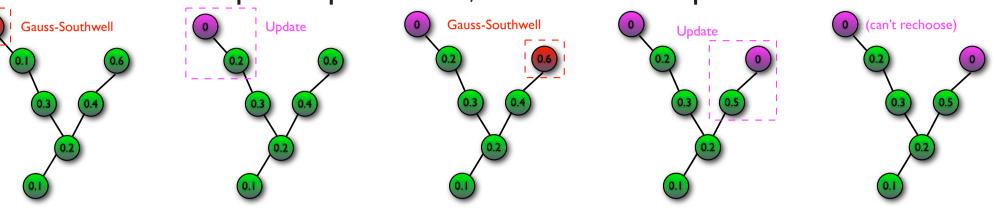
Gauss-Southwell with Exact Coordinate Optimization

Rates for randomized and GS still hold with exact optimization as $f(x^{k+1}) = \min_{\alpha} \{ f(x^k - \alpha \nabla_{i_k} f(x^k) e_{i_k} \} \leq f(x^k) - \frac{1}{2L_{i_k}} [\nabla_{i_k} f(x^k)]^2.$

Faster rates for sparse problems, since exact update restricts order:

Gauss-Southwell

Ogauss-Southwell



GS with exact optimization under a chain-structured graph has rate

$$f(x^k) - f(x^*) \le O\left(\max\{\rho_2^G, \rho_3^G\}^k\right) [f(x^0) - f(x^*)],$$

- ho_2^G maximizes $\sqrt{(1-\mu_1/L_i)(1-\mu_1/L_j)}$ among neighbours;
- ▶ ρ_3^G maximizes $\sqrt{(1 \mu_1/L_i)(1 \mu_1/L_j)(1 \mu_1/L_k)}$, when i is neighbour of j and j is neighbour of k.

This is much faster if the large L_i are not neighbours.

Rules Depending on Lipschitz Constants and GSL Rule

Nesterov showed that sampling proportional to L_i yields:

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \le \left(1 - \frac{\mu}{n\bar{L}}\right) [f(x^k) - f(x^*)].$$

We propose a Gauss-Southwell-Lipschitz (GSL) rule using the L_i :

$$i_k = \operatorname*{argmax}_i \frac{|\nabla_i f(x^k)|}{\sqrt{L_i}}$$

For this rule we have

$$f(x^{k+1}) - f(x^*) \le (1 - \mu_L)[f(x^k) - f(x^*)],$$

where strong-convexity constant μ_L for $\|x\|_L = \sum_{i=1}^n \sqrt{L_i} |x_i|$ has

$$\max\left\{\frac{\mu}{n\bar{L}}, \frac{\mu_1}{L}\right\} \le \mu_L \le \frac{\mu_1}{\min_i\{L_i\}}.$$

This also yields a tighter bound on 'maximum improvement' rule.

Gauss-Southwell-Lipschitz as Nearest Neighbour

If h_1 has no g_i functions, GS rule has the form: $\operatorname{argmax}_i |a_i^T r(x^k)|$ Dhillon et al. [2011] approximate GS as nearest neighbour,

$$\underset{i}{\operatorname{argmin}} \|r(x^k) - a_i\| = \underset{i}{\operatorname{argmin}} \left\{ |\nabla_i f(x^k)| - \frac{1}{2} \|a_i\|^2 \right\}.$$

When $L_i = \gamma ||a_i||^2$, exact GSL is a nearest neighbour problem,

$$\underset{i}{\operatorname{argmin}} \left\| r(x^k) - \frac{a_i}{\|a_i\|} \right\| = \underset{i}{\operatorname{argmin}} \left\{ \frac{|\nabla_i f(x^k)|}{\sqrt{L_i}} \right\}.$$

Approximate Gauss-Southwell

- $$\begin{split} & \text{For multiplicative error } |\nabla_{i_k} f(x^k)| \geq \|\nabla f(x^k)\|_{\infty} (1-\epsilon_k), \\ & f(x^{k+1}) f(x^*) \leq \left\lceil \prod_{i=1}^k \left(1 \frac{\mu_1 (1-\epsilon_k)^2}{L}\right) \right\rceil [f(x^0) f(x^*)], \end{split}$$
- and we do not need $\epsilon_k \to 0$.
- ▶ For additive error $|\nabla_{i_k} f(x^k)| \ge ||\nabla f(x^k)||_{\infty} \epsilon_k$,

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{\mu_1}{L}\right)^k [f(x^0) - f(x^*) + A_k],$$

where A_k depends on ϵ_k , and rate depends on how fast

Proximal Gauss-Southwell

An important application of coordinate descent is for problems

$$\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \sum_{i} g_i(x_i),$$

where f is smooth, but g_i may be non-smooth.

Examples include bound-constraints and ℓ_1 -regularization. We can use a proximal-gradient style update,

$$x^{k+1} = \mathbf{prox}_{rac{1}{L}g_{i_k}}igg[x^k - rac{1}{L}
abla_{i_k}f(x^k)e_{i_k}igg],$$

where

$$\mathbf{prox}_{\alpha g}[y] = \operatorname*{argmin}_{x \in \mathbb{R}^n} \frac{1}{2} \|x - y\|^2 + \alpha g(x).$$

Three Proximal Generalizations of the GS Rule

► GS-s: Minimize directional derivative,

$$i_k = \operatorname*{argmax}_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s|
ight\}$$

- \rightarrow Commonly-used for ℓ_1 -regularization, $\|x^{k+1} x^k\|$ could be tiny.
- ightharpoonup GS-r: Maximize how far we move,

- \rightarrow Effective for bound constraints, but ignores $g_i(x_i^{k+1}) g_i(x_i^k)$.
- $lackbox{GS-}q$: Maximize progress under quadratic approximation of f.

$$i_{k} = \underset{i}{\operatorname{argmin}} \left\{ \min_{d} f(x^{k}) + \nabla_{i} f(x^{k}) d + \frac{L}{2} d^{2} + g_{i}(x_{i}^{k} + d) - g_{i}(x_{i}^{k}) \right\}$$

- ightarrow Least intuitive, but has the best theoretical properties.
- \rightarrow Generalizes GSL if you use L_i instead of L (not true of GS-r).

Proximal GS-q Convergence Rate

Richtárik and Takáč [2014] show for randomized i_k selection that

$$\mathbb{E}[F(x^{k+1})] - F(x^*) \le \left(1 - \frac{\mu}{Ln}\right) [F(x^k) - F(x^*)].$$

For the $\mathsf{GS}\text{-}q$ rule, we show a rate of

$$F(x^{k+1}) - F(x^*) \le \min \left\{ \left(1 - \frac{\mu}{Ln} \right) [F(x^k) - F(x^*)], \left(1 - \frac{\mu_1}{L} \right) [F(x^k) - F(x^*)] + \epsilon_k \right\},$$

where $\epsilon_k \to 0$ measures non-linearity of g_i that are not updated.

Experiments for Instances of Problem h_1

