
Let’s Make Block Coordinate Descent
Go Fast!

Julie Nutini, Issam Laradji, Mark Schmidt and Warren Hare

University of British Columbia

EUROPT Workshop on Advances in Continuous Optimization
Montreal, Canada

July 12th, 2017

1 / 22



Why Block Coordinate Descent?

Block coordinate descent methods are key tools in large-scale optimization.

→ Easy to implement.
→ Low memory requirements.
→ Cheap iteration costs.
→ Adaptability to distributed settings.

Used for almost two decades to solve LASSO and SVMs.

→ Any improvements on convergence will affect many applications.

2 / 22



Why Block Coordinate Descent?

Block coordinate descent methods are key tools in large-scale optimization.

→ Easy to implement.
→ Low memory requirements.
→ Cheap iteration costs.
→ Adaptability to distributed settings.

Used for almost two decades to solve LASSO and SVMs.

→ Any improvements on convergence will affect many applications.

2 / 22



Why Block Coordinate Descent?

Block coordinate descent methods are key tools in large-scale optimization.

→ Easy to implement.
→ Low memory requirements.
→ Cheap iteration costs.
→ Adaptability to distributed settings.

Used for almost two decades to solve LASSO and SVMs.

→ Any improvements on convergence will affect many applications.

2 / 22



This Work

We propose 4 ways to speed up Block Coordinate Descent (BCD) methods:

1. New greedy block selection rules.

2. New second-order update rule.

3. New exact update rule for LASSO and SVMs.

4. New exact update rule for graph-structured problems.

3 / 22



Block Coordinate Descent for Large-Scale Optimization

We consider the basic convex optimization problem:

min
x∈IRn

f(x),

where f is differentiable and n is large.

At each iteration of the BCD algorithm, we
Select a block bk ⊆ {1, 2, . . . , n}.
Update iterate according to

xk+1 = xk + Ubkd
k,

where dk ∈ IRM is a descent direction of the reduced dimensional subproblem,

argmin
d∈IRM

f(xk + Ubkd).

→ E.g., gradient descent update dk = −αk∇bkf(x
k) for some αk > 0.

4 / 22



Block Coordinate Descent for Large-Scale Optimization

We consider the basic convex optimization problem:

min
x∈IRn

f(x),

where f is differentiable and n is large.

At each iteration of the BCD algorithm, we
Select a block bk ⊆ {1, 2, . . . , n}.

Update iterate according to

xk+1 = xk + Ubkd
k,

where dk ∈ IRM is a descent direction of the reduced dimensional subproblem,

argmin
d∈IRM

f(xk + Ubkd).

→ E.g., gradient descent update dk = −αk∇bkf(x
k) for some αk > 0.

4 / 22



Block Coordinate Descent for Large-Scale Optimization

We consider the basic convex optimization problem:

min
x∈IRn

f(x),

where f is differentiable and n is large.

At each iteration of the BCD algorithm, we
Select a block bk ⊆ {1, 2, . . . , n}.
Update iterate according to

xk+1 = xk + Ubkd
k,

where dk ∈ IRM is a descent direction of the reduced dimensional subproblem,

argmin
d∈IRM

f(xk + Ubkd).

→ E.g., gradient descent update dk = −αk∇bkf(x
k) for some αk > 0.

4 / 22



Block Coordinate Descent for Large-Scale Optimization

We consider the basic convex optimization problem:

min
x∈IRn

f(x),

where f is differentiable and n is large.

At each iteration of the BCD algorithm, we
Select a block bk ⊆ {1, 2, . . . , n}.
Update iterate according to

xk+1 = xk + Ubkd
k,

where dk ∈ IRM is a descent direction of the reduced dimensional subproblem,

argmin
d∈IRM

f(xk + Ubkd).

→ E.g., gradient descent update dk = −αk∇bkf(x
k) for some αk > 0.

4 / 22



Block Coordinate Descent for Large-Scale Optimization

We consider the basic convex optimization problem:

min
x∈IRn

f(x),

where f is differentiable and n is large.

At each iteration of the BCD algorithm, we
Select a block bk ⊆ {1, 2, . . . , n}.
Update iterate according to

xk+1 = xk + Ubkd
k,

where dk ∈ IRM is a descent direction of the reduced dimensional subproblem,

argmin
d∈IRM

f(xk + Ubkd).

→ E.g., gradient descent update dk = −αk∇bkf(x
k) for some αk > 0.

4 / 22



Block Selection Rules

There are 4 common block selection strategies:

→ Cyclic: Repeatedly cycle through blocks in order.

→ Random: Uniformly sample the blocks (tries to avoid bad ordering).

→ Greedy: Choose “best” block according to criteria (too expensive in general).

→ Lipschitz: Use Lipschitz constants of gradients to improve over random.

Assume that f is Lb-block-wise Lipschitz continuous,

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, for all d.

→ If f is twice-differentiable, this is equivalent to ∇2
bbf(x) � LbI for each block b.

5 / 22



Block Selection Rules

There are 4 common block selection strategies:

→ Cyclic: Repeatedly cycle through blocks in order.

→ Random: Uniformly sample the blocks (tries to avoid bad ordering).

→ Greedy: Choose “best” block according to criteria (too expensive in general).

→ Lipschitz: Use Lipschitz constants of gradients to improve over random.

Assume that f is Lb-block-wise Lipschitz continuous,

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, for all d.

→ If f is twice-differentiable, this is equivalent to ∇2
bbf(x) � LbI for each block b.

5 / 22



Block Selection Rules

There are 4 common block selection strategies:

→ Cyclic: Repeatedly cycle through blocks in order.

→ Random: Uniformly sample the blocks (tries to avoid bad ordering).

→ Greedy: Choose “best” block according to criteria (too expensive in general).

→ Lipschitz: Use Lipschitz constants of gradients to improve over random.

Assume that f is Lb-block-wise Lipschitz continuous,

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, for all d.

→ If f is twice-differentiable, this is equivalent to ∇2
bbf(x) � LbI for each block b.

5 / 22



Block Selection Rules

There are 4 common block selection strategies:

→ Cyclic: Repeatedly cycle through blocks in order.

→ Random: Uniformly sample the blocks (tries to avoid bad ordering).

→ Greedy: Choose “best” block according to criteria (too expensive in general).

→ Lipschitz: Use Lipschitz constants of gradients to improve over random.

Assume that f is Lb-block-wise Lipschitz continuous,

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, for all d.

→ If f is twice-differentiable, this is equivalent to ∇2
bbf(x) � LbI for each block b.

5 / 22



Block Selection Rules

There are 4 common block selection strategies:

→ Cyclic: Repeatedly cycle through blocks in order.

→ Random: Uniformly sample the blocks (tries to avoid bad ordering).

→ Greedy: Choose “best” block according to criteria (too expensive in general).

→ Lipschitz: Use Lipschitz constants of gradients to improve over random.

Assume that f is Lb-block-wise Lipschitz continuous,

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, for all d.

→ If f is twice-differentiable, this is equivalent to ∇2
bbf(x) � LbI for each block b.

5 / 22



Greedy Block Selection Rules

There are 2 common greedy selection rules:

→ Gauss-Southwell (GS): Choose block with biggest gradient.

→ Maximum improvement (MI): Choose block that makes the most progress.

MI is usually too costly.

Nutini et. al. (2015) showed GS can be efficiently calculated for some problem

structures and also introduced the Gauss-Southwell-Lipschitz (GSL) rule.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

→ Incorporates Lipschitz information in the rule.
→ Equivalent to MI for quadratics.

6 / 22



Greedy Block Selection Rules

There are 2 common greedy selection rules:

→ Gauss-Southwell (GS): Choose block with biggest gradient.

→ Maximum improvement (MI): Choose block that makes the most progress.

MI is usually too costly.

Nutini et. al. (2015) showed GS can be efficiently calculated for some problem

structures and also introduced the Gauss-Southwell-Lipschitz (GSL) rule.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

→ Incorporates Lipschitz information in the rule.
→ Equivalent to MI for quadratics.

6 / 22



Greedy Block Selection Rules

There are 2 common greedy selection rules:

→ Gauss-Southwell (GS): Choose block with biggest gradient.

→ Maximum improvement (MI): Choose block that makes the most progress.

MI is usually too costly.

Nutini et. al. (2015) showed GS can be efficiently calculated for some problem

structures and also introduced the Gauss-Southwell-Lipschitz (GSL) rule.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

→ Incorporates Lipschitz information in the rule.
→ Equivalent to MI for quadratics.

6 / 22



Greedy Block Selection Rules

There are 2 common greedy selection rules:

→ Gauss-Southwell (GS): Choose block with biggest gradient.

→ Maximum improvement (MI): Choose block that makes the most progress.

MI is usually too costly.

Nutini et. al. (2015) showed GS can be efficiently calculated for some problem

structures and also introduced the Gauss-Southwell-Lipschitz (GSL) rule.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

→ Incorporates Lipschitz information in the rule.
→ Equivalent to MI for quadratics.

6 / 22



Greedy Block Selection Rules

There are 2 common greedy selection rules:

→ Gauss-Southwell (GS): Choose block with biggest gradient.

→ Maximum improvement (MI): Choose block that makes the most progress.

MI is usually too costly.

Nutini et. al. (2015) showed GS can be efficiently calculated for some problem

structures and also introduced the Gauss-Southwell-Lipschitz (GSL) rule.

x1
x2

Gauss-SouthwellGauss-Southwell-Lipschitz

→ Incorporates Lipschitz information in the rule.
→ Equivalent to MI for quadratics.

6 / 22



Block Gauss-Southwell-Lipschitz

As an obvious extension of the GSL rule to the block setting, we propose the

Block Gauss-Southwell-Lipschitz (BGSL) rule:

bk ∈ argmax
b∈B

‖∇bf(x
k)‖2√

Lb
.

Derived by minimizing quadratic bound from block-wise Lipschitz continuity.

Guarantees more progress than the block GS rule.

→ Unlike GSL, not equivalent to the MI rule for quadratic functions.

7 / 22



Block Gauss-Southwell-Lipschitz

As an obvious extension of the GSL rule to the block setting, we propose the

Block Gauss-Southwell-Lipschitz (BGSL) rule:

bk ∈ argmax
b∈B

‖∇bf(x
k)‖2√

Lb
.

Derived by minimizing quadratic bound from block-wise Lipschitz continuity.

Guarantees more progress than the block GS rule.

→ Unlike GSL, not equivalent to the MI rule for quadratic functions.

7 / 22



Block Gauss-Southwell-Lipschitz

As an obvious extension of the GSL rule to the block setting, we propose the

Block Gauss-Southwell-Lipschitz (BGSL) rule:

bk ∈ argmax
b∈B

‖∇bf(x
k)‖2√

Lb
.

Derived by minimizing quadratic bound from block-wise Lipschitz continuity.

Guarantees more progress than the block GS rule.

→ Unlike GSL, not equivalent to the MI rule for quadratic functions.

7 / 22



Experiment: L2-Regularized Logistic Regression

Comparing block selection rules using fixed blocks.

8 / 22



Block Gauss-Southwell-Quadratic

If we are updating more than one variable, we can obtain a better bound by

measuring Lipschitz continuity using quadratic norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

=
√
dTHbd,

where Hb = βH for any positive definite matrix H, sufficiently large β.

Simply changes measure of continuity→ no new assumptions.

Block Gauss-Southwell-Quadratic (BGSQ):

bk ∈ argmax
b∈B

{
‖∇bf(x

k)‖H−1
b

}
→ Hb is a global upper bound on Hessian ∇2

bbf .

→ Equivalent to the MI rule for quadratics.

→ May be difficult to find Hessian bounds Hb, depends on how we define blocks.

9 / 22



Block Gauss-Southwell-Quadratic

If we are updating more than one variable, we can obtain a better bound by

measuring Lipschitz continuity using quadratic norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

=
√
dTHbd,

where Hb = βH for any positive definite matrix H, sufficiently large β.

Simply changes measure of continuity→ no new assumptions.

Block Gauss-Southwell-Quadratic (BGSQ):

bk ∈ argmax
b∈B

{
‖∇bf(x

k)‖H−1
b

}
→ Hb is a global upper bound on Hessian ∇2

bbf .

→ Equivalent to the MI rule for quadratics.

→ May be difficult to find Hessian bounds Hb, depends on how we define blocks.

9 / 22



Block Gauss-Southwell-Quadratic

If we are updating more than one variable, we can obtain a better bound by

measuring Lipschitz continuity using quadratic norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

=
√
dTHbd,

where Hb = βH for any positive definite matrix H, sufficiently large β.

Simply changes measure of continuity→ no new assumptions.

Block Gauss-Southwell-Quadratic (BGSQ):

bk ∈ argmax
b∈B

{
‖∇bf(x

k)‖H−1
b

}
→ Hb is a global upper bound on Hessian ∇2

bbf .

→ Equivalent to the MI rule for quadratics.

→ May be difficult to find Hessian bounds Hb, depends on how we define blocks.

9 / 22



Block Gauss-Southwell-Quadratic

If we are updating more than one variable, we can obtain a better bound by

measuring Lipschitz continuity using quadratic norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

=
√
dTHbd,

where Hb = βH for any positive definite matrix H, sufficiently large β.

Simply changes measure of continuity→ no new assumptions.

Block Gauss-Southwell-Quadratic (BGSQ):

bk ∈ argmax
b∈B

{
‖∇bf(x

k)‖H−1
b

}
→ Hb is a global upper bound on Hessian ∇2

bbf .

→ Equivalent to the MI rule for quadratics.

→ May be difficult to find Hessian bounds Hb, depends on how we define blocks.

9 / 22



Block Gauss-Southwell-Quadratic

If we are updating more than one variable, we can obtain a better bound by

measuring Lipschitz continuity using quadratic norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

=
√
dTHbd,

where Hb = βH for any positive definite matrix H, sufficiently large β.

Simply changes measure of continuity→ no new assumptions.

Block Gauss-Southwell-Quadratic (BGSQ):

bk ∈ argmax
b∈B

{
‖∇bf(x

k)‖H−1
b

}
→ Hb is a global upper bound on Hessian ∇2

bbf .

→ Equivalent to the MI rule for quadratics.

→ May be difficult to find Hessian bounds Hb, depends on how we define blocks.

9 / 22



Block Gauss-Southwell-Quadratic

If we are updating more than one variable, we can obtain a better bound by

measuring Lipschitz continuity using quadratic norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

=
√
dTHbd,

where Hb = βH for any positive definite matrix H, sufficiently large β.

Simply changes measure of continuity→ no new assumptions.

Block Gauss-Southwell-Quadratic (BGSQ):

bk ∈ argmax
b∈B

{
‖∇bf(x

k)‖H−1
b

}
→ Hb is a global upper bound on Hessian ∇2

bbf .

→ Equivalent to the MI rule for quadratics.

→ May be difficult to find Hessian bounds Hb, depends on how we define blocks.
9 / 22



Blocking Strategy

There are 2 main strategies used to define a set of possible blocks:

→ Fixed: Partition variables into groups, select amongst these groups.

→ Variable: Choose “best” M variables at each step, no pre-defined groups.

Variable blocks guarantee more progress.
We show it is NP-hard to compute BGSL, BGSQ.
In practice, use approximate Block Gauss-Southwell-Diagonal rule,

bk ∈ argmax
b∈B

{∑
i∈b

(
∇if(x

k)

Di

)2
}
.

→ Each coordinate has its own step size 1/Di (same across all blocks b).

Fixed blocks we could use Lipschitz constants to help determine the partition.

10 / 22



Blocking Strategy

There are 2 main strategies used to define a set of possible blocks:

→ Fixed: Partition variables into groups, select amongst these groups.

→ Variable: Choose “best” M variables at each step, no pre-defined groups.

Variable blocks guarantee more progress.
We show it is NP-hard to compute BGSL, BGSQ.
In practice, use approximate Block Gauss-Southwell-Diagonal rule,

bk ∈ argmax
b∈B

{∑
i∈b

(
∇if(x

k)

Di

)2
}
.

→ Each coordinate has its own step size 1/Di (same across all blocks b).

Fixed blocks we could use Lipschitz constants to help determine the partition.

10 / 22



Blocking Strategy

There are 2 main strategies used to define a set of possible blocks:

→ Fixed: Partition variables into groups, select amongst these groups.

→ Variable: Choose “best” M variables at each step, no pre-defined groups.

Variable blocks guarantee more progress.
We show it is NP-hard to compute BGSL, BGSQ.
In practice, use approximate Block Gauss-Southwell-Diagonal rule,

bk ∈ argmax
b∈B

{∑
i∈b

(
∇if(x

k)

Di

)2
}
.

→ Each coordinate has its own step size 1/Di (same across all blocks b).

Fixed blocks we could use Lipschitz constants to help determine the partition.

10 / 22



Blocking Strategy

There are 2 main strategies used to define a set of possible blocks:

→ Fixed: Partition variables into groups, select amongst these groups.

→ Variable: Choose “best” M variables at each step, no pre-defined groups.

Variable blocks guarantee more progress.
We show it is NP-hard to compute BGSL, BGSQ.

In practice, use approximate Block Gauss-Southwell-Diagonal rule,

bk ∈ argmax
b∈B

{∑
i∈b

(
∇if(x

k)

Di

)2
}
.

→ Each coordinate has its own step size 1/Di (same across all blocks b).

Fixed blocks we could use Lipschitz constants to help determine the partition.

10 / 22



Blocking Strategy

There are 2 main strategies used to define a set of possible blocks:

→ Fixed: Partition variables into groups, select amongst these groups.

→ Variable: Choose “best” M variables at each step, no pre-defined groups.

Variable blocks guarantee more progress.
We show it is NP-hard to compute BGSL, BGSQ.
In practice, use approximate Block Gauss-Southwell-Diagonal rule,

bk ∈ argmax
b∈B

{∑
i∈b

(
∇if(x

k)

Di

)2
}
.

→ Each coordinate has its own step size 1/Di (same across all blocks b).

Fixed blocks we could use Lipschitz constants to help determine the partition.

10 / 22



Blocking Strategy

There are 2 main strategies used to define a set of possible blocks:

→ Fixed: Partition variables into groups, select amongst these groups.

→ Variable: Choose “best” M variables at each step, no pre-defined groups.

Variable blocks guarantee more progress.
We show it is NP-hard to compute BGSL, BGSQ.
In practice, use approximate Block Gauss-Southwell-Diagonal rule,

bk ∈ argmax
b∈B

{∑
i∈b

(
∇if(x

k)

Di

)2
}
.

→ Each coordinate has its own step size 1/Di (same across all blocks b).

Fixed blocks we could use Lipschitz constants to help determine the partition.

10 / 22



Blocking Strategy

There are 2 main strategies used to define a set of possible blocks:

→ Fixed: Partition variables into groups, select amongst these groups.

→ Variable: Choose “best” M variables at each step, no pre-defined groups.

Variable blocks guarantee more progress.
We show it is NP-hard to compute BGSL, BGSQ.
In practice, use approximate Block Gauss-Southwell-Diagonal rule,

bk ∈ argmax
b∈B

{∑
i∈b

(
∇if(x

k)

Di

)2
}
.

→ Each coordinate has its own step size 1/Di (same across all blocks b).

Fixed blocks we could use Lipschitz constants to help determine the partition.
10 / 22



Experiment: L2-Regularized Logistic Regression

Comparing block partitioning strategies using BGSD rule.

11 / 22



Block Update Rules

Assume that we have selected a block bk.

We now focus on how we define our update dk.

→ Gradient-style update:
dk = −αk∇bkf(x

k),

where αk > 0 is either constant or determined using a line search.

→ Hessian-bound udpate:

dk = −(Hbk)
−1∇bkf(x

k),

where Hbk is a positive-definite global upper bound on the Hessian ∇2
bbf .

Do better updates exist? Yes!

12 / 22



Block Update Rules

Assume that we have selected a block bk.

We now focus on how we define our update dk.

→ Gradient-style update:
dk = −αk∇bkf(x

k),

where αk > 0 is either constant or determined using a line search.

→ Hessian-bound udpate:

dk = −(Hbk)
−1∇bkf(x

k),

where Hbk is a positive-definite global upper bound on the Hessian ∇2
bbf .

Do better updates exist? Yes!

12 / 22



Block Update Rules

Assume that we have selected a block bk.

We now focus on how we define our update dk.

→ Gradient-style update:
dk = −αk∇bkf(x

k),

where αk > 0 is either constant or determined using a line search.

→ Hessian-bound udpate:

dk = −(Hbk)
−1∇bkf(x

k),

where Hbk is a positive-definite global upper bound on the Hessian ∇2
bbf .

Do better updates exist? Yes!

12 / 22



Block Update Rules

Assume that we have selected a block bk.

We now focus on how we define our update dk.

→ Gradient-style update:
dk = −αk∇bkf(x

k),

where αk > 0 is either constant or determined using a line search.

→ Hessian-bound udpate:

dk = −(Hbk)
−1∇bkf(x

k),

where Hbk is a positive-definite global upper bound on the Hessian ∇2
bbf .

Do better updates exist?

Yes!

12 / 22



Block Update Rules

Assume that we have selected a block bk.

We now focus on how we define our update dk.

→ Gradient-style update:
dk = −αk∇bkf(x

k),

where αk > 0 is either constant or determined using a line search.

→ Hessian-bound udpate:

dk = −(Hbk)
−1∇bkf(x

k),

where Hbk is a positive-definite global upper bound on the Hessian ∇2
bbf .

Do better updates exist? Yes!
12 / 22



Why Not Newton?

Why do we expect to develop better updates than the Hessian-bound update?

→ Uses an upper-bound on the Hessian everywhere.

→ For non-quadratic functions, potentially make more progress by using
instantaneous Hessian→ cheap for a block.

Classic Newton-style steps need line-search or trust-region method.

→ However, these:

Require more implementation effort.
Have tuning parameters.
Require extra evaluations of the function, which may be expensive.

→We consider a Newton-style method based on a cubic regularization framework.

13 / 22



Why Not Newton?

Why do we expect to develop better updates than the Hessian-bound update?

→ Uses an upper-bound on the Hessian everywhere.
→ For non-quadratic functions, potentially make more progress by using

instantaneous Hessian→ cheap for a block.

Classic Newton-style steps need line-search or trust-region method.

→ However, these:

Require more implementation effort.
Have tuning parameters.
Require extra evaluations of the function, which may be expensive.

→We consider a Newton-style method based on a cubic regularization framework.

13 / 22



Why Not Newton?

Why do we expect to develop better updates than the Hessian-bound update?

→ Uses an upper-bound on the Hessian everywhere.
→ For non-quadratic functions, potentially make more progress by using

instantaneous Hessian→ cheap for a block.

Classic Newton-style steps need line-search or trust-region method.

→ However, these:

Require more implementation effort.
Have tuning parameters.
Require extra evaluations of the function, which may be expensive.

→We consider a Newton-style method based on a cubic regularization framework.

13 / 22



Why Not Newton?

Why do we expect to develop better updates than the Hessian-bound update?

→ Uses an upper-bound on the Hessian everywhere.
→ For non-quadratic functions, potentially make more progress by using

instantaneous Hessian→ cheap for a block.

Classic Newton-style steps need line-search or trust-region method.

→ However, these:

Require more implementation effort.
Have tuning parameters.
Require extra evaluations of the function, which may be expensive.

→We consider a Newton-style method based on a cubic regularization framework.

13 / 22



Why Not Newton?

Why do we expect to develop better updates than the Hessian-bound update?

→ Uses an upper-bound on the Hessian everywhere.
→ For non-quadratic functions, potentially make more progress by using

instantaneous Hessian→ cheap for a block.

Classic Newton-style steps need line-search or trust-region method.

→ However, these:

Require more implementation effort.
Have tuning parameters.
Require extra evaluations of the function, which may be expensive.

→We consider a Newton-style method based on a cubic regularization framework.
13 / 22



Cubic Regularization Updates

While gradient-style methods are based on a quadratic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ L

2
‖dk‖2,

Newton-like cubic regularization methods are based on a cubic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ (dk)T∇2f(xk)dk +
M

6
‖dk‖3.

By defining next iterate as minimizer of the bound (or minimum among both),
we can incorporate the instantaneous Hessian.

→ Guaranteed to decrease the objective without needing extra objective function
evaluations required for a line search.

14 / 22



Cubic Regularization Updates

While gradient-style methods are based on a quadratic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ L

2
‖dk‖2,

Newton-like cubic regularization methods are based on a cubic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ (dk)T∇2f(xk)dk +
M

6
‖dk‖3.

By defining next iterate as minimizer of the bound (or minimum among both),
we can incorporate the instantaneous Hessian.

→ Guaranteed to decrease the objective without needing extra objective function
evaluations required for a line search.

14 / 22



Cubic Regularization Updates

While gradient-style methods are based on a quadratic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ L

2
‖dk‖2,

Newton-like cubic regularization methods are based on a cubic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ (dk)T∇2f(xk)dk +
M

6
‖dk‖3.

By defining next iterate as minimizer of the bound (or minimum among both),
we can incorporate the instantaneous Hessian.

→ Guaranteed to decrease the objective without needing extra objective function
evaluations required for a line search.

14 / 22



Cubic Regularization Updates

While gradient-style methods are based on a quadratic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ L

2
‖dk‖2,

Newton-like cubic regularization methods are based on a cubic upper-bound,

f(xk+1) ≤ f(xk) + 〈∇f(xk), dk〉+ (dk)T∇2f(xk)dk +
M

6
‖dk‖3.

By defining next iterate as minimizer of the bound (or minimum among both),
we can incorporate the instantaneous Hessian.

→ Guaranteed to decrease the objective without needing extra objective function
evaluations required for a line search.

14 / 22



Experiment: Multi-class Logistic Regression

Comparing update rules using variable blocks with greedy block selection.

15 / 22



Superlinear Convergence?

Looks like Newton’s method, which has superlinear convergence!

Can we achieve superlinear convergence in general?

No, not even with exact updates.

E.g., 2-variable non-separable quadratic

→ Possible to get superlinear convergence for problems with certain structures.

16 / 22



Superlinear Convergence?

Looks like Newton’s method, which has superlinear convergence!

Can we achieve superlinear convergence in general?

No, not even with exact updates.

E.g., 2-variable non-separable quadratic

→ Possible to get superlinear convergence for problems with certain structures.

16 / 22



Superlinear Convergence?

Looks like Newton’s method, which has superlinear convergence!

Can we achieve superlinear convergence in general?

No, not even with exact updates.

E.g., 2-variable non-separable quadratic

→ Possible to get superlinear convergence for problems with certain structures.

16 / 22



Superlinear Convergence?

Looks like Newton’s method, which has superlinear convergence!

Can we achieve superlinear convergence in general?

No, not even with exact updates.

E.g., 2-variable non-separable quadratic

→ Possible to get superlinear convergence for problems with certain structures.

16 / 22



Superlinear Convergence for L1-Regularized Problems

Consider minimizing a differentiable function f with L1-regularization,

min
x
F (x) := f(x) + λ‖x‖1,

E.g., LASSO: F (x) = 1
2]‖Ax− b‖

2 + λ‖x‖1 for λ > 0.

→ Using the BCD method with:
Variable blocks to choose the “best” M variables to update at each step.
Greedy BGS-q selection rule (or variations like those presented earlier).

→ We prove identification of the sparsity pattern of x∗ for finite k.
Similar results are known for cyclic and random selection.
BUT with greedy, if M > nnz(x∗), then after identifying the sparsity pattern, the
cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

→ SUPERLINEAR CONVERGENCE!

17 / 22



Superlinear Convergence for L1-Regularized Problems

Consider minimizing a differentiable function f with L1-regularization,

min
x
F (x) := f(x) + λ‖x‖1,

E.g., LASSO: F (x) = 1
2]‖Ax− b‖

2 + λ‖x‖1 for λ > 0.

→ Using the BCD method with:
Variable blocks to choose the “best” M variables to update at each step.
Greedy BGS-q selection rule (or variations like those presented earlier).

→ We prove identification of the sparsity pattern of x∗ for finite k.
Similar results are known for cyclic and random selection.
BUT with greedy, if M > nnz(x∗), then after identifying the sparsity pattern, the
cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

→ SUPERLINEAR CONVERGENCE!

17 / 22



Superlinear Convergence for L1-Regularized Problems

Consider minimizing a differentiable function f with L1-regularization,

min
x
F (x) := f(x) + λ‖x‖1,

E.g., LASSO: F (x) = 1
2]‖Ax− b‖

2 + λ‖x‖1 for λ > 0.

→ Using the BCD method with:
Variable blocks to choose the “best” M variables to update at each step.
Greedy BGS-q selection rule (or variations like those presented earlier).

→ We prove identification of the sparsity pattern of x∗ for finite k.

Similar results are known for cyclic and random selection.
BUT with greedy, if M > nnz(x∗), then after identifying the sparsity pattern, the
cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

→ SUPERLINEAR CONVERGENCE!

17 / 22



Superlinear Convergence for L1-Regularized Problems

Consider minimizing a differentiable function f with L1-regularization,

min
x
F (x) := f(x) + λ‖x‖1,

E.g., LASSO: F (x) = 1
2]‖Ax− b‖

2 + λ‖x‖1 for λ > 0.

→ Using the BCD method with:
Variable blocks to choose the “best” M variables to update at each step.
Greedy BGS-q selection rule (or variations like those presented earlier).

→ We prove identification of the sparsity pattern of x∗ for finite k.
Similar results are known for cyclic and random selection.

BUT with greedy, if M > nnz(x∗), then after identifying the sparsity pattern, the
cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

→ SUPERLINEAR CONVERGENCE!

17 / 22



Superlinear Convergence for L1-Regularized Problems

Consider minimizing a differentiable function f with L1-regularization,

min
x
F (x) := f(x) + λ‖x‖1,

E.g., LASSO: F (x) = 1
2]‖Ax− b‖

2 + λ‖x‖1 for λ > 0.

→ Using the BCD method with:
Variable blocks to choose the “best” M variables to update at each step.
Greedy BGS-q selection rule (or variations like those presented earlier).

→ We prove identification of the sparsity pattern of x∗ for finite k.
Similar results are known for cyclic and random selection.
BUT with greedy, if M > nnz(x∗), then after identifying the sparsity pattern, the
cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

→ SUPERLINEAR CONVERGENCE!

17 / 22



Superlinear Convergence for L1-Regularized Problems

Consider minimizing a differentiable function f with L1-regularization,

min
x
F (x) := f(x) + λ‖x‖1,

E.g., LASSO: F (x) = 1
2]‖Ax− b‖

2 + λ‖x‖1 for λ > 0.

→ Using the BCD method with:
Variable blocks to choose the “best” M variables to update at each step.
Greedy BGS-q selection rule (or variations like those presented earlier).

→ We prove identification of the sparsity pattern of x∗ for finite k.
Similar results are known for cyclic and random selection.
BUT with greedy, if M > nnz(x∗), then after identifying the sparsity pattern, the
cubic update is equivalent to cubic-regularized Newton on the non-zeroes...

→ SUPERLINEAR CONVERGENCE!
17 / 22



Exact Updates for LASSO and SVMs

For LASSO and SVMs, possible to do exact block updates using
homotopy methods.

Roughly cost O(M3)→ efficient for updating thousands of variables at once.

Once we identify nnz(x∗), using M > nnz(x∗) and exact updates yields exact
optimal solution...

→ FINITE TERMINATION!

18 / 22



Exact Updates for LASSO and SVMs

For LASSO and SVMs, possible to do exact block updates using
homotopy methods.

Roughly cost O(M3)→ efficient for updating thousands of variables at once.
Once we identify nnz(x∗), using M > nnz(x∗) and exact updates yields exact
optimal solution...

→ FINITE TERMINATION!

18 / 22



Exact Updates for LASSO and SVMs

For LASSO and SVMs, possible to do exact block updates using
homotopy methods.

Roughly cost O(M3)→ efficient for updating thousands of variables at once.
Once we identify nnz(x∗), using M > nnz(x∗) and exact updates yields exact
optimal solution...

→ FINITE TERMINATION!

18 / 22



Experiment: Dual SVM

Comparing update methods using variable blocks with greedy selection.

19 / 22



Message-Passing for Sparse Quadratics

Given the amazing properties we get for LASSO/SVMs with exact updates,

are there other problems that allow efficient exact updates?

Obvious choice is quadratics: can do exact updates in O(M3).
Allows big-but-not-too-big blocks.

→ For sparse quadratics we can often do exact updates for much larger M .
E.g., Quadratic with lattice-structured non-zero pattern.

Classic red-black ordering.

Allows blocks of size n/2 for O(n), but loses dependencies.

→ Exploit connection to Gaussian Markov random fields, update tree-structured
blocks in O(M) using Gaussian belief propagation.

For lattice-structured graphs, can use blocks of size n/2 in O(n).

Maintains modelling dependencies.

20 / 22



Message-Passing for Sparse Quadratics

Given the amazing properties we get for LASSO/SVMs with exact updates,

are there other problems that allow efficient exact updates?

Obvious choice is quadratics: can do exact updates in O(M3).
Allows big-but-not-too-big blocks.

→ For sparse quadratics we can often do exact updates for much larger M .
E.g., Quadratic with lattice-structured non-zero pattern.

Classic red-black ordering.

Allows blocks of size n/2 for O(n), but loses dependencies.

→ Exploit connection to Gaussian Markov random fields, update tree-structured
blocks in O(M) using Gaussian belief propagation.

For lattice-structured graphs, can use blocks of size n/2 in O(n).

Maintains modelling dependencies.

20 / 22



Message-Passing for Sparse Quadratics

Given the amazing properties we get for LASSO/SVMs with exact updates,

are there other problems that allow efficient exact updates?

Obvious choice is quadratics: can do exact updates in O(M3).
Allows big-but-not-too-big blocks.

→ For sparse quadratics we can often do exact updates for much larger M .
E.g., Quadratic with lattice-structured non-zero pattern.

Classic red-black ordering.

Allows blocks of size n/2 for O(n), but loses dependencies.

→ Exploit connection to Gaussian Markov random fields, update tree-structured
blocks in O(M) using Gaussian belief propagation.

For lattice-structured graphs, can use blocks of size n/2 in O(n).

Maintains modelling dependencies.

20 / 22



Message-Passing for Sparse Quadratics

Given the amazing properties we get for LASSO/SVMs with exact updates,

are there other problems that allow efficient exact updates?

Obvious choice is quadratics: can do exact updates in O(M3).
Allows big-but-not-too-big blocks.

→ For sparse quadratics we can often do exact updates for much larger M .
E.g., Quadratic with lattice-structured non-zero pattern.

Classic red-black ordering.

Allows blocks of size n/2 for O(n), but loses dependencies.

→ Exploit connection to Gaussian Markov random fields, update tree-structured
blocks in O(M) using Gaussian belief propagation.

For lattice-structured graphs, can use blocks of size n/2 in O(n).

Maintains modelling dependencies.

20 / 22



Message-Passing for Sparse Quadratics

Given the amazing properties we get for LASSO/SVMs with exact updates,

are there other problems that allow efficient exact updates?

Obvious choice is quadratics: can do exact updates in O(M3).
Allows big-but-not-too-big blocks.

→ For sparse quadratics we can often do exact updates for much larger M .
E.g., Quadratic with lattice-structured non-zero pattern.

Classic red-black ordering.

Allows blocks of size n/2 for O(n), but loses dependencies.

→ Exploit connection to Gaussian Markov random fields, update tree-structured
blocks in O(M) using Gaussian belief propagation.

For lattice-structured graphs, can use blocks of size n/2 in O(n).

Maintains modelling dependencies.

20 / 22



Message-Passing for Sparse Quadratics

Given the amazing properties we get for LASSO/SVMs with exact updates,

are there other problems that allow efficient exact updates?

Obvious choice is quadratics: can do exact updates in O(M3).
Allows big-but-not-too-big blocks.

→ For sparse quadratics we can often do exact updates for much larger M .
E.g., Quadratic with lattice-structured non-zero pattern.

Classic red-black ordering.

Allows blocks of size n/2 for O(n), but loses dependencies.

→ Exploit connection to Gaussian Markov random fields, update tree-structured
blocks in O(M) using Gaussian belief propagation.

For lattice-structured graphs, can use blocks of size n/2 in O(n).

Maintains modelling dependencies.

20 / 22



Experiment: Sparse Quadratic Problem

Comparing exact updates using variable blocks with greedy selection.

Exact solver uses M = 8, Gaussian belief propagation method uses M = 83.
NP-hard to choose best “tree-structure” block.
→ Use approximation method that performs substantially better than BGSD.

21 / 22



Discussion

Propose several greedy block selection rules for fixed and variable blocks.

Propose cubic regularization update.
Uses instantaneous Hessian.
Achieves superlinear convergence for problems with certain structure.

Propose using exact homotopy update rule for LASSO and SVMs.
Greedy block updates have “active set” identification property for LASSO, SMVs.
Superlinear convergence with variable blocks and higher order updates.
Finite convergence with variable blocks and exact updates.

Propose optimal block update strategy for sparse quadratic problems.
Use “tree-structured” blocks.
Exploits Gaussian belief propagation algorithm developed for GMRFs.
Requires linear time in block size.

22 / 22



Discussion

Propose several greedy block selection rules for fixed and variable blocks.

Propose cubic regularization update.
Uses instantaneous Hessian.
Achieves superlinear convergence for problems with certain structure.

Propose using exact homotopy update rule for LASSO and SVMs.
Greedy block updates have “active set” identification property for LASSO, SMVs.
Superlinear convergence with variable blocks and higher order updates.
Finite convergence with variable blocks and exact updates.

Propose optimal block update strategy for sparse quadratic problems.
Use “tree-structured” blocks.
Exploits Gaussian belief propagation algorithm developed for GMRFs.
Requires linear time in block size.

22 / 22



Discussion

Propose several greedy block selection rules for fixed and variable blocks.

Propose cubic regularization update.
Uses instantaneous Hessian.
Achieves superlinear convergence for problems with certain structure.

Propose using exact homotopy update rule for LASSO and SVMs.
Greedy block updates have “active set” identification property for LASSO, SMVs.
Superlinear convergence with variable blocks and higher order updates.
Finite convergence with variable blocks and exact updates.

Propose optimal block update strategy for sparse quadratic problems.
Use “tree-structured” blocks.
Exploits Gaussian belief propagation algorithm developed for GMRFs.
Requires linear time in block size.

22 / 22



Discussion

Propose several greedy block selection rules for fixed and variable blocks.

Propose cubic regularization update.
Uses instantaneous Hessian.
Achieves superlinear convergence for problems with certain structure.

Propose using exact homotopy update rule for LASSO and SVMs.
Greedy block updates have “active set” identification property for LASSO, SMVs.
Superlinear convergence with variable blocks and higher order updates.
Finite convergence with variable blocks and exact updates.

Propose optimal block update strategy for sparse quadratic problems.
Use “tree-structured” blocks.
Exploits Gaussian belief propagation algorithm developed for GMRFs.
Requires linear time in block size.

22 / 22


