
Let’s Make Block Coordinate Descent Go Fast:

Faster Greedy Rules, Message-Passing,

Active-Set Complexity, and Superlinear Convergence

Julie Nutini∗ Issam Laradji† Mark Schmidt‡‡

February 5, 2018

Abstract

Block coordinate descent (BCD) methods are widely-used for large-scale numerical optimization be-
cause of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability
to exploit problem structure. Three main algorithmic choices influence the performance of BCD meth-
ods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we
explore all three of these building blocks and propose variations for each that can lead to significantly
faster BCD methods. We (i) propose new greedy block-selection strategies that guarantee more progress
per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new
rules when using “variable” blocks; (iii) explore the use of message-passing to compute matrix or Newton
updates efficiently on huge blocks for problems with a sparse dependency between variables; and (iv)
consider optimal active manifold identification, which leads to bounds on the “active-set complexity” of
BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in
some cases finite termination at an optimal solution). We support all of our findings with numerical
results for the classic machine learning problems of least squares, logistic regression, multi-class logistic
regression, label propagation, and L1-regularization.

1 Introduction

Block coordinate descent (BCD) methods have become one of our key tools for solving some of the most
important large-scale optimization problems. This is due to their typical ease of implementation, low memory
requirements, cheap iteration costs, adaptability to distributed settings, ability to use problem structure, and
numerical performance. Notably, they have been used for almost two decades in the context of L1-regularized
least squares (LASSO) [Fu, 1998, Sardy et al., 2000] and support vector machines (SVMs) [Chang and Lin,
2011, Joachims, 1999]. Indeed, randomized BCD methods have recently been used to solve instances of these
widely-used models with a billion variables [Richtárik and Takáč, 2014], while for “kernelized” SVMs greedy
BCD methods remain among the state of the art methods [You et al., 2016]. Due to the wide use of these
models, any improvements on the convergence of BCD methods will affect a myriad of applications.

While there are a variety of ways to implement a BCD method, the three main building blocks that affect
its performance are:

1. Blocking strategy. We need to define a set of possible “blocks” of problem variables that we might
choose to update at a particular iteration. Two common strategies are to form a partition of the
coordinates into disjoint sets (we call this fixed blocks) or to consider any possible subset of coordinates
as a “block” (we call this variable blocks). Typical choices include using a set of fixed blocks related to
the problem structure, or using variable blocks by randomly sampling a fixed number of coordinates.

∗Department of Computer Science, University of British Columbia (jnutini@cs.ubc.ca).
†Department of Computer Science, University of British Columbia (issamou@cs.ubc.ca).
‡Department of Computer Science, University of British Columbia (schmidtm@cs.ubc.ca).

1

2. Block selection rule. Given a set of possible blocks, we need a rule to select a block of corresponding
variables to update. Classic choices include cyclically going through a fixed ordering of blocks, choosing
random blocks, choosing the block with the largest gradient (the Gauss-Southwell rule), or choosing
the block that leads to the largest improvement.

3. Block update rule. Given the block we have selected, we need to decide how to update the block of
corresponding variables. Typical choices include performing a gradient descent iteration, computing
the Newton direction and performing a line-search, or computing the optimal update of the block by
subspace minimization.

In the next section we introduce our notation, review the standard choices behind BCD algorithms, and
discuss problem structures where BCD is suitable. Subsequently, the following sections explore a wide variety
of ways to speed up BCD by modifying the three building blocks above.

1. In Section 3 we propose block selection rules that are variants of the Gauss-Southwell rule, but that
incorporate knowledge of Lipschitz constants in order to give better bounds on the progress made at
each iteration. We also give a general result characterizing the convergence rate obtained using the
Gauss-Southwell rule as well as the new greedy rules, under both the Polyak- Lojasiewicz inequality
and for general (potentially non-convex) functions.

2. In Section 4 we discuss practical implementation issues. This includes how to approximate the new
rules in the variable-block setting, how to estimate the Lipschitz constants, how to efficiently implement
line-searches, how the blocking strategy interacts with greedy rules, and why we should prefer Newton
updates over the “matrix updates” of recent works.

3. In Section 5 we show how second-order updates, or the exact update for quadratic functions, can be
computed in linear-time for problems with sparse dependencies when using “forest-structured” blocks.
This allows us to use huge block sizes for problems with sparse dependencies, and uses a connection
between sparse quadratic functions and Gaussian Markov random fields (GMRFs) by exploiting the
“message-passing” algorithms developed for GMRFs.

4. In Section 6 we show that greedy BCD methods have a finite-time manifold identification property
for problems with separable non-smooth structures like bound constraints or L1-regularization. Our
analysis notably leads to bounds on the number of iterations required to reach the optimal manifold
(“active-set complexity”). Further, when using greedy rules with variable blocks this leads to super-
linear convergence for problems with sufficiently-sparse solutions (when we use updates incorporating
second-order information). In the special case of LASSO and SVM problems, we further show that
optimal updates are possible. This leads to finite convergence for SVM and LASSO problems with
sufficiently-sparse solutions when using greedy selection and sufficiently-large variable blocks.

We note that many related ideas have been explored by others in the context of BCD methods and we will go
into detail about these related works in subsequent sections. In Section 7 we use a variety of problems arising
in machine learning to evaluate the effects of these choices on BCD implementations. These experiments
indicate that in some cases the performance improvement obtained by using these enhanced methods can be
dramatic. The source code and data files required to reproduce the experimental results of this paper can
be downloaded from: https://github.com/IssamLaradji/BlockCoordinateDescent.

2 Block Coordinate Descent Algorithms

We first consider the problem of minimizing a differentiable multivariate function,

arg min
x∈IRn

f(x). (1)

2

At iteration k of a BCD algorithm, we first select a block bk ⊆ {1, 2, . . . , n} and then update the subvector

xbk ∈ IR|bk| corresponding to these variables,

xk+1
bk

= xkbk + dk.

Coordinates of xk+1 that are not included in bk are simply kept at their previous value. The vector dk ∈ IR|bk|

is typically selected to provide descent in the direction of the reduced dimensional subproblem,

dk ∈ arg min
d∈IR|bk|

f(xk + Ubkd), (2)

where we construct Ubk ∈ {0, 1}n×|bk| from the columns of the identity matrix corresponding to the coordi-
nates in bk. Using this notation, we have

xbk = UTbkx,

which allows us to write the BCD update of all n variables in the form

xk+1 = xk + Ubkd
k.

There are many possible ways to define the block bk as well as the direction dk. Typically we have a maximum
block size τ , which is chosen to be the largest number of variables that we can efficiently update at once.
Given τ that divides evenly into n, consider a simple ordered fixed partition of the coordinates into a set B
of n/τ blocks,

B = {{1, 2, . . . , τ}, {τ + 1, τ + 2, . . . , 2τ}, . . . , {(n− τ) + 1, (n− τ) + 2, . . . , n}}.

To select the block in B to update at each iteration we could simply repeatedly cycle through this set in
order. A simple choice of dk is the negative gradient corresponding to the coordinates in bk, multiplied by a
scalar step-size αk that is sufficiently small to ensure that we decrease the objective function. This leads to
a gradient update of the form

xk+1 = xk − αkUbk∇bkf(xk), (3)

where ∇bkf(xk) are the elements of the gradient ∇f(xk) corresponding to the coordinates in bk. While this
gradient update and cyclic selection among an ordered fixed partition is simple, we can often drastically
improve the performance using more clever choices. We highlight some common alternative choices in the
next three subsections.

2.1 Block Selection Rules

Repeatedly going through a fixed partition of the coordinates is known as cyclic selection [Bertsekas, 2016],
and this is referred to as Gauss-Seidel when solving linear systems [Ortega and Rheinboldt, 1970]. The
performance of cyclic selection may suffer if the order the blocks are cycled through is chosen poorly, but
it has been shown that random permutations can fix a worst case for cyclic CD [Lee and Wright, 2016].
A variation on cyclic selection is “essentially” cyclic selection where each block must be selected at least
every m iterations for some fixed m that is larger than the number of blocks [Bertsekas, 2016]. Alternately,
several authors have explored the advantages of randomized block selection [Nesterov, 2010, Richtárik and
Takáč, 2014]. The simplest randomized selection rule is to select one of the blocks uniformly at random.
However, several recent works show dramatic performance improvements over this naive random sampling
by incorporating knowledge of the Lipschitz continuity properties of the gradients of the blocks [Nesterov,
2010, Qu and Richtárik, 2016, Richtárik and Takáč, 2016] or more recently by trying to estimate the optimal
sampling distribution online [Namkoong et al., 2017].

An alternative to cyclic and random block selection is greedy selection. Greedy methods solve an opti-
mization problem to select the “best” block at each iteration. A classic example of greedy selection is the
block Gauss-Southwell (GS) rule, which chooses the block whose gradient has the largest Euclidean norm,

bk ∈ arg max
b∈B

‖∇bf(xk)‖, (4)

3

where we use B as the set of possible blocks. This rule tends to make more progress per iteration in theory
and practice than randomized selection [Dhillon et al., 2011, Nutini et al., 2015]. Unfortunately, for many
problems it is more expensive than cyclic or randomized selection. However, several recent works show that
certain problem structures allow efficient calculation of GS-style rules [Fountoulakis et al., 2016, Lei et al.,
2016, Meshi et al., 2012, Nutini et al., 2015], allow efficient approximation of GS-style rules [Dhillon et al.,
2011, Stich et al., 2017, Thoppe et al., 2014], or allow other rules that try to improve on the progress made
at each iteration [Csiba et al., 2015, Glasmachers and Dogan, 2013].

The ideal selection rule is the maximum improvement (MI) rule, which chooses the block that decreases
the function value by the largest amount. Notable recent applications of this rule include leading eigenvector
computation [Li et al., 2015], polynomial optimization [Chen et al., 2012], and fitting Gaussian processes [Bo
and Sminchisescu, 2012]. While recent works explore computing or approximating the MI rule for quadratic
functions [Bo and Sminchisescu, 2012, Thoppe et al., 2014], in general the MI rule is much more expensive
than the GS rule.

2.2 Fixed vs. Variable Blocks

While the choice of the block to update has a significant effect on performance, how we define the set of
possible blocks also has a major impact. Although other variations are possible, we highlight below the two
most common blocking strategies:

1. Fixed blocks. This method uses a partition of the coordinates into disjoint blocks, as in our simple
example above. This partition is typically chosen prior to the first iteration of the BCD algorithm,
and this set of blocks is then held fixed for all iterations of the algorithm. We often use blocks of
roughly equal size, so if we use blocks of size τ this method might partition the n coordinates into n/τ
blocks. Generic ways to partition the coordinates include “in order” as we did above [Bertsekas, 2016],
or using a random partition [Nesterov, 2010]. Alternatively, the partition may exploit some inherent
substructure of the objective function such as block separability [Meier et al., 2008], the ability to
efficiently solve the corresponding sub-problem (2) with respect to the blocks [Sardy et al., 2000], or
based on the Lipschitz constants of the resulting blocks [Csiba and Richtárik, 2016, Thoppe et al.,
2014].

2. Variable blocks. Instead of restricting our blocks to a pre-defined partition of the coordinates, we
could instead consider choosing any of the 2n − 1 possible sets of coordinates as our block. In the
randomized setting, this is referred to as “arbitrary” sampling [Qu and Richtárik, 2016, Richtárik and
Takáč, 2016]. We say that such strategies use variable blocks because we are not choosing from a
partition of the coordinates that is fixed across the iterations. Due to computational considerations,
when using variable blocks we typically want to impose a restriction on the size of the blocks. For
example, we could construct a block of size τ by randomly sampling τ coordinates without replacement,
which is known as τ -nice sampling [Qu and Richtárik, 2016, Richtárik and Takáč, 2016]. Alternately,
we could include each coordinate in the block bk with some probability like τ/n (so the block size may
change across iterations but we control its expected size). A version of the greedy Gauss-Southwell
rule (4) with variable blocks would select the τ coordinates corresponding to the elements of the gradient
with largest magnitudes [Tseng and Yun, 2009a]. This can be viewed as a greedy variant of τ -nice
sampling. While we can find these τ coordinates easily, computing the MI rule with variable blocks
is much more difficult. Indeed, while methods exist to compute the MI rule for quadratics with fixed
blocks [Thoppe et al., 2014], with variable blocks it is NP-hard to compute the MI rule and existing
works resort to approximations [Bo and Sminchisescu, 2012].

2.3 Block Update Rules

The selection of the update vector dk can significantly affect performance of the BCD method. For example,
in the gradient update (3) the method can be sensitive to the choice of the step-size αk. Classic ways

4

to set αk include using a fixed step-size (with each block possibly having its own fixed step-size), using
an approximate line-search, or using the optimal step-size (which has a closed-form solution for quadratic
objectives) [Bertsekas, 2016].

The most common alternative to the gradient update above is a Newton update,

dk = −αk
(
∇2
bkbk

f(xk)
)−1∇bkf(xk), (5)

where we might replace the instantaneous Hessian ∇2
bkbk

f(xk) by a positive-definite approximation to it.
In this context the step-size αk is again a step-size that can be chosen using similar strategies to those
mentioned above. Several recent works analyze such updates and show that they can substantially improve
the convergence rate [Fountoulakis and Tappenden, 2015, Qu et al., 2016, Tappenden et al., 2016]. For
special problem classes, another possible type of update is what we will call the optimal update. This
update chooses dk to solve (2). In other words, it updates the block bk to maximally decrease the objective
function.

2.4 Problems of Interest

BCD methods tend to be good choices for problems where we can update all variables for roughly the same
cost as computing the gradient. Two common classes of objective functions where single-coordinate descent
methods tend to be suitable are thus

h1(x) :=

n∑
i=1

gi(xi) + f(Ax), or h2(x) :=
∑
i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj),

where f is smooth and cheap, the fij are smooth, G = {V,E} is a graph, and A is a matrix [Nutini et al.,
2015]. Examples of problems leading to functions of the form h1 include least squares, logistic regression,
LASSO, and SVMs.1 The most important example of problem h2 is quadratic functions, which are crucial
to many aspects of scientific computing.2

Problems h1 and h2 are also suitable for BCD methods, as they tend to admit efficient block update
strategies. In general, if single-coordinate descent is efficient for a problem, then BCD methods are also
efficient for that problem and this applies whether we use fixed blocks or variable blocks. Other scenarios
where coordinate descent and BCD methods have proven useful include matrix and tensor factorization
methods [Xu and Yin, 2013, Yu et al., 2012], problems involving log-determinants [Hsieh et al., 2013, Schein-
berg and Rish, 2009], and problems involving convex extensions of sub-modular functions [Ene and Nguyen,
2015, Jegelka et al., 2013].

An important point to note is that there are special problem classes where BCD with fixed blocks is
reasonable even though using variable blocks (or single-coordinate updates) would not be suitable. For
example, consider a variant of problem h1 where we use group L1-regularization [Bakin, 1999],

h3(x) :=
∑
b∈B

‖xb‖+ f(Ax), (6)

where B is a partition of the coordinates. We cannot apply single-coordinate updates to this problem due to
the non-smooth norms, but we can take advantage of the group-separable structure in the sum of norms and
apply BCD using the blocks in B [Meier et al., 2008, Qin et al., 2013]. Sardy et al. [2000] in their early work
on solving LASSO problems consider problem h1 where the columns of A are the union of a set of orthogonal
matrices. By choosing the fixed blocks to correspond to the orthogonal matrices, it is very efficient to apply
BCD. In appendix A, we outline how fixed blocks lead to an efficient greedy BCD method for the widely-used
multi-class logistic regression problem when the data has a certain sparsity level.

1Coordinate descent remains suitable for multi-linear generalizations of problem h1 like functions of the form f(XY) where
X and Y are both matrix variables.

2Problem h2 can be generalized to allow functions between more than 2 variables, and coordinate descent remains suitable
as long as the expected number of functions in which each variable appears is n-times smaller than the total number of functions
(assuming each function has a constant cost).

5

3 Improved Greedy Rules

Previous works have identified that the greedy GS rule can lead to suboptimal progress, and have proposed
rules that are closer to the MI rule for the special case of quadratic functions [Bo and Sminchisescu, 2012,
Thoppe et al., 2014]. However, for non-quadratic functions it is not obvious how we should approximate the
MI rule. As an intermediate between the GS rule and the MI rule for general functions, a new rule known
as the Gauss-Southwell-Lipschitz (GSL) rule has recently been introduced [Nutini et al., 2015]. The GSL
rule was proposed in the case of single-coordinate updates, and is a variant of the GS rule that incorporates
Lipschitz information to guarantee more progress per iteration. The GSL rule is equivalent to the MI rule
in the special case of quadratic functions, so either rule can be used in that setting. However, the MI rule
involves optimizing over a subspace which will typically be expensive for non-quadratic functions. After
reviewing the classic block GS rule, in this section we consider several possible block extensions of the GSL
rule that give a better approximation to the MI rule without requiring subspace optimization.

3.1 Block Gauss-Southwell

When analyzing BCD methods we typically assume that the gradient of each block b is Lb-Lipschitz contin-
uous, meaning that for all x ∈ IRn and d ∈ IR|b|

‖∇bf(x+ Ubd)−∇bf(x)‖ ≤ Lb‖d‖, (7)

for some constant Lb > 0. This is a standard assumption, and in appendix B we give bounds on Lb for the
common data-fitting models of least squares and logistic regression. If we apply the descent lemma [Bertsekas,
2016] to the reduced sub-problem (2) associated with some block bk selected at iteration k, then we obtain
the following upper bound on the function value progress,

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
Lbk
2
‖xk+1 − xk‖2 (8)

= f(xk) + 〈∇bkf(xk), dk〉+
Lbk
2
‖dk‖2.

The right side is minimized in terms of dk under the choice

dk = − 1

Lbk
∇bkf(xk), (9)

which is simply a gradient update with a step-size of αk = 1/Lbk . Substituting this into our upper bound,
we obtain

f(xk+1) ≤ f(xk)− 1

2Lbk
‖∇bkf(xk)‖2. (10)

A reasonable way to choose a block bk at each iteration is by minimizing the upper bound in (10) with
respect to bk. For example, if we assume that Lb is the same for all blocks b then we derive the GS rule (4)
of choosing the bk that maximizes the gradient norm.

We can use the bound (10) to compare the progress made by different selection rules. For example,
this bound indicates that the GS rule can make more progress with variable blocks than with fixed blocks
(under the usual setting where the fixed blocks are a subset of the possible variable blocks). In particular,
consider the case where we have partitioned the coordinates into blocks of size τ and we are comparing this
to using variable blocks of size τ . The case where there is no advantage for variable blocks is when the
indices corresponding to the τ -largest |∇if(xk)| values are in one of the fixed partitions; in this (unlikely)
case the GS rule with fixed blocks and variable blocks will choose the same variables to update. The case
where we see the largest advantage of using variable blocks is when each of the indices corresponding to the
τ -largest |∇if(xk)| values are in different blocks of the fixed partition; in this case the last term in (10) can
be improved by a factor as large as τ2 when using variable blocks instead of fixed blocks. Thus, with larger
blocks there is more of an advantage to using variable blocks over fixed blocks.

6

3.2 Block Gauss-Southwell-Lipschitz

The GS rule is not the optimal block selection rule in terms of the bound (10) if we know the block-Lipschitz
constants Lb. Instead of choosing the block with largest norm, consider minimizing (10) in terms of bk,

bk ∈ arg max
b∈B

{
‖∇bf(xk)‖2

Lb

}
. (11)

We call this the block Gauss-Southwell-Lipschitz (GSL) rule. If all Lb are the same, then the GSL rule
is equivalent to the classic GS rule. But in the typical case where the Lb differ, the GSL rule guarantees more
progress than the GS rule since it incorporates the gradient information as well as the Lipschitz constants Lb.
For example, it reflects that if the gradients of two blocks are similar but their Lipschitz constants are very
different, then we can guarantee more progress by updating the block with the smaller Lipschitz constant.
In the extreme case, for both fixed and variable blocks the GSL rule improves the bound (10) over the GS
rule by a factor as large as (maxb∈B Lb)/(minb∈B Lb).

The block GSL rule in (11) is a simple generalization of the single-coordinate GSL rule to blocks of any
size. However, it loses a key feature of the single-coordinate GSL rule: the block GSL rule is not equivalent
to the MI rule for quadratic functions. Unlike the single-coordinate case, where ∇2

iif(xk) = Li so that (8)
holds with equality, for the block case we only have ∇2

bbf(xk) � Lb so (8) may underestimate the progress
that is possible in certain directions. In the next section we give a second generalization of the GSL rule
that is equivalent to the MI rule for quadratics.

3.3 Block Gauss-Southwell-Quadratic

For single-coordinate updates, the bound in (10) is the tightest quadratic bound on progress we can expect
given only the assumption of block Lipschitz-continuity (it holds with equality for quadratic functions).
However, for block updates of more than one variable we can obtain a tighter quadratic bound using general
quadratic norms of the form ‖ · ‖H =

√
〈H·, ·〉 for some positive-definite matrix H. In particular, assume

that each block has a Lipschitz-continuous gradient with Lb = 1 for a particular positive-definite matrix
Hb ∈ IR|b|×|b|, meaning that

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

,

for all x ∈ IRn and d ∈ IR|b|. Due to the equivalence between norms, this merely changes how we measure the
continuity of the gradient and is not imposing any new assumptions. Indeed, the block Lipschitz-continuity
assumption in (7) is just a special case of the above with Hb = LbI, where I is the |b| × |b| identity matrix.
Although this characterization of Lipschitz continuity appears more complex, for some functions it is actually
computationally cheaper to construct matrices Hb than to find valid bounds Lb. We show this in appendix B
for the cases of least squares and logistic regression.

Under this alternative characterization of the Lipschitz assumption, at each iteration k we have

f(xk+1) ≤ f(xk) + 〈∇bkf(xk), dk〉+
1

2
‖dk‖2Hbk

. (12)

The left-hand side of (12) is minimized when

dk = − (Hbk)
−1∇bkf(xk), (13)

which we will call the matrix update of a block. Although this is equivalent to Newton’s method for
quadratic functions, we use the name “matrix update” rather than “Newton’s method” here to distinguish
two types of updates: Newton’s method is based on the instantaneous Hessian ∇2

bbf(xk), while the matrix
update is based on a matrix Hb that upper bounds the Hessian for all x.3 We will discuss Newton updates
in subsequent sections, but substituting the matrix update into the upper bound yields

f(xk+1) ≤ f(xk)− 1

2
‖∇bkf(xk)‖2

H−1
bk

. (14)

3We say that a matrix A “upper bounds” a matrix B, written A � B, if for all x we have xTAx ≥ xTBx.

7

Consider a simple quadratic function f(x) = xTAx for a positive-definite matrix A. In this case we can take
Hb to be the sub-matrix Abb while in our previous bound we would require Lb to be the maximum eigenvalue
of this sub-matrix. Thus, in the worst case (where ∇bkf(xk) is in the span of the principal eigenvectors
of Abb) the new bound is at least as good as (10). But if the eigenvalues of Abb are spread out then this
bound shows that the matrix update will typically guarantee substantially more progress; in this case the
quadratic bound (14) can improve on the bound in (10) by a factor as large as the condition number of Abb
when updating block b. The update (13) was analyzed for BCD methods in several recent works [Qu et al.,
2016, Tappenden et al., 2016], which considered random selection of the blocks. They show that this update
provably reduces the number of iterations required, and in some cases dramatically. For the special case of
quadratic functions where (14) holds with equality, greedy rules based on minimizing this bound have been
explored for both fixed [Thoppe et al., 2014] and variable [Bo and Sminchisescu, 2012] blocks.

Rather than focusing on the special case of quadratic functions, we want to define a better greedy rule
than (11) for functions with Lipschitz-continuous gradients. By optimizing (14) in terms of bk we obtain a
second generalization of the GSL rule,

bk ∈ arg max
b∈B

{
‖∇bf(xk)‖H−1

b

}
≡ arg max

b∈B

{
∇bf(xk)TH−1

b ∇bf(xk)
}
, (15)

which we call the block Gauss-Southwell quadratic (GSQ) rule.4 Since (14) holds with equality for
quadratics this new rule is equivalent to the MI rule in that case. But this rule also applies to non-quadratic
functions where it guarantees a better bound on progress than the GS rule (and the GSL rule).

3.4 Block Gauss-Southwell-Diagonal

While the GSQ rule has appealing theoretical properties, for many problems it may be difficult to find full
matrices Hb and their storage may also be an issue. Previous related works [Csiba and Richtárik, 2017, Qu
et al., 2016, Tseng and Yun, 2009a] address this issue by restricting the matrices Hb to be diagonal matrices
Db. Under this choice we obtain a rule of the form

bk ∈ arg max
b∈B

{
‖∇bf(xk)‖D−1

b

}
≡ arg max

b∈B

{∑
i∈b

|∇if(xk)|2

Db,i

}
, (16)

where we are using Db,i to refer to the diagonal element corresponding to coordinate i in block b. We call this
the block Gauss-Southwell diagonal (GSD) rule. This bound arises if we consider a gradient update,
where coordinate i has a constant step-size of D−1

b,i when updated as part of block b. This rule gives an
intermediate approach that can guarantee more progress per iteration than the GSL rule, but that may be
easier to implement than the GSQ rule.

3.5 Convergence Rate under Polyak- Lojasiewicz

Our discussion above focuses on the progress we can guarantee at each iteration, assuming only that the
function has a Lipschitz-continuous gradient. Under additional assumptions, it is possible to use these
progress bounds to derive convergence rates on the overall BCD method. For example, we say that a
function f satisfies the Polyak- Lojasiewicz (PL) inequality [Polyak, 1963] if for all x we have for some µ > 0
that

1

2
(‖∇f(x)‖∗)2 ≥ µ (f(x)− f∗) , (17)

where ‖ · ‖∗ can be any norm and f∗ is the optimal function value. The function class satisfying this
inequality includes all strongly-convex functions but also includes a variety of other important problems like

4While preparing this work for submission, we were made aware of a work that independently proposed this rule under
the name “greedy mini-batch” rule [Csiba and Richtárik, 2017]. However, our focus on addressing the computational issues
associated with the rule is quite different from that work, which focuses on tight convergence analyses.

8

least squares [Karimi et al., 2016]. This inequality leads to a simple proof of the linear convergence of any
algorithm which has a progress bound of the form

f(xk+1) ≤ f(xk)− 1

2
‖∇f(xk)‖2∗, (18)

such as gradient descent or coordinate descent with the GS rule [Karimi et al., 2016].

Theorem 1. Assume f satisfies the PL-inequality (17) for some µ > 0 and norm ‖ · ‖∗. Any algorithm that
satisfies a progress bound of the form (18) with respect to the same norm ‖ · ‖∗ obtains the following linear
convergence rate,

f(xk+1)− f∗ ≤ (1− µ)k
[
f(x0)− f∗

]
. (19)

Proof. By subtracting f∗ from both sides of (18) and applying (17) directly, we obtain our result by recursion.

Thus, if we can describe the progress obtained using a particular block selection rule and block update
rule in the form of (18), then we have a linear rate of convergence for BCD on this class of functions. It is
straightforward to do this using an appropriately defined norm, as shown in the following corollary.

Corollary 1. Assume ∇f is Lipschitz continuous (12) and that f satisfies the PL-inequality (17) in the
norm defined by

‖v‖B = max
b∈B
‖vb‖Hb−1 , (20)

for some µ > 0 and matrix Hb ∈ IR|b|×|b|. Then the BCD method using either the GSQ, GSL, GSD or GS
selection rule achieves a linear convergence rate of the form (19).

Proof. Using the definition of the GSQ rule (15) in the progress bound resulting from the Lipschitz continuity
of ∇f and the matrix update (14), we have

f(xk+1) ≤ f(xk)− 1

2
max
b∈B

{
‖∇bf(xk)‖2

H−1
b

}
= f(xk)− 1

2
‖∇f(xk)‖2B.

(21)

By Theorem 1 and the observation that the GSL, GSD and GS rules are all special cases of the GSQ rule
corresponding to specific choices of Hb, we have our result.

We refer the reader to the work of Csiba and Richtárik for tools that allow alternative analyses of BCD
methods [Csiba and Richtárik, 2017].

3.6 Convergence Rate with General Functions

The PL inequality is satisfied for many problems of practical interest, and is even satisfied for some non-
convex functions. However, general non-convex functions do not satisfy the PL inequality and thus the
analysis of the previous section does not apply. Without a condition like the PL inequality, it is difficult to
show convergence to the optimal function value f∗ (since we should not expect a local optimization method to
be able to find the global solution of functions that may be NP-hard to minimize). However, the bound (21)
still implies a weaker type of convergence rate even for general non-convex problems. The following result is
a generalization of a standard argument for the convergence rate of gradient descent [Nesterov, 2004], and
gives us an idea of how fast the BCD method is able to find a point resembling a stationary point even in
the general non-convex setting.

Theorem 2. Assume ∇f is Lipschitz continuous (12) and that f is bounded below by some f∗. Then the
BCD method using either the GSQ, GSL, GSD or GS selection rule achieves the following convergence rate
of the minimum gradient norm,

min
t=0,1,...,k−1

‖∇f(xt)‖2B ≤
2(f(x0)− f∗)

k
.

9

Proof By rearranging (21), we have

1

2
‖∇f(xk)‖2B ≤ f(xk)− f(xk+1).

Summing this inequality over iterations t = 0 up to (k − 1) yields

1

2

k−1∑
t=0

‖∇f(xt)‖2B ≤ f(x0)− f(xk+1).

Using that all k elements in the sum are lower bounded by their minimum and that f(xk+1) ≥ f∗, we get

k

2

(
min

t=0,1,...,k−1
‖∇f(xt)‖2B

)
≤ f(x0)− f∗.

Due to the potential non-convexity we cannot say anything about the gradient norm of the final iteration, but
this shows that the minimum gradient norm converges to zero with an error at iteration k of O(1/k). This
is a global sublinear result, but note that if the algorithm eventually arrives and stays in a region satisfying
the PL inequality around a set of local optima, then the local convergence rate to this set of optima will
increase to be linear.

4 Practical Issues

The previous section defines straightforward new rules that yield a simple analysis. In practice there are
several issues that remain to be addressed. For example, it seems intractable to compute any of the new
rules in the case of variable blocks. Furthermore, we may not know the Lipschitz constants for our problem.
For fixed blocks we also need to consider how to partition the coordinates into blocks. Another issue is that
the dk choices used above do not incorporate the local Hessian information. Although how we address these
issues will depend on our particular application, in this section we discuss several issues associated with these
practical considerations.

4.1 Tractable GSD for Variable Blocks

The problem with using any of the new selection rules above in the case of variable blocks is that they
seem intractable to compute for any non-trivial block size. In particular, to compute the GSL rule using
variable blocks requires the calculation of Lb for each possible block, which seems intractable for any problem
of reasonable size. Since the GSL rule is a special case of the GSD and GSQ rules, these rules also seem
intractable in general. In this section we show how to restrict the GSD matrices so that this rule has the
same complexity as the classic GS rule.

Consider a variant of the GSD rule where each Db,i can depend on i but does not depend on b, so we
have Db,i = di for some value di ∈ IR+ for all blocks b. This gives a rule of the form

bk ∈ arg max
b∈B

{∑
i∈b

|∇if(xk)|2

di

}
. (22)

Unlike the general GSD rule, this rule has essentially the same complexity as the classic GS rule since it
simply involves finding the largest values of the ratio |∇if(xk)|2/di.

A natural choice of the di values would seem to be di = Li, since in this case we recover the GSL
rule if the blocks have a size of 1 (here we are using Li to refer to the coordinate-wise Lipschitz constant
of coordinate i). Unfortunately, this does not lead to a bound of the form (18) as needed in Theorems 1
and 2 because coordinate-wise Li-Lipschitz continuity with respect to the Euclidean norm does not imply
1-Lipschitz continuity with respect to the norm ‖ · ‖D−1

b
when the block size is larger than 1. Subsequently,

10

the steps under this choice may increase the objective function. A similar restriction on the Db matrices
in (22) is used in the implementation of Tseng and Yun based on the Hessian diagonals [Tseng and Yun,
2009a], but their approach similarly does not give an upper bound and thus they employ a line search in
their block update.

It is possible to avoid needing a line search by setting Db,i = Liτ , where τ is the maximum block size in B.
This still generalizes the single-coordinate GSL rule, and in appendix C we show that this leads to a bound
of the form (18) for twice-differentiable convex functions (thus Theorems 1 and 2 hold). If all blocks have
the same size then this approach selects the same block as using Db,i = Li, but the matching block update
uses a much-smaller step-size that guarantees descent. We do not advocate using this smaller step, but note
that the bound we derive also holds for alternate updates like taking a gradient update with αk = 1/Lbk or
using a matrix update based on Hbk .

The choice of Db,i = Liτ leads to a fairly pessimistic bound, but it is not obvious even for simple problems
how to choose an optimal set of Di values. Choosing these values is related to the problem of finding an
expected separable over-approximation (ESO), which arises in the context of randomized coordinate descent
methods [Richtárik and Takáč, 2016]. Qu and Richtárik give an extensive discussion of how we might bound
such quantities for certain problem structures [Qu and Richtárik, 2016]. In our experiments we also explored
another simple choice that is inspired by the “simultaneous iterative reconstruction technique” (SIRT) from
tomographic image reconstruction [Gregor and Fessler, 2015]. In this approach, we use a matrix upper bound
M on the full Hessian ∇2f(x) (for all x) and set5

Db,i =

n∑
j=1

|Mi,j |. (23)

We found that this choice worked better when using gradient updates, although using the simpler Liτ is less
expensive and was more effective when doing matrix updates.

By using the relationship Lb ≤
∑
i∈b Li ≤ |b|maxi∈b Li, two other ways we might consider defining a

more-tractable rule could be

bk ∈ arg max
b∈B

{∑
i∈b |∇if(xk)|2

|b|maxi∈b Li

}
, or bk ∈ arg max

b∈B

{∑
i∈b |∇if(xk)|2∑

i∈b Li

}
.

The rule on the left can be computed using dynamic programming while the rule on the right can be
computed using an algorithm of Megiddo [1979]. However, when using a step-size of 1/Lb we found both
rules performed similarly or worse to using the GSD rule with Di,b = Li (when paired with gradient or
matrix updates).6

4.2 Tractable GSQ for Variable Blocks

In order to make the GSQ rule tractable with variable blocks, we could similarly require that the entries of
Hb depend solely on the coordinates i ∈ b, so that Hb = Mb,b where M is a fixed matrix (as above) and
Mb,b refers to the sub-matrix corresponding to the coordinates in b. Our restriction on the GSD rule in the
previous section corresponds to the case where M is diagonal. In the full-matrix case, the block selected
according to this rule is given by the coordinates corresponding to the non-zero variables of an L0-constrained
quadratic minimization,

arg min
‖d‖0≤τ

{
f(xk) + 〈∇f(xk), d〉+

1

2
dTMd

}
, (24)

where ‖·‖0 is the number of non-zeroes. This selection rule is discussed in Tseng and Yun [2009a], but in their
implementation they use a diagonal M . Although this problem is NP-hard with a non-diagonal M , there is a

5It follow that D −M � 0 because it is symmetric and diagonally-dominant with non-negative diagonals.
6On the other hand, the rule on the right worked better if we forced the algorithms to use a step-size of 1/(

∑
i∈b Li). But

this lead to worse performance overall than using the larger 1/Lb step-size.

11

recent wealth of literature on algorithms for finding approximate solutions. For example, one of the simplest
local optimization methods for this problem is the iterative hard-thresholding (IHT) method [Blumensath and
Davies, 2009]. Another popular method for approximately solving this problem is the orthogonal matching
pursuit (OMP) method from signal processing which is also known as forward selection in statistics [Hocking,
1976, Pati et al., 1993]. Computing d via (24) is also equivalent to computing the MI rule for a quadratic
function, and thus we could alternately use the approximation of Bo and Sminchisescu [2012] for this problem.

Although it appears quite general, note that the exact GSQ rule under this restriction on Hb does not
guarantee as much progress as the more-general GSQ rule (if computed exactly) that we proposed in the
previous section. For some problems we can obtain tighter matrix bounds over blocks of variables than are
obtained by taking the sub-matrix of a fixed matrix-bound over all variables. We show this for the case of
multi-class logistic regression in appendix B. As a consequence of this result we conclude that there does not
appear to be a reason to use this restriction in the case of fixed blocks.

Although using the GSQ rule with variable blocks forces us to use an approximation, these approximations
might still select a block that makes more progress than methods based on diagonal approximations (which
ignore the strengths of dependencies between variables). It is possible that approximating the GSQ rule does
not necessarily lead to a bound of the form (18) as there may be no fixed norm for which this inequality
holds. However, in this case we can initialize the algorithm with an update rule that does achieve such a
bound in order to guarantee that Theorems 1 and 2 hold, since this initialization ensures that we do at least
as well as this reference block selection rule.

The main disadvantage of this approach for large-scale problems is the need to deal with the full matrix
M (which does not arise when using a diagonal approximation or using fixed blocks). In large-scale settings
we would need to consider matrices M with special structures like the sum of a diagonal matrix with a sparse
and/or a low-rank matrix.

4.3 Lipschitz Estimates for Fixed Blocks

Using the GSD rule with the choice of Di,b = Li may also be useful in the case of fixed blocks. In particular,
if it is easier to compute the single-coordinate Li values than the block Lb values then we might prefer to
use the GSD rule with this choice. On the other hand, an appealing alternative in the case of fixed blocks
is to use an estimate of Lb for each block as in Nesterov’s work [Nesterov, 2010]. In particular, for each Lb
we could start with some small estimate (like Lb = 1) and then double it whenever the inequality (10) is
not satisfied (since this indicates Lb is too small). Given some b, the bound obtained under this strategy
is at most a factor of 2 slower than using the optimal values of Lb. Further, if our estimate of Lb is much
smaller than the global value, then this strategy can actually guarantee much more progress than using the
“correct” Lb value.7

In the case of matrix updates, we can use (14) to verify that an Hb matrix is valid [Fountoulakis and
Tappenden, 2015]. Recall that (14) is derived by plugging the update (13) into the Lipschitz progress
bound (12). Unfortunately, it is not obvious how to update a matrix Hb if we find that it is not a valid
upper bound. One simple possibility is to multiply the elements of our estimate Hb by 2. This is equivalent
to using a matrix update but with a scalar step-size αk,

dk = −αk(Hb)
−1∇bkf(xk), (25)

similar to the step-size in the Newton update (5).

4.4 Efficient Line-Searches

The Lipschitz approximation procedures of the previous section do not seem practical when using variable
blocks, since there are an exponential number of possible blocks. To use variable blocks for problems where
we do not know Lb or Hb, a reasonable approach is to use a line-search. For example, we can choose αk

7While it might be tempting to also apply such estimates in the case of variable blocks, a practical issue is that we would
need a step-size for all of the exponential number of possible variable blocks.

12

in (25) using a standard line-search like those that use the Armijo condition or Wolfe conditions [Nocedal
and Wright, 1999]. When using large block sizes with gradient updates, line-searches based on the Wolfe
conditions are likely to make more progress than using the true Lb values (since for large block sizes the
line-search would tend to choose values of αk that are much larger than αk = 1/Lbk).

Further, the problem structures that lend themselves to efficient coordinate descent algorithms tend to
lend themselves to efficient line-search algorithms. For example, if our objective has the form f(Ax) then a
line-search would try to minimize the f(Axk + αkAUbkd

k) in terms of αk. Notice that the algorithm would
already have access to Axk and that we can efficiently compute AUbkd

k since it only depends on the columns
of A that are in bk. Thus, after (efficiently) computing AUbkd

k once the line-search simply involves trying
to minimize f(v1 + αkv2) in terms of αk (for particular vectors v1 and v2). The cost of this approximate
minimization will typically not add a large cost to the overall algorithm.

4.5 Block Partitioning with Fixed Blocks

Several prior works note that for fixed blocks the partitioning of coordinates into blocks can play a significant
role in the performance of BCD methods. Thoppe et al. [2014] suggest trying to find a block-diagonally
dominant partition of the coordinates, and experimented with a heuristic for quadratic functions where the
coordinates corresponding to the rows with the largest values were placed in the same block. In the context
of parallel BCD, Scherrer et al. [2012] consider a feature clustering approach in the context of problem h1

that tries to minimize the spectral norm between columns of A from different blocks. Csiba and Richtárik
[2016] discuss strategies for partitioning the coordinates when using randomized selection.

Based on the discussion in the previous sections, for greedy BCD methods it is clear that we guarantee
the most progress if we can make the mixed norm ‖∇f(xk)‖B as large as possible across iterations (assuming
that the Hb give a valid bound). This supports strategies where we try to minimize the maximum Lipschitz
constant across iterations. One way to do this is to try to ensure that the average Lipschitz constant across
the blocks is small. For example, we could place the largest Li value with the smallest Li value, the second-
largest Li value with the second-smallest Li value, and so on. While intuitive, this may be sub-optimal; it
ignores that if we cleverly partition the coordinates we may force the algorithm to often choose blocks with
very-small Lipschitz constants (which lead to much more progress in decreasing the objective function). In
our experiments, similar to the method of Thoppe et. al. for quadratics, we explore the simple strategy of
sorting the Li values and partitioning this list into equal-sized blocks. Although in the worst case this leads to
iterations that are not very productive since they update all of the largest Li values, it also guarantees some
very productive iterations that update none of the largest Li values and leads to better overall performance
in our experiments.

4.6 Newton Updates

Choosing the vector dk that we use to update the block xbk would seem to be straightforward since in the
previous section we derived the block selection rules in the context of specific block updates; the GSL rule is
derived assuming a gradient update (9), the GSQ rule is derived assuming a matrix update (13), and so on.
However, using the update dk that leads to the selection rule can be highly sub-optimal. For example, we
might make substantially more progress using the matrix update (13) even if we choose the block bk based
on the GSL rule. Indeed, given bk the matrix update makes the optimal amount of progress for quadratic
functions, so in this case we should prefer the matrix update for all selection rules (including random and
cyclic rules).

However, the matrix update in (13) can itself be highly sub-optimal for non-quadratic functions as it
employs an upper-bound Hbk on the sub-Hessian ∇2

bkbk
f(x) that must hold for all parameters x. For twice-

differentiable non-quadratic functions, we could potentially make more progress by using classic Newton
updates where we use the instantaneous Hessian ∇2

bkbk
f(xk) with respect to the block. Indeed, considering

the extreme case where we have one block containing all the coordinates, Newton updates can lead to
superlinear convergence [Dennis and Moré, 1974] while matrix updates destroy this property. That being

13

said, we should not expect superlinear convergence of BCD methods with Newton or even optimal updates8.
Nevertheless, in Section 6 we show that for certain common problem structures it’s possible to achieve
superlinear convergence with Newton-style updates.

Fountoulakis & Tappenden recently highlight this difference between using matrix updates and using
Newton updates [Fountoulakis and Tappenden, 2015], and propose a BCD method based on Newton updates.
To guarantee progress when far from the solution classic Newton updates require safeguards like a line-search
or trust-region [Fountoulakis and Tappenden, 2015, Tseng and Yun, 2009a], but as we’ve discussed in this
section line-searches tend not to add a significant cost to BCD methods. Thus, if we want to maximize
the progress we make at each iteration we recommend to use one of the greedy rules to select the block to
update, but then update the block using the Newton direction and a line-search. In our implementation,
we used a backtracking line-search starting with αk = 1 and backtracking for the first time using quadratic
Hermite polynomial interpolation and using cubic Hermite polynomial interpolation if we backtracked more
than once (which rarely happened since αk = 1 or the first backtrack were typically accepted) [Nocedal and
Wright, 1999].9

5 Message-Passing for Huge-Block Updates

Qu et al. [2016] discuss how in some settings increasing the block size with matrix updates does not necessarily
lead to a performance gain due to the higher iteration cost. In the case of Newton updates the additional cost
of computing the sub-Hessian ∇2

bbf(xk) may also be non-trivial. Thus, whether matrix and Newton updates
will be beneficial over gradient updates will depend on the particular problem and the chosen block size.
However, in this section we argue that in some cases matrix updates and Newton updates can be computed
efficiently using huge blocks. In particular, we focus on the case where the dependencies between variables
are sparse, and we will choose the structure of the blocks in order to guarantee that the matrix/Newton
update can be computed efficiently.

The cost of using Newton updates with the BCD method depends on two factors: (i) the cost of cal-
culating the sub-Hessian ∇2

bkbk
f(xk) and (ii) the cost of solving the corresponding linear system. The cost

of computing the sub-Hessian depends on the particular objective function we are minimizing. But, for
the problems where coordinate descent is efficient (see Section 2.4), it is typically substantially cheaper to
compute the sub-Hessian for a block than to compute the full Hessian. Indeed, for many cases where we
apply BCD, computing the sub-Hessian for a block is cheap due to the sparsity of the Hessian. For example,
in the graph-structured problems h2 the edges in the graph correspond to the non-zeroes in the Hessian.

Although this sparsity and reduced problem size would seem to make BCD methods with exact Newton
updates ideal, in the worst case the iteration cost would still be O(|bk|3) using standard matrix factorization
methods. A similar cost is needed using the matrix updates with fixed Hessian upper-bounds Hb and for
performing an optimal update in the special case of quadratic functions. In some settings we can reduce this
to O(|bk|2) by storing matrix factorizations, but this cost is still prohibitive if we want to use large blocks
(we can use |bk| in the thousands but not the millions).

An alternative to computing the exact Newton update is to use an approximation to the Newton update
that has a runtime dominated by the sparsity level of the sub-Hessian. For example, we could use conjugate
gradient methods or use randomized Hessian approximations [Dembo et al., 1982, Pilanci and Wainwright,
2017]. However, these approximations require setting an approximation accuracy and may be inaccurate if
the sub-Hessian is not well-conditioned. In this section we consider an alternative approach: choosing blocks
with a sparsity pattern that guarantees we can solve the resulting linear systems involving the sub-Hessian
(or its approximation) in O(|bk|) using a “message-passing” algorithm. If the sparsity pattern is favourable,
this allows us to update huge blocks at each iteration using exact matrix updates or Newton updates (which

8Consider a 2-variable quadratic objective where we use single-coordinate updates. The optimal update (which is equivalent
to the matrix/Newton update) is easy to compute, but if the quadratic is non-separable then the convergence rate of this
approach is only linear.

9We also explored a variant based on cubic regularization of Newton’s method [Nesterov and Polyak, 2006], but were not
able to obtain a significant performance gain with this approach.

14

are the optimal updates for quadratic problems).
To illustrate the message-passing algorithm, we first consider the basic quadratic minimization problem

arg min
x∈IRn

1

2
xTAx− cTx,

where we assume the matrix A ∈ IRn×n is positive-definite and sparse. By excluding terms not depending
on the coordinates in the block, the optimal update for block b is given by the solution to the linear system

Abbxb = c̃, (26)

where Abb ∈ IR|b|×|b| is the submatrix of A corresponding to block b, and c̃ = cb − Abb̄xb̄ is a vector with

b̄ defined as the complement of b and Abb̄ ∈ IR|b|×|b̄| is the submatrix of A with rows from b and columns
from b̄. We note that in practice efficient BCD methods already need to track Ax so computing c̃ is efficient.
Although we focus on solving (26) for simplicity, the message-passing solution we discuss here will also apply
to matrix updates (which leads to a linear system involving Hb) and Newton updates (which leads to a linear
system involving the sub-Hessian).

Consider a pairwise undirected graph G = (V,E), where the vertices V are the coordinates of our problem
and the edges E are the non-zero off-diagonal elements of A. Thus, if A is diagonal then G has no edges,
if A is dense then there are edges between all nodes (G is fully-connected), if A is tridiagonal then edges
connect adjacent nodes (G is a chain-structured graph where (1)− (2)− (3)− (4)− . . .), and so on.

For BCD methods, unless we have a block size |b| = n, we only work with a subset of nodes b at each
iteration. The graph obtained from the sub-matrix Abb is called the induced subgraph Gb. Specifically,
the nodes Vb ∈ Gb are the coordinates in the set b, while the edges Eb ∈ Gb are all edges (i, j) ∈ E
where i, j ∈ Vb (edges between nodes in b). We are interested in the special case where the induced sub-
graph Gb forms a forest, meaning that it has no cycles.10 In the special case of forest-structured induced
subgraphs, we can compute the optimal update (26) in linear time using message passing [Shental et al.,
2008] instead of the cubic worst-case time required by typical matrix factorization implementations. Indeed,
in this case the message passing algorithm is equivalent to Gaussian elimination [Bickson, 2009, Prop. 3.4.1]
where the amount of “fill-in” is guaranteed to be linear. This idea of exploiting tree structures within
Gaussian elimination dates back over 50 years [Parter, 1961], and similar ideas have recently been explored
by Srinivasan and Todorov [2015] for Newton methods. Their graphical Newton algorithm can solve the
Newton system in O(t3) times the size of G, where t is the “treewidth” of the graph (t = 1 for forests).
However, the tree-width of G is usually large while it is more reasonable to assume that we can find low-
treewidth induced subgraphs Gb.

To illustrate the message-passing algorithm in the terminology of Gaussian elimination, we first need to
divide the nodes {1, 2, . . . , |b|} in the forest into sets L{1}, L{2}, . . . , L{T}, where L{1} is an arbitrary node
in graph Gb selected to be the root node, L{2} is the set of all neighbours of the “root” node, L{3} is the
set of all neighbours of the nodes in L{2} excluding parent nodes (nodes in L{1 : 2}), and so on until all
nodes are assigned to a set (if the forest is made of disconnected trees, we’ll need to do this for each tree).
An example of this process is depicted in Figure 5. Once these sets are initialized, we start with the nodes
furthest from the root node L{T}, and carry out the row operations of Gaussian elimination moving towards
the root. Then we use backward substitution to solve the system Ãx = c̃. We outline the full procedure in
Algorithm 1.

Whether or not message-passing is useful will depend on the sparsity pattern of A. For example, consider
a quadratic function with a lattice-structured non-zero pattern as in Figure 3. A classic fixed partitioning
strategy for problems with this common structure is to use a “red-black ordering” (see Figure 3a), where
on each iteration we either update all of the red nodes or we update all of the black nodes. Choosing this
graph colouring makes the matrix Abb diagonal when we update the red nodes (and similarly for the black
nodes), allowing us to solve (26) in linear time. So these blocks allow an optimal BCD update with a block

10An undirected cycle is a sequence of adjacent nodes in V starting and ending at the same node, where there are no repetitions
of nodes or edges other than the final node.

15

Algorithm 1 Message Passing for a Tree Graph

1. Initialize:
Input: vector c̃, forest-structured matrix Ã, and levels L{1}, L{2}, . . . , L{T}.
for i = 1, 2, . . . , |b|

Set Pii ← Ãii, Ci ← c̃i. # P,C track row operations

2. Gaussian Elimination:
for t = T, T − 1, . . . , 1 # start furthest from root

for i ∈ L{t}
if t > 1
J ← N{i}\L{1 : t− 1} # neighbours that are not parent node

if J = ∅ # i corresponds to a leaf node

continue # no updates

else
J ← N{i} # root node has no parent node

PJi ← ÃJi # initialize off-diagonal elements

Pii ← Pii −
∑
j∈J

P 2
ji

Pjj
update diagonal elements of P in L{t}

Ci ← Ci −
∑
j∈J

Pji
Pjj
· Cj

3. Backward Solve:
for t = 1, 2, . . . , T # start with root node

for i ∈ L{t}
if t < T
p← N{i}\L{t+ 1 : T} # parent node of i (empty for t = 1)

else
p← N{i} # only neighbour of leaf node is parent

xi ←
Ci − Ãip · xp

Pii
solution to Ãx = c̃

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

8

6

3

7

4

1

5

2

Figure 1: Process of partitioning nodes into level sets. For the above graph we have the following sets:
L{1} = {8}, L{2} = {6, 7}, L{3} = {3, 4, 5} and L{4} = {1, 2} .

size of n/2. We discuss how to generalize the red-black ordering to general graphs in the next section by
using a greedy graph colouring algorithm, but we note that if the graph is very dense we may need a large
of “colours” and our block sizes may be very small. Further, while red-black updating is highly-suitable for
parallelization, its convergence rate may be slow as the update does not capture any dependencies between

16

Figure 2: Illustration of Step 2 (row-reduction process) of Algorithm 1 for the tree in Figure 5. The matrix
represents [Ã|c̃]. The black squares represent unchanged non-zero values of Ã and the grey squares represent
non-zero values that are updated at some iteration in Step 2. In the final matrix (far right), the values in the
last column are the values assigned to the vector C in Steps 1 and 2 above, while the remaining columns that
form an upper triangular matrix are the values corresponding to the constructed P matrix. The backward
solve of Step 3 solves the linear system.

(a) Red-black, |b| = n/2. (b) Fixed block, |b| = n/2. (c) Variable block, |b| ≈ 2n/3.

Figure 3: Partitioning strategies for defining forest-structured blocks.

the nodes of the same colour.
Diagonal matrices correspond to disconnected graphs, which are clearly forests (they have no edges).

But message passing allows us to go beyond the red-black partitions, and update any forest-structured block
in linear time. For example, the partition given in Figure 3b also has blocks of size n/2 but these blocks
include dependencies. Our experiments indicate that such blocks make substantially more progress than
using the red-black blocks or using smaller non-forest structured blocks. Further, we can extend these ideas
to general graphs, where we could use any forest-structured partition of the nodes. However, the graph still
does require some level of sparsity if we want larger block sizes as otherwise the forests may be very small
(in the extreme case of a complete graph, forests can have at most 2 nodes).

Instead of fixed blocks, we can also consider forest-structured variable blocks. Here, instead of considering
all blocks with cardinality τ as we have up to this point with variable blocks, we consider all blocks with
a forest-structured induced subgraph. Thus, the block size may vary at each iteration but restricting to
forests still leads to a linear-time update. As seen in Figure 3c, by allowing variable block sizes we can
select a forest-structured block of size |b| ≈ 2n/3 in one iteration (black nodes) while still maintaining a
linear-time update. If we sample random forests, then the convergence rate under this strategy is covered
by the arbitrary sampling theory [Qu et al., 2014]. Also note that the maximum of the gradient norms over
all forests defines a valid norm, so our analysis of Gauss-Southwell can be applied to this case.

17

5.1 Partitioning into Forest-Structured Blocks

We can generalize the red-black approach to arbitrary graphs by defining our blocks such that no two
neighbours are in the same block. While for lattice-structured graphs we only need two blocks to do this,
for general graphs we may need a larger number of blocks. Finding the minimum number of blocks we need
for a given graph is exactly the NP-hard graph colouring problem. Fortunately, there are various heuristics
that quickly give a non-minimal valid colouring of the nodes. For example, in our experiments we used the
following classic greedy algorithm [Welsh and Powell, 1967]:

1. Proceed through the vertices of the graph in some order i = 1, 2, . . . , n.

2. For each vertex i, assign it the smallest positive integer (“colour”) such that it doesn’t have the same
colour as any of its neighbours among the vertices {1, 2, . . . , i− 1}.

We can use all vertices assigned to the same integer as our blocks in the algorithm, and if we apply this
algorithm to a lattice-structured graph (using row- or column-ordering of the nodes) then we obtain the
classic red-black colouring of the graph.

Instead of disconnected blocks, in this work we instead consider forest-structured blocks. The size of the
largest possible forest is related to the graph colouring problem [Esperet et al., 2015], but we can consider a
slight variation on the second step of the greedy colouring algorithm to find a set of forest-structured blocks:

1. Proceed through the vertices of the graph in some order i = 1, 2, . . . , n.

2. For each vertex i, assign it the smallest positive integer (“forest”) such that the nodes assigned to that
integer among the set {1, 2, . . . , i} form a forest.

If we apply this to a lattice structured graph (in column-ordering), this generates a partition into two forest-
structured graphs similar to the one in Figure 3b (only the bottom row is different). This procedure requires
us to be able to test whether adding a node to a forest maintains, and we show how to do this efficiently
in Appendix D.

In the case of lattice-structured graph there is a natural ordering of the vertices, but for many graphs
there is no natural ordering. In such we might simply consider a random ordering. Alternately, if we know
the individual Lipschitz constants Li, we could order by these values (with the largest Li going first so
that they are likely assigned to the same block if possible). In our experiments we found that this ordering
improved performance for an unstructured dataset, and performed similarly to using the natural ordering in
a lattice-structured dataset.

5.2 Approximate Greedy Rules with Forest-Structured Blocks

Similar to the problems of the previous section, computing the Gauss-Southwell rule over forest-structured
variable blocks is NP-hard, as we can reduce the 3-satisfiability problem to the problem of finding a maximum-
weight forest [Garey and Johnson, 1979]. However, we use a similar greedy method to approximate the greedy
Gauss-Southwell rule over the set of trees:

1. Initialize bk with the node i corresponding to the largest gradient, |∇if(xk)|.

2. Search for the node i with the largest gradient that is not part of bk and that maintains that bk is a
forest.

3. If such a node is found, add it to bk and go back to step 2. Otherwise, stop.

Although this procedure does not yield the exact solution in general, it is appealing since (i) the procedure
is efficient as it is easy to test whether adding a node maintains the forest property (see Appendix D), (ii)
it outputs a forest so that the subsequent update is linear-time, (iii) we are guaranteed that the coordinate
corresponding to the variable with the largest gradient is included in bk, and (iv) we cannot add any additional
node to the final forest and still maintain the forest property. A similar heuristic can be used to approximate
the GSD rule under the restriction from Section 4.1 or to generate a forest randomly.

18

6 Manifold Identification

In this section we consider optimization problems of the form

arg min
x∈IRn

f(x) +

n∑
i=1

gi(xi), (27)

where ∇f is Lipschitz-continuous and each gi only needs to be convex and lower semi-continuous (it may
be non-smooth or infinite at some xi). A classic example of a problem in this framework is optimization
subject to non-negative constraints,

arg min
x≥0

f(x), (28)

where in this case gi is the indicator function on the non-negative orthant,

gi(xi) =

{
0 if xi ≥ 0,

∞ if xi < 0.

Another example that has received significant recent attention is the case of an L1-regularizer,

arg min
x∈IRn

f(x) + λ‖x‖1, (29)

where in this case gi = λ|xi|. Here, the L1-norm regularizer is used to encourage sparsity in the solution.
A related problem is the group L1-regularization problem (6), where instead of being separable, g is block-
separable.

Proximal gradient methods have become one of the default strategies for solving problem (27), and a
BCD variant of these methods has an update of the form

xk+1 = proxαkgbk

[
xk − αkUbk∇bkf(xk)

]
, (30)

where for any block b and step-size α the proximal operator is defined by the separable optimization

proxαgb [x] = arg min
y∈Rn

1

2α
‖y − x‖2 +

∑
i∈b

gi(yi).

We note that all variables not in block b stay at their existing values in the optimal solution to this problem.
In the special case of non-negative constraints like (28) the update in (30) is given by

xk+1
i =

[
xi −

1

L
∇if(xk)

]+

,

where [β]+ = max{0, β} projects onto the non-negative orthant. For L1-regularization problems (29) the
update reduces to an element-wise soft-thresholding step,

x
k+ 1

2
i = xk − 1

L
∇if(xk),

xk+1
i =

x
k+ 1

2
i∣∣∣xk+ 1

2
i

∣∣∣
[∣∣∣xk+ 1

2
i

∣∣∣− λ

L

]+

,
(31)

which we have written as a gradient update followed by the soft-threshold operator.
Most of the issues discussed in the previous sections for smooth BCD methods carry over in a straight-

forward way to this proximal setting; we can still consider fixed or variable blocks, there exist matrix and
Newton updates, and we can still consider cyclic, random, or greedy selection rules. One subtle issue is

19

that there are many generalizations of the Gauss-Southwell rule to the proximal setting [Nutini et al., 2015].
However, the GS-q rule defined by Tseng and Yun [2009b] seems to be the generalization of GS with the
best theoretical properties. A GSL variant of this rule would take the form

bk ∈ arg min
b∈B

{
min
d

{
〈∇bf(xk), d〉+

Lb
2
‖d‖2 +

∑
i∈b

gi(xi + di)−
∑
i∈b

gi(xi)

}}
, (32)

where we assume that the gradient of f is Lb-Lipschitz continuous with respect to block b. A generalization
of the GS rule is obtained if we assume that the Lb are equal across all blocks.

It has been established that coordinate descent and BCD methods based on the update (30) for prob-
lem (27) obtain similar convergence rates to the case where we do not have a non-smooth term g [Nesterov,
2012, Nutini et al., 2015, Richtárik and Takáč, 2014]. The focus of this section is to show that the non-
smoothness of g can actually lead to a faster convergence rate.

This idea dates back at least 40 years to the work of Bertsekas [1976]11. For the case of non-negative
constraints, he shows that the sparsity pattern of xk generated by the projected-gradient method matches
the sparsity pattern of the solution x∗ for all sufficiently large k. Thus, after a finite number of iterations the
projected-gradient method will “identify” the final set of non-zero variables. Once these values are identified,
Bertsekas suggests that we can fix the zero-valued variables and apply an unconstrained Newton update to
the set of non-zero variables to obtain superlinear convergence. Even without switching to a superlinearly-
convergent method, the convergence rate of the projected-gradient method can be faster once the set of
non-zeroes is identified since it is effectively optimizing in the lower-dimensional space corresponding to the
non-zero variables.

This idea of identifying a smooth “manifold” containing the solution x∗ has been generalized to allow
polyhedral constraints [Burke and Moré, 1988], general convex constraints [Wright, 1993], and even non-
convex constraints [Hare and Lewis, 2004]. Similar results exist in the proximal gradient setting. For
example, it has been shown that the proximal gradient method identifies the sparsity pattern in the solution
of L1-regularized problems after a finite number of iterations [Hare, 2011]. The active-set identification
property has also been shown for other algorithms like certain coordinate descent and stochastic gradient
methods [Lee and Wright, 2012, Mifflin and Sagastizábal, 2002, Wright, 2012]. Specifically, Wright shows
that BCD also has this manifold identification property for separable g [Wright, 2012], provided that the
coordinates are chosen in an essentially-cyclic way (or provided that we can simultaneously choose to update
all variables that do not lie on the manifold). Wright also shows that superlinear convergence is possible if
we use a Newton update on the manifold, assuming the Newton update does not leave the manifold.

In the next subsection, we present a manifold identification result for proximal coordinate descent for
general separable g. We follow a similar argument to Bertsekas [1976], which yields a simple proof that
holds for many possible selection rules including greedy rules (which may not be essentially-cyclic). Further,
our argument leads to bounds on the active-set complexity of the method, which is the number of iterations
required to reach the manifold [Nutini et al., 2017]. As examples, we consider problems (28) and (29), and
show explicit bounds for the active-set complexity. We subsequently show how to generalize this argument
to cases like block updates and Newton updates. The latter naturally leads to superlinear convergence of
greedy BCD methods when using variable blocks of size larger than the dimension of the manifold.

6.1 Manifold Identification for Separable g

Assume the subdifferential of g is nonempty for all x ∈ dom (g). By our separability assumption on g, the
subdifferential of g can be expressed as the concatenation of the individual subdifferential of each gi, where
the subdifferential of gi at any xi ∈ IR is defined by

∂gi(xi) = {v ∈ IR : gi(y) ≥ gi(xi) + v · (y − xi), for all y ∈ dom (gi)}.
11A similar property was shown for proximal point methods in a more general setting around the same time, [Rockafellar,

1976].

20

This implies that the subdifferential of each gi is just an interval on the real line. In particular, the interior
of the subdifferential of each gi at a non-differentiable point xi can be written as an open interval,

int ∂gi(xi) ≡ (li, ui), (33)

where li ∈ IR∪{−∞} and ui ∈ IR∪{∞} (the∞ values occur if xi is at its lower or upper bound, respectively).
The active-set at a solution x∗ for a separable g is then defined by

Z = {i : ∂gi(x
∗
i) is not a singleton}.

By (33), the set Z includes indices i where x∗i is equal to the lower bound on xi, is equal to the upper bound
on xi, or occurs at a non-smooth value of gi. In our examples of non-negative constraints or L1-regularization,
Z is the set of coordinates that are zero at the solution x∗. With this definition, we can formally define the
manifold identification property.

Definition 1. The manifold identification property for problem (27) is satisfied if for all sufficiently large
k, we have that xki = x∗i for some solution x∗ for all i ∈ Z.

In order to prove the manifold identification property for the proximal coordinate descent method, in
addition to assuming that ∇f is L-Lipschitz continuous, we require two assumptions. Our first assumption
is that the iterates of the algorithm converge to a solution x∗.

Assumption 1. The iterates of the proximal coordinate descent method converge to an optimal solution x∗

of problem (27), that is xk → x∗ as k →∞.

This assumption holds if f is strongly-convex and if we use cyclic or greedy selection (see Appendix E),
but will also hold under a variety of other scenarios. Our second assumption is a nondegeneracy condition
on the solution x∗ that the algorithm converges to. Below we write the standard nondegeneracy condition
from the literature for our special of (27).

Assumption 2. We say that x∗ is a nondegenerate solution for problem (27) if it holds that{
−∇if(x∗) = ∇ig(x∗i) if ∂gi(x

∗
i) is a singleton (gi is smooth at x∗i)

−∇if(x∗) ∈ int ∂gi(x
∗
i) if ∂gi(x

∗
i) is not a singleton (gi is non-smooth at x∗i).

This condition states that −∇f(x∗) must be in the “relative interior” (see [Boyd and Vandenberghe,
2004, Section 2.1.3]) of the subdifferential of g at the solution x∗. In the case of the non-negative bound
constrained problem (28), this requires that ∇if(x∗) > 0 for all variables i that are zero at the solution
(x∗i = 0). For the L1-regularization problem (29), this requires that |∇if(x∗)| < λ for all variables i that are
zero at the solution.12

There are three results that we require in order to prove the manifold identification property. The first
result follows directly from Assumption 1 and establishes that for any β > 0 there exists a finite iteration k̄
such that the distance from the iterate xk to the solution x∗ for all iterations k ≥ k̄ is bounded above by β.

Lemma 1. Let Assumption 1 hold. For any β, there exists some minimum finite k̄ such that ‖xk−x∗‖ ≤ β
for all k ≥ k̄.

The second result we require is that for any i ∈ Z such that xki 6= x∗i , eventually coordinate i is selected
at some finite iteration.

Lemma 2. Let Assumption 1 hold. If xki 6= x∗i for some i ∈ Z, then coordinate i will be selected by the
proximal coordinate descent method after a finite number of iterations.

12Note that |∇if(x∗)| ≤ λ for all i with x∗i = 0 follows from the optimality conditions, so this assumption simply rules out the
case where |∇if(x∗i)| = λ. We note that in this case the nondegeneracy condition is a strict complementarity condition [De Santis
et al., 2016].

21

Proof. For eventual contradiction, suppose we did not select such an i after iteration k′. Then for all k ≥ k′
we have that

|xk
′

i − x∗i | = |xki − x∗i | ≤ ‖xk − x∗‖. (34)

By Assumption 1 the right-hand side is converging to 0, so it will eventually be less than |xk′i − x∗i | for some

k ≥ k′, contradicting the inequality. Thus after a finite number of iterations we must have that xki 6= xk
′

i ,
which can only be achieved by selecting i.

The third result we require is that once Lemma 1 is satisfied for some finite k̄ and a particular β > 0,
then for any coordinate i ∈ Z selected at some iteration k′ ≥ k̄ by the proximal coordinate descent method,
we have xk

′

i = x∗i . We prove that this happens for a value β depending on a quantity δ defined by

δ = min
i∈Z
{min{−∇if(x∗)− li, ui +∇if(x∗)}} , (35)

which is the minimum distance to the nearest boundary of the subdifferential (33) among indices i ∈ Z.

Lemma 3. Consider problem (27), where f is convex with L-Lipschitz continuous gradient and the gi
are proper convex functions (not necessarily smooth). Let Assumptions 1 be satisfied and Assumption 2
be satisfied for the particular x∗ that the algorithm converges to. Then for any proximal coordinate descent
method with a step-size of 1/L, if ‖xk−x∗‖ ≤ δ/2L holds and i ∈ Z is selected at iteration k, then xk+1

i = x∗i .

Proof. The proof is identical to the case of proximal-gradient updates under the same step-size [Nutini et al.,
2017, Lemma 1], but restricting to the update of the single coordinate.

With the above results we next have the manifold identification property.

Theorem 3. Consider problem (27), where f is convex with L-Lipschitz continuous gradient and the gi are
proper convex functions. Let Assumptions 1 be satisfied and Assumption 2 be satisfied for the particular x∗

that the algorithm converges to. Then for any proximal coordinate descent method with a step-size of 1/L
there exists a finite k such that xki = x∗i for all i ∈ Z.

Proof. Lemma 1 implies that the assumptions of Lemma 3 are eventually satisfied, and combining this with
Lemma 2 we have our result.

Both problems (28) and (29) satisfy the manifold identification result. By the definition of δ in (35),
we have that δ = mini∈Z{∇if(x∗)} for problem (28). We note that if δ = 0, then we may approach the
manifold through the interior of the domain and the manifold may never be identified (this is the purpose of
the nondegeneracy condition). For problem (29), we have that δ = λ−maxi∈Z{|∇if(x∗)|} for problem (29).
From these results, we are able to define explicit bounds on the number of iterations required to reach the
manifold, a new result that we explore in the next subsection.

Instead of using a step-size of 1/L, it is more common to use a bigger step-size of 1/Li within coordinate
descent methods, where Li is the coordinate-wise Lipschitz constant. In this case, the results of Lemma 3
hold for β = δ/(L+Li). This is a larger region since Li ≤ L, so with this standard step-size the iterates can
move onto the manifold from further away and we expect to identify the manifold earlier. The argument
can also be modified to use other step-size selection methods, provided that we can write the algorithm in
terms of a step-size αk that is guaranteed to be bounded from below. While the above result considers
single-coordinate updates, it can trivially be modified to show that BCD with gradient updates has the
manifold identification property. The only change is that once ‖xk − x∗‖ ≤ δ/2L, we have that xk+1

i = x∗i
for all i ∈ bk ∩Z. Thus, BCD methods can simultaneously move many variables onto the optimal manifold.

22

6.2 Active-Set Complexity

The manifold identification property of the previous section could also be shown using the more sophisticated
tools used in related works [Burke and Moré, 1988, Hare and Lewis, 2004]. However, an appealing aspect
of the simple argument is that it can be combined with non-asymptotic convergence rates of the iterates
to bound the number of iterations required to reach the manifold. We call this the “active-set complexity”
of the method, and have recently given bounds on the active-set complexity of proximal-gradient methods
for strongly-convex objectives [Nutini et al., 2017]. Here we use a similar analysis to bound the active-set
complexity of BCD methods, which is complicated by the fact that not all coordinates are updated on each
iteration.

We will consider the active-set complexity in the case where f is strongly-convex and we use cyclic or
greedy selection. This guarantees that

‖xk − x∗‖ ≤
(

1− 1

κ

)k
γ, (36)

for some γ ≥ 0 and some κ ≥ 1 (see Appendix E, and we note that this type of rate also holds for a variety
of other types of selection rules). By using that (1 − 1/κ)k ≤ exp(−k/κ), the linear convergence rate (36)
implies the following result on how many iterations it will take to identify the active-set, and thus reach the
manifold.

Theorem 4. Consider any method that achieves an iterate bound (36). For δ as defined in (35), we have
‖xk̄ − x∗‖ ≤ δ/2L after at most κ log(2Lγ/δ) iterations. Further, we will identify the active-set after an
additional t iterations, where t is the number of additional iterations required to select all suboptimal xi with
i ∈ Z as part of some block.

The value of t depends on the selection rule we use. If we use cyclic selection we will require at most t = n
additional iterations to select all suboptimal coordinates i ∈ Z and thus to reach the optimal manifold. To
bound the active-set complexity for general rules like greedy rules, we cannot guarantee that all coordinates
will be selected after n iterations once we are close to the solution. In the case of non-negative constraints,
the number of additional iterations depends on a quantity we will call ε, which is the smallest non-zero
variable xk̄i for i ∈ Z and k̄ satisfying the first part of Theorem 4. It follows from (36) that we require at
most κ log(γ/ε) iterations beyond k̄ to select all non-zero i ∈ Z. Thus, the active-set complexity for greedy
rules for problem (28) is bounded above by κ(log(2Lγ/δ) + log(γ/ε)). Based on this bound, greedy rules
(which yield a smaller κ) may identify the manifold more quickly than cyclic rules in cases where ε is large.
However, if ε is very small then greedy rules may take a larger number of iterations to reach the manifold.13

6.3 Proximal-Newton Updates and Superlinear Convergence

Once we have identified the optimal manifold, we can think about switching from using the proximal BCD
method to using an unconstrained optimizer on the coordinates i 6∈ Z. The unconstrained optimizer can be
a Newton update, and thus under the appropriate conditions can achieve superlinear convergence. However,
a problem with such “2-phase” approaches is that we do not know the exact time at which we reach the
optimal manifold. This can make the approach inefficient: if we start the second phase too early, then we
sub-optimize over the wrong manifold, while if we start the second phase too late, then we waste iterations
performing first-order updates when we should be using second-order updates. Wright proposes an interesting
alternative where at each iteration we consider replacing the gradient proximal-BCD update with a Newton
update on the current manifold [Wright, 2012]. This has the advantage that the manifold can continue to be
updated, and that Newton updates are possible as soon as the optimal manifold has been identified. However,
note that the dimension of the current manifold might be larger than the block size and the dimension of
the optimal manifold, so this approach can significantly increase the iteration cost for some problems.

13If this is a concern, the implementer could consider a safeguard ensuring that the method is essentially-cyclic. Alternately,
we could consider rules that prefer to include variables that are near the manifold and have the appropriate gradient sign.

23

Rather than “switching” to an unconstrained Newton update, we can alternately take advantage of the
superlinear converge of proximal-Newton updates [Lee et al., 2012]. For example, in this section we consider
Newton proximal-BCD updates as in several recent works [Fountoulakis and Tappenden, 2015, Qu et al.,
2016, Tappenden et al., 2016]. For a block b these updates have the form

xk+1
b ∈ arg min

y∈R|b|

{
〈∇bf(xkb), y − xkb 〉+

1

2αk
‖y − xkb‖2Hk

b
+
∑
i∈b

gi(yi)

}
, (37)

where Hk
b is the matrix corresponding to block b at iteration k (which can be the sub-Hessian ∇2

bbf(xk)).
As before if we set Hk

b = Hb for some fixed matrix Hb, then we can take αk = 1 if block b of f is 1-Lipschitz
continuous in the Hb-norm.

In the next section, we give a practical variant on proximal-Newton updates that also has the manifold
identification property under standard assumptions14. An advantage of this approach is that the block size
typically restricts the computational complexity of the Newton update (which we discuss further in the next
sections). Further, superlinear convergence is possible in the scenario where the coordinates i 6∈ Z are chosen
as part of the block bk for all sufficiently large k. However, note that this superlinear scenario only occurs
in the special case where we use a greedy rule with variable blocks and where the size of the blocks is at least
as large as the dimension of the optimal manifold. With variable blocks, the GS-q and GSL-q rules (32)
will no longer select coordinates i ∈ Z since their optimal di value is zero when close to the solution and on
the manifold. Thus, these rules will only select i 6∈ Z once the manifold has been identified.15 In contrast,
we would not expect superlinear convergence for fixed blocks unless all i 6∈ Z happen to be in the same
partition. While we could show superlinear convergence of subsequences for random selection with variable
blocks, the number of iterations between elements of the subsequence may be prohibitively large.

6.4 Practical Proximal-Newton Methods

A challenge with using the update (37) in general is that the optimization is non-quadratic (due to the gi
terms) and non-separable (due to the Hk

b -norm). If we make the Hk
b diagonal, then the objective is separable

but this destroys the potential for superlinear convergence. Fortunately, a variety of strategies exist in the
literature to allow non-diagonal Hk

b .
For example, for bound constrained problems we can apply two-metric projection (TMP) methods, which

use a modified Hk
b and allow the computation of a (cheap) projection under the Euclidean norm [Gafni and

Bertsekas, 1984]. This method splits the coordinates into an “active-” set and a “working-” set, where the
active-set A for non-negative constraints would be

A = {i | xi < ε,∇if(x) > 0},

for some small ε while the working-set W is the compliment of this set. So the active-set contains the
coordinates corresponding to the variables that we expect to be zero while the working-set contains the
coordinates corresponding to the variables that we expect to be unconstrained. The TMP method can
subsequently use the update

xW ← projC
(
xW − αH−1

W ∇Wf(x)
)

xA ← projC (xA − α∇Af(x)) .

This method performs a gradient update on the active-set and a Newton update on the working-set. Gafni
and Bertsekas [1984] show that this preserves many of the essential properties of projected-Newton methods

14A common variation of the proximal-Newton method solves (37) with αk = 1 and then sets xk+1 based on a search along
the line segment between xk and this solution [Fountoulakis and Tappenden, 2015, Schmidt, 2010]. This variation does not
have the manifold identification property; only when the line search is on αk do we have this property.

15A subtle issue is the case where di = 0 in (32) but i 6∈ Z. In such cases we can break ties by preferring coordinates i, where
gi is differentiable so that the i 6∈ Z are included.

24

like giving a descent direction, converging to a stationary point, and superlinear convergence if we identify
the correct set of non-zero variables. Also note that for indices i ∈ Z, this eventually only takes gradient steps
so our analysis of the previous section applies (it identifies the manifold in a finite number of iterations). As
opposed to solving the block-wise proximal-Newton update in (37), in our experiments we explored simply
using the TMP update applied to the block and found that it gave nearly identical performance.

TMP methods have also been generalized to settings like L1-regularization [Schmidt, 2010] and they can
essentially be used for any separable g function. Another widely-used strategy is to inexactly solve (37) [Foun-
toulakis and Tappenden, 2015, Lee et al., 2012, Schmidt, 2010]. This has the advantage that it can still be
used in the group L1-regularization setting or other group-separable settings.

6.5 Optimal Updates for Quadratic f and Piecewise-Linear g

Two of the most well-studied optimization problems in machine learning are the SVM and LASSO problems.
The LASSO problem is given by an L1-regularized quadratic objective

arg min
x

1

2
‖Ax− b‖2 + λ‖x‖1,

while the dual of the (non-smooth) SVM problem has the form of a bound-constrained quadratic objective

arg min
0≤x≤γ

1

2
xTAx,

for some matrix A (positive semi-definite in the SVM case), and regularization constants λ and γ. In both
cases we typically expect the solution to be sparse, and identifying the optimal manifold has been shown to
improve practical performance of BCD methods [De Santis et al., 2016, Joachims, 1999].

Both problems have a set of gi that are piecewise-linear over their domain, implying that the they can be
written as a maximum over univariate linear functions on the domain of each variable. Although we can still
consider TMP or inexact proximal-Newton updates for these problems, this special structure actually allows
us to compute the exact minimum with respect to a block (which is efficient when considering medium-sized
blocks). Indeed, for SVM problems the idea of using exact updates in BCD methods dates back to the
sequential minimal optimization (SMO) method [Platt, 1998], which uses exact updates for blocks of size 2.
In this section we consider methods that work for blocks of arbitrary size.16

While we could write the optimal update as a quadratic program, the special structure of the LASSO and
SVM problems lends well to exact homotopy methods. These methods date back to Osborne and Turlach
[2011], Osborne et al. [2000] who proposed an exact homotopy method that solves the LASSO problem
for all values of λ. This type of approach was later popularized under the name “least angle regression”
(LARS) [Efron et al., 2004]. Since the solution path is piecewise-linear, given the output of a homotopy
algorithm we can extract the exact solution for our given value of λ. Hastie et al. [2004] derive an analogous
homotopy method for SVMs, while Rosset and Zhu [2007] derive a generic homotopy method for the case of
piecewise-linear gi functions.

The cost of each iteration of a homotopy method on a problem with |b| variables is O(|b|2). It is
known that the worst-case runtime of these homotopy methods can be exponential [Mairal and Yu, 2012].
However, the problems where this arises are somewhat unstable, and in practice the solution is typically
obtained after a linear number of iterations. This gives a runtime in practice of O(|b|3), which does not
allow enormous blocks but does allow us to efficiently use block sizes in the hundreds or thousands. That
being said, since these methods compute the exact block update, in the scenario where we previously had
superlinear convergence, we now obtain finite convergence. That is, the algorithm will stop in a finite number
of iterations with the exact solution provided that it has identified the optimal manifold, uses a greedy rule
with variable blocks, and the block size is larger than the dimension of the manifold. This finite termination
is also guaranteed under similar assumptions for TMP methods, and although TMP methods may make less

16The methods discussed in this section can also be used to compute exact Newton-like updates in the case of a non-quadratic
f , but where the gi are still piecewise-linear.

25

progress per-iteration than exact updates, they may be a cheaper alternative to homotopy methods as the
cost is explicitly restricted to O(|b|3).

7 Numerical Experiments

We performed an extensive variety of experiments to evaluate the effects of the contributions listed in the
previous sections. In this section we include several of these results that highlight some key trends we
observed, and in each subsection below we explicitly list the insights we obtained from the experiment. We
considered five datasets that evaluate the methods in a variety of scenarios:

A Least-squares with a sparse data matrix.

B Binary logistic regression with a sparse data matrix.

C 50-class logistic regression problem with a sparse data matrix.

D Lattice-structured quadratic objective as in Section 5.

E Binary label propagation problem (sparse but unstructured quadratic).

For interested readers, we give the full details of these datasets in Appendix F where we have also included
our full set of experiment results.

In our experiments we use the number of iterations as our measure of performance. This measure is far
from perfect, especially when considering greedy methods, since it ignores the computational cost of each
iteration. But this measure of performance provides an implementation- and problem-independent measure
of performance. We seek an implementation-independent measure of performance since the actual runtimes
of different methods will vary wildly across applications. However, it is typically easy to estimate the per-
iteration runtime when considering a new problem. Thus, we hope that our quantification of what can be
gained from more-expensive methods gives guidance to readers about whether the more-expensive methods
will lead to a performance gain on their applications. In any case, we are careful to qualify all of our claims
with warnings in cases where the iteration costs differ.

7.1 Greedy Rules with Gradient Updates

Our first experiment considers gradient updates with a step-size of 1/Lb, and seeks to quantify the effect of
using fixed blocks compared to variable blocks (Section 3.1) as well as the effect of using the new GSL rule
(Section 3.2). In particular, we compare selecting the block using Cyclic, Random, Lipschitz (sampling the
elements of the block proportional to Li), GS, and GSL rules. For each of these rules we implemented a fixed
block (FB) and variable block (VB) variant. For VB using Cyclic selection, we split a random permutation
of the coordinates into equal-sized blocks and updated these blocks in order (followed by using another
random permutation). To approximate the seemingly-intractable GSL rule with VB, we used the GSD rule
(Section 3.4) using the SIRT-style approximation (23) from Section 4.1. We used the bounds in Appendix B
to set the Lb values. To construct the partition of the coordinates needed in the FB method, we sorted the
coordinates according to their Li values then placed the largest Li values into the first block, the next set of
largest in the second block, and so on.

We plot selected results in Figure 4, while experiments on all datasets and with other block sizes are
given in Appendix F.2. Overall, we observed the following trends:

• Greedy rules tend to outperform random and cyclic rules, particularly with small block sizes.
This difference is sometimes enormous, and this suggests we should prefer greedy rules when the greedy
rules can be implemented with a similar cost to cyclic or random selection.

• The variance of the performance between the rules becomes smaller as the block size
increases. This is because the performance of all methods increases with the block size, and suggests

26

0 100 200 300 400 500
Iterations with 5-sized blocks

7.9× 103

4.4× 104

2.4× 105

1.3× 106

7.4× 106
f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

3.0× 103

3.2× 103

3.4× 103

3.6× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

Cyclic-FB Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VBRandom-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.7× 102

3.4× 102

4.4× 102

5.6× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

Figure 4: Comparison of different random and greedy block selection rules on three different problems when
using gradient updates.

that if we use very-large block sizes with gradient updates that we should prefer simple Cyclic or
Random updates.

• VB can substantially outperform FB when using GS for certain problems. This is because FB
are a subset of the VB, so we can make the progress bound better. Thus, we should prefer GS-VB
for problems where this has a similar cost to GS-FB. We found this trend was reversed for random
rules, where fixed blocks tended to perform better. We suspect this trend is due to the coupon collector
problem: it takes FB fewer iterations than VB to select all variables at least once given that the sample
size for FB is smaller.

• GSL consistently improved on the classic GS rule, and in some cases the new rule with FB
even outperformed the GS rule with VB. Interestingly, the performance gain was larger in the block
case than in the prior work looking at the single-coordinate case [Nutini et al., 2015].

In Appendix F we repeat this experiment for the FB methods but using the approximation to Lb discussed
in Section 4.3 (see Figures 9). This sought to test whether this procedure, which may underestimate the
true Lb and thus use larger step-sizes, would improve performance. This experiment lead to some additional
insights:

• Approximating Lb was more effective as the block size increases. This makes sense, since with
large block sizes there are more possible directions and we are unlikely to ever need to use a step-size
as small as 1/Lb for the global Lb.

• Approximating Lb is far more effective than using a loose bound. We have relatively-good
bounds for all problems except Problem C. On this problem the Lipschitz approximation procedure
was much more effective even for small block sizes.

This experiment suggests that we should prefer to use an approximation to Lb (or an explicit line-search)
when using gradient updates unless we have a tight approximation to the true Lb and we are using a small
block size. We also performed experiments with different block partitioning strategies for FB (see Figure 10).
Although these experiments had some variability, we found that the block partitioning strategy did not make
a large difference for cyclic and random rules. In contrast, when using greedy rules our sorting approach
tended to outperform using random blocks or choosing the blocks to have similar average Lipschitz constants.

7.2 Greedy Rules with Matrix Updates

Our next experiment considers using matrix updates based on the matrices Hb from Appendix B, and
quantifies the effects of the GSQ and GSD rules introduced in Sections 3.3-3.4 as well the approximations to
these introduced in Sections 4.1-4.2. In particular, for FB we consider the GS rule and the GSL rule (from

27

0 100 200 300 400 500
Iterations with 5-sized blocks

0.3× 10−1

4.0× 100

4.9× 102

6.1× 104

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A

GSQ-FB
GS-FB

GSL-FB

GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 103

2.6× 103

3.0× 103

3.4× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GSQ-FB

GS-FB

GSL-FB GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 102

3.0× 102

4.1× 102

5.4× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

Figure 5: Comparison of different greedy block selection rules on three different problems when using matrix
updates.

the previous experiment), the GSD rule (using the diagonal matrices from Section 4.1 with Db,i = Li), and
the GSQ rule (which is optimal for the three quadratic objectives). For VB we consider the GS rule from the
previous experiment as well as the GSD rule (using Db,i = Li), and the GSQ rule using the approximation
from Section 4.2 and 10 iterations of iterative hard thresholding. Other than switching to matrix updates
and focusing on these greedy rules, we keep all other experimental factors the same.

We plot selected results of doing this experiment in Figure 5. These experiments showed the following
interesting trends:

• There is a larger advantage to VB with matrix updates. When using matrix updates, the basic
GS-VB method outperformed even the most effective GSQ-FB rule for smaller block sizes.

• There is little advantage to GSD/GSQ with FB. Although the GSL rule consistently improved
over the classic GS rule, we did not see any advantage to using the more-advanced GSD or GSQ rules
when using FB.

• GSD outperformed GS with VB. Despite the use of a crude approximation to the GSD rule, the
GSD rule consistently outperformed the classic GS rule. The GSD-VB method (which uses Di = Li)
consistently outperformed the GSL-VB method (which uses a different diagonal scaling with a tighter
bound), despite the GSL-VB having better performance when using gradient updates.

• GSQ slightly outperformed GSD with VB and large blocks. Although the GSQ-VB rule
performed the best across all experiments, the difference was more noticeable for large block sizes.
However, this did not offset its high cost in any experiment. We also experimented with OMP instead
of IHT, and found it gave a small improvement but the iterations were substantially more expensive.

Putting the above together, with matrix updates our experiments indicate that the GSD rule seems to both
provide good performance in all settings. We would only recommend using the GSQ rule in settings where
we can use VB and where operations involving the objective f are much more expensive than running an
IHT or OMP method. We performed experiments with different block partition strategies for FB, but found
that when using matrix updates the partitioning strategy did not make a big difference for cyclic, random,
or greedy rules.

In Appendix F we repeat this experiment for the non-quadratic objectives using the Newton direction
and a backtracking line-search to set the step-size (see Figure 12), as discussed in Sections 4.4 and 4.6.
For both datasets, the Newton updates resulted in a significant performance improvement over the matrix
updates. This indicates that we should prefer classic Newton updates over the more recent matrix updates
for non-quadratic objectives where computing the sub-block of the Hessian is tractable.

28

0 100 200 300 400 500
Iterations

0.1× 10−4

0.4× 10−1

1.2× 102

3.5× 105

1.0× 109
f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

Random Tree

Greedy Tree

General

Red Black

Tree Partitions

0 100 200 300 400 500
Iterations

0.8× 10−4

0.4× 10−2

0.2× 100

1.3× 101

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

Random Tree

Greedy Tree

General

Red Black

Tree Partitions

0 100 200 300 400 500
Iterations

0.8× 10−4

0.4× 10−2

0.2× 100

1.3× 101

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

Random Tree

Greedy Tree

General

Red Black

Tree Partitions

Figure 6: Comparison of different greedy block selection rules on two quadratic graph-structured problems
when using optimal updates. The middle figure considers a random ordering for the Red Black and Tree
Partition methods, while the right figure sorts by the Lipschitz constants for these methods.

7.3 Message-Passing Updates

We next seek to quantify the effect of using message-passing to efficiently implement exact updates for
quadratic functions, as discussed in Section 5. For this experiment, we focused on the lattice-structured
dataset D and the unstructured but sparse dataset E. These are both quadratic objectives with high
treewidth, but that allow us to find large forest-structured induced subgraphs. We compared the following
strategies to choose the block: greedily choosing the best general unstructured blocks using GS (General),
cycling between blocks generated by the greedy graph colouring algorithm of Section 5.1 (Red Black), cy-
cling between blocks generated by the greedy forest-partitioning algorithm of Section 5.1 (Tree Partitions),
greedily choosing a tree using the algorithm of Section 5.2 (Greedy Tree), and growing a tree randomly using
the same algorithm (Random Tree). For the lattice-structured Dataset D, the greedy partitioning algorithms
proceed through the variables in order which generate partitions similar to those shown in in Figure 3b. For
the unstructured Dataset E, we apply the greedy partitioning strategies of Section 5.1 using both a random
ordering and by sorting the Lipschitz constants Li. Since the cost of the exact update for tree-structured
methods is O(n), for the unstructured blocks we chose a block size of bk = n1/3 to make the costs comparable
(since the exact solve is cubic in the block size for unstructured blocks).

We plot selected results of doing this experiment in Figure 6. Here, we see that even the classic red-black
ordering outperforms using general unstructured blocks (since we must use such small block sizes). The tree-
structured blocks perform even better, and in the unstructured setting our greedy approximation of the GS
rule under variable blocks outperforms the other strategies. However, our greedy tree partitioning method
also performs well. For the lattice-structured data it performed similarly to the greedy approximation, while
for the unstructured data it outperformed all methods except greedy (and performed better when sorting
by the Lipschitz constants than using a random order).

7.4 Proximal Updates

Our final experiment demonstrates the manifold identification and superlinear/finite convergence properties
of the greedy BCD method as discussed in Section 6 for a sparse non-negative constrained L1-regularized
least-squares problem using Dataset A. In particular, we compare the performance of a projected gradient
update with Lb step-size, a projected Newton (PN) solver with line search as discussed in Section 6.3 and the
two-metric projection (TMP) update as discussed in Section 6.4 when using fixed (FB) and variable (VB)
blocks of different sizes (|b| ∈ {5, 50, 100}). We use a regularization constant of λ = 50, 000 to encourage a
high level of sparsity resulting in an optimal solution x∗ with 51 non-zero variables. In Figure 7 we indicate
active-set identification with a star and show that all approaches eventually identify the active-set. We see
that TMP does as well as projected Newton for all block sizes and both do better than gradient updates.
For a block size of 100, we get finite convergence using projected Newton and TMP updates.

29

0 50 100 150 200 250 300 350 400
Iterations with 5-sized blocks

0.7× 10−8

0.2× 10−4

0.7× 10−1

2.3× 102

7.1× 105

f(
x
)
−
f
∗
 fo

r N
on

-n
eg

at
iv

e
Le

as
t S

qu
ar

es
 o

n
Da

ta
se

t A

PN-VB

TM
P-VB

PG-VB
PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.2× 10−8

0.8× 10−5

0.4× 10−1

1.6× 102

7.1× 105

PN-VB
TM

P-VB

PG-VB

PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 100-sized blocks

0.4× 10−8

0.1× 10−4

0.5× 10−1

1.9× 102

7.1× 105

PN-VB
TM

P-VB

PG-VB

PN-FB

TMP-FB

PG-FB

Figure 7: Comparison of different updates when using greedy fixed and variable blocks of different sizes.

In Appendix F.4 we repeat this experiment for random block selection and show that for such a sparse
problem multiple iterations are often required before progress is made due to the repetitive selection of
variables that are already zero/active.

8 Discussion

In this work we focused on non-accelerated BCD methods. However, we expect that our conclusions are
likely to also apply for accelerated BCD methods [Fercoq and Richtárik, 2015]. Similarly, while we focused
on the setting of serial computation, we expect that our conclusions will give insight into developing more
efficient parallel and distributed BCD methods [Richtárik and Takáč, 2016].

Although our experiments indicate that our choice of the diagonal matrices D within the GSD rule
provides a consistent improvement, this choice is clearly sub-optimal. A future direction is to find a generic
strategy to construct better diagonal matrices, and work on ESO methods could potentially be adapted
for doing this [Qu and Richtárik, 2016]. This could be in the setting where we are given knowledge of the
Lipschitz constants, but a more-interesting idea is to construct these matrices online as the algorithm runs.

The GSQ rule can be viewed as a greedy rule that incorporates more sophisticated second-order infor-
mation than the simpler GS and GSL rules. In preliminary experiments, we also considered selection rules
based on the cubic regularization bound. However, these did not seem to converge more quickly than the
existing rules in our experiments, and it is not obvious how one could efficiently implement such second-order
rules.

We focused on BCD methods that approximate the objective function at each step by globally bounding
higher-order terms in a Taylor expansion. However, we would expect more progress if we could bound these
locally in a suitably-larger neighbourhood of the current iteration. Alternately, note that bounding the
Taylor expansion is not the only way to upper bound a function. For example, Khan [2012] discusses a
variety of strategies for bounding the binary logistic regression loss and indeed proves that other bounds are
tighter than the Taylor expansion (“Bohning”) bound that we use. It would be interesting to explore the
convergence properties of BCD methods whose bounds do not come from a Taylor expansion.

While we focused on the case of trees, there are message-passing algorithms that allow graphs with cy-
cles [Rose, 1970, Srinivasan and Todorov, 2015]. The efficiency of these methods depends on the “treewidth”
of the induced subgraph, where if the treewidth is small (as in trees) then the updates are efficient, and if
the treewidth is large (as in fully-connected graphs) then these do not provide an advantage. Treewidth is
related to the notion of “chordal” graphs (trees are special cases of chordal graphs) and chordal embeddings
which have been exploited for matrix problems like covariance estimation [Dahl et al., 2008] and semidefinite
programming [Sun et al., 2014, Vandenberghe and Andersen, 2015]. Considering “treewidth 2” or “treewidth
3” blocks would give more progress than our tree-based updates, although it is NP-hard to compute the
treewidth of a general graph (but it is easy to upper-bound this quantity by simply choosing a random
elimination order).

30

As opposed to structural constraints like requiring the graph to be a tree, it is now known that message-
passing algorithms can solve linear systems with other properties like diagonal dominance or “attractive”
coefficients [Malioutov et al., 2006]. There also exist specialized linear-time solvers for Laplacian matri-
ces [Kyng and Sachdeva, 2016], and it would be interesting to explore BCD methods based on these struc-
tures. It would also be interesting to explore whether approximate message-passing algorithms which allow
general graphs [Malioutov et al., 2006] can be used to improve optimization algorithms.

A Cost of Multi-Class Logistic Regression

The typical setting where we expect coordinate descent to outperform gradient descent is when the cost of
one gradient descent iteration is similar to the cost of updating all variables via coordinate descent. It is
well known that for the binary logistic regression objective, one of the most ubiquitous models in machine
learning, coordinate descent with uniform random selection satisfies this property. We previously showed
that this property is also satisfied for the GS rule in the case of logistic regression, provided that the data is
sufficiently sparse [Nutini et al., 2015].

In this section we consider multi-class logistic regression. We first analyze the cost of gradient descent on
this objective and how randomized coordinate descent is efficient for any sparsity level. Then we show that
a high sparsity level is not sufficient for the GS rule to be efficient for this problem, but that it is efficient if
we use a particular set of fixed blocks.

A.1 Cost of Gradient Descent

The likelihood for a single training example i with features ai ∈ IRd and a label bi ∈ {1, 2, . . . , k} is given by

p(bi|ai, X) =
exp(xTbiai)∑k
c=1 exp(xTc ai)

,

where xc is column c of our matrix of parameters X ∈ IRd×k (so the number of parameters n is dk). To
maximize the likelihood over m independent and identically-distributed training examples we minimize the
negative log-likelihood,

f(X) =

m∑
i=1

[
−xTbiai + log

(
k∑
c=1

exp(xTc ai)

)]
, (38)

which is a convex function. The partial derivative of this objective with respect to a particular Xjc is given
by

∂

∂Xjc
f(X) = −

m∑
i=1

aij

[
I(bi = c)− exp(xTc ai)∑k

c′=1 exp(xTc′ai)

]
, (39)

where I is a 0/1 indicator variable and aij is feature j for training example i. We use A to denote a matrix
where row i is given by aTi . To compute the full gradient, the operations which depend on the size of the
problem are:

1. Computing xTc ai for all values of i and c.

2. Computing the sums
∑k
c=1 exp(xTc ai) for all values of i.

3. Computing the partial derivative sums (39) for all values of j and c.

The first step is the result of the matrix multiplication AX, so if A has z non-zeroes then this has a cost of
O(zk) if we compute it using k matrix-vector multiplications. The second step costs O(mk), which under
the reasonable assumption that m ≤ z (since each row usually has at least one non-zero) is also in O(zk).
The third step is the result of a matrix multiplication of the form ATR for a (dense) m times k matrix R
(whose elements have a constant-time cost to compute given the results of the first two steps), which also
costs O(zk) giving a final cost of O(zk).

31

A.2 Cost of Randomized Coordinate Descent

Since there are n = dk variables, we want our coordinate descent iterations to be dk-times faster than the
gradient descent cost of O(zk). Thus, we want to be able to implement coordinate descent iterations for a
cost of O(z/d) (noting that we always expect z ≥ d since otherwise we could remove some columns of A that
only have zeroes). The key to doing this for randomized coordinate descent is to track two quantities:

1. The values xTc ai for all i and c.

2. The values
∑k
c′=1 exp(xTc′ai) for all i.

Given these values we can compute the partial derivative in O(z/d) in expectation, because this is the
expected number of non-zero values of aij in the partial derivative sum (39) (A has z total non-zeroes and
we are randomly choosing one of the d columns). Further, after updating a particular Xjc we can update
the above quantities for the same cost:

1. We need to update xTc ai for the particular c we chose for the examples i where aij is non-zero for the
chosen value of j. This requires an O(1) operation (subtract the old xjcaij and add the new value)
for each non-zero element of column j of A. Since A has z non-zeroes and d columns, the expected
number of non-zeroes is z/d so this has a cost of O(z/d).

2. We need to update
∑k
c′=1 exp(xTc′ai) for all i where aij is non-zero for our chosen j. Since we expect

z/d non-zero values of aij , the cost of this step is also O(z/d).

Note that BCD is also efficient since if we update τ elements, the cost is O(zτ/d) by just applying the above
logic τ times. In fact, step 2 and computing the final partial derivative has some redundant computation if
we update multiple Xjc with the same c, so we might have a small performance gain in the block case.

A.3 Cost of Greedy Coordinate Descent (Arbitrary Blocks)

The cost of greedy coordinate descent is typically higher than randomized coordinate descent since we need
to track all partial derivatives. However, consider the case where each row has at most zr non-zeroes and each
column has at most zc non-zeroes. In this setting we previously showed that for binary logistic regression
it is possible to track all partial derivatives for a cost of O(zrzc), and that we can track the maximum
gradient value at the cost of an additional logarithmic factor [Nutini et al., 2015, Appendix A].17 Thus,
greedy coordinate selection has a similar cost to uniform selection when the sparsity pattern makes zrzc
similar to z/d (as in the case of a grid-structured dependency graph like Figure 3).

Unfortunately, having zrzc similar to z/d is not sufficient in the multi-class case. In particular, the cost
of tracking all the partial derivatives after updating an Xjc in the multi-class case can be broken down as
follows:

1. We need to update xTc ai for the examples i where aij is non-zero. Since there are at most zc non-zero
values of aij over all i the cost of this is O(zc).

2. We need to update
∑k
c=1 exp(xTc ai) for all i where aij is non-zero. Since there are at most zc non-zero

values of aij the cost of this is O(zc).

3. We need to update the partial derivatives ∂f/∂Xjc for all j and c. Observe that each time we have
aij non-zero, we change the partial derivative with respect to all features j′ that are non-zero in the
example i and we must update all classes c′ for these examples. Thus, for the O(zc) examples with a
non-zero feature j we need to update up to O(zr) other features for that example and for each of these
we need to update all k classes. This gives a cost of O(zrzck).

17Note that the purpose of the quantity zrzc is to serve as a potentially-crude upper bound on the maximum degree in the
dependency graph we describe in Section 5. Any tighter bound on this degree would yield a tighter upper bound on the runtime.

32

So while in the binary case we needed O(zrzc) to be comparable to O(z/d) for greedy coordinate descent
to be efficient, in the multi-class case we now need O(zrzck) to be comparable to O(z/d) in the multi-class
case. This means that not only do we need a high degree of sparsity but we also need the number of classes
k to be small for greedy coordinate descent to be efficient.

A.4 Cost of Greedy Coordinate Descent (Fixed Blocks)

Greedy rules are more expensive in the multi-class case because whenever we change an individual variable
Xjc, it changes the partial derivative with respect to Xj′c′ for a set of j′ values and for all c′. But we can
improve the efficiency of greedy rules by using a special choice of fixed blocks that reduces the number of j′

values. In particular, BCD is more efficient for the multi-class case if we put Xjc′ for all c′ into the same
block. In other words, we ensure that each row of X is part of the same block so that we apply BCD to
rows rather than in an unstructured way. Below we consider the cost of updating the needed quantities after
changing an entire row of Xjc values:

1. Since we are updating k elements, the cost of updating the xTc ai is k-times larger giving O(zck) when
we update a row.

2. Similarly, the cost of updating the sums
∑k
c=1 exp(xTc ai) is k-times larger also giving O(zck).

3. Where we gain in computation is the cost of computing the changed values of the partial derivatives
∂f/∂Xjc. As before, each time we have aij non-zero for our particular row j, we change the partial
derivative with respect to all other j′ for this example and with respect to each class c′ for these j′.
Thus, for the O(zc) examples with a non-zero feature j we need to update up to O(zr) other features
for that example and for each of these we need to update all k classes. But since j is the same for each
variable we update, we only have to do this once which gives us a cost of O(zrzck).

So the cost to update a row of the matrix X is O(zrzck), which is the same cost as only updating a single
element. Considering the case of updating individual rows, this gives us d blocks so in order for BCD to be
efficient it must be d-times faster than the gradient descent cost of O(zk). Thus, we need a cost of O(zk/d)
per iteration. This is achieved if O(zrzc) to be similar to O(z/d), which is the same condition we needed in
the binary case.

B Blockwise Lipschitz Constants

In this section we show how to derive lower-bounds on the block-Lipschitz constants of the gradient and
Hessian for several common problem settings. We will use that a twice-differentiable function has an L-
Lipschitz continuous gradient if and only if the absolute eigenvalues of its Hessian are upper-bounded by
L,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ⇐⇒ ∇2f(x) � LI.

This implies that when considering blockwise constants we have

‖∇bf(x+ Ubd)−∇bf(x)‖ ⇐⇒ ∇2
bbf(x) � LbI.

Thus, bounding the blockwise eigenvalues of the Hessian bounds the blockwise Lipschitz constants of the
gradient. We also use that this equivalence extends to the case of general quadratic norms,

‖∇bf(x+ Ubd)−∇bf(x)‖H−1
b
≤ ‖d‖Hb

⇐⇒ ∇2
bbf(x) � Hb.

33

B.1 Quadratic Functions

Quadratic functions have the form

f(x) =
1

2
xTAx+ cTx,

for a positive semi-definite matrix A and vector c. For all x the Hessian with respect to block b is given by
the sub-matrix of A,

∇2
bbf(x) = Abb.

Thus, we have that Lb is given by the maximum eigenvalue of the submatrix, Lb = ‖Ab‖ (the operator norm
of the submatrix). In the special case where b only contains a single element i, we have that Li is given
by the absolute value of the diagonal element, Li = |Aii|. If we want to use a general quadratic norm we
can simply take Hb = Abb, which is cheaper to compute than the Lb (since it does not require an eigenvalue
calculation).

B.2 Least Squares

The least squares objective has the form

f(x) =
1

2
‖Ax− c‖2,

for a matrix A and vector c. This is a special case of a quadratic function, where the Hessian is given by

∇2f(x) = ATA.

This gives us that Lb = ‖Ab‖2 (where Ab is the matrix containing the columns b of A). In the special case
where the block has a single element j, observe that Lj =

∑m
i=1 a

2
ij (sum of the squared values in column j)

so we do not need to solve an eigenvalue problem. When using a quadratic norm we can take Hb = ATb Ab
which similarly does not require solving an eigenvalue problem.

B.3 Logistic Regression

The likelihood of a single example in a logistic regression model is given by

p(bi|ai, x) =
1

1 + exp(−bixTai)
,

where each ai ∈ IRd and bi ∈ {−1, 1}. To maximize the likelihood over m examples (sampled independently)
we minimize the negative log-likelihood,

f(x) =

m∑
i=1

log(1 + exp(−bixTai)).

Using A as a matrix where row i is given by aTi and defining hi(x) = p(bi|ai, x), we have that

∇2f(x) =

m∑
i=1

hi(x)(1− hi(x))aia
T
i

� 0.25

m∑
i=1

aia
T
i

= 0.25ATA.

The generalized inequality above is the binary version of the Bohning bound [Böhning, 1992]. This bound
can be derived by observing that hi(x) is in the range (0, 1), so the quantity hi(x)(1− hi(x)) has an upper
bound of 0.25. This result means that we can use Lb = 0.25‖Ab‖2 for block b, Lj = 0.25

∑m
i=1 a

2
ij for single-

coordinate blocks, and Hb = 0.25ATb Ab if we are using a general quadratic norm (notice that computing Hb

is again cheaper than computing Lb).

34

B.4 Multi-Class Logistic Regression

The Hessian of the multi-class logistic regression objective (38) with respect to parameter vectors xc and xc′

can be written as
∂2

∂xc∂x′c
f(X) =

m∑
i=1

hi,c(X)(I(c = c′)− hi,c′(X))aia
T
i ,

where similar to the binary logistic regression case we have defined hi,c = p(c|ai, X). This gives the full
Hessian the form

∇2f(X) =

m∑
i=1

Hi(X)⊗ aiaTi ,

where we used ⊗ to denote the Kronecker product and where element (c, c′) of the k by k matrix Hi(X) is
given by hi,c(X)(I(c = c′)− hi,c′(X)). Bohning’s bound [Böhning, 1992] on this matrix is that

Hi(X) � 1

2

(
I − 1

k
11T

)
,

where 1 is a vector of ones while recall that k is the number of classes. Using this we have

∇2f(X) �
m∑
i=1

1

2

(
I − 1

k
11T

)
⊗ aiaTi

=
1

2

(
I − 1

k
11T

)
⊗

m∑
i=1

aia
T
i

=
1

2

(
I − 1

k
11T

)
⊗ATA.

As before we can take submatrices of this expression as our Hb, and we can take eigenvalues of the submatrices
as our Lb. However, due to the 1/k factor we can actually obtain tighter bounds for sub-matrices of the
Hessian that do not involve at least two of the classes. In particular, consider a sub-Hessian involving
the variables only associated with k′ classes for k′ < k. In this case we can replace the k by k matrix
(I − (1/k)11T) with the k′ by k′ matrix (I − (1/(k′ + 1))11T). The “+1” added to k′ in the second term
effectively groups all the other classes (whose variables are fixed) into a single class (the “+1” is included in
Bohning’s original paper as he fixes xk = 0 and defines k to be one smaller than the number of classes). This
means (for example) that we can take Lj = 0.25

∑m
i=1 a

2
ij as in the binary case rather than the slightly-larger

diagonal element 0.5(1− 1/k)
∑m
i=1 a

2
ij in the matrix above.18

C Derivation of GSD Rule

In this section we derive a progress bound for twice-differentiable convex functions when we choose and
update the block bk according to the GSD rule with Db,i = Liτ (where τ is the maximum block size). We
start by using the Taylor series representation of f(xk+1) in terms of f(xk) and some z between xk+1 and

18The binary logistic regression case can conceptually be viewed as a variation on the softmax loss where we fix xc = 0 for one
of the classes and thus are always only updating variables from class. This gives the special case of 0.5(I−1/(k+1)11T)ATA =
0.5(1− 0.5)ATA = 0.25ATA, the binary logistic regression bound from the previous section.

35

xk (keeping in mind that these only differ along coordinates in bk),

f(xk+1) = f(xk) + 〈∇f(xk), xk+1 − xk〉+
1

2
(xk+1 − xk)T∇2

bkbk
f(z)(xk+1 − xk)

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
|bk|
2

∑
i∈bk

∇2
iif(z)(xk+1

i − xki)2

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
τ

2

∑
i∈bk

∇2
iif(z)(xk+1

i − xki)2

≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
τ

2

∑
i∈bk

Li(x
k+1
i − xki)2,

where the first inequality follows from convexity of f which implies that ∇2
bkbk

f(xk) is positive semi-definite
and by Lemma 1 of Nesterov’s coordinate descent paper [Nesterov, 2010]. The second inequality follows
from the definition of τ and the third follows from the definition of Li. Now using our choice of Db,i = Liτ
in the update we have for i ∈ bk that

xk+1
i = xki −

1

Liτ
∇if(xk),

which yields

f(xk+1) ≤ f(xk)− 1

2τ

∑
i∈bk

|∇if(xk)|2

Li

= f(xk)− 1

2
max
b

∑
i∈b

|∇if(xk)|2

Liτ

= f(xk)− ‖∇f(xk)‖2B.

The first equality uses that we are selecting bk using the GSD rule with Db,i = Liτ and the second inequality
follows from the definition of of the mixed norm ‖ · ‖B from Section 3.5 with Hb = Db. This progress bound
implies that the convergence rate results in that section also hold.

D Efficiently Testing the Forest Property

In this section we give a method to test whether adding a node to an existing forest maintains the forest
property. In this setting our input is an undirected graph G and a set of nodes b whose induced subgraph
Gb forms a forest (has no cycles). Given a node i, we want to test whether adding i to b will maintain that
the induced subgraph is acyclic. In this section we show how to do this in O(p), where p is the degree of the
node i.

The method is based on the following simple observations:

• If the new node i introduces a cycle, then it must be part of the cycle. This follows because Gb is
assumed to be acyclic, so no cycles can exist that do not involve i.

• If i introduces a cycle, we can arbitrarily choose i to be the start and end point of the cycle.

• If the new node i has 1 or fewer neighbours in b, then it does not introduce a cycle. With no neighbours
it clearly can not be part of a cycle. With one neighbour, we would have to traverse its one edge more
than once to have it start and end a path.

• If the new node i has at least 2 neighbours in b that are part of the same tree, then i introduces a
cycle. Specifically, we can construct a cycle as follows: we start at node i, go to one of its neighbours,
follow a path through the tree to another one of its neighbours in the same tree (such a path exists
because trees are connected by definition), and then return to node i.

36

• If the new node i has at least 2 neighbours in b but they are all in different trees, then i does not
introduce a cycle. This is similar to the case where i has only one edge: any path that starts and ends
at node i would have to traverse one of its edges more than once (because the disjoint trees are not
connected to each other).

The above cases suggest that to determine whether adding node i to the forest b maintains the forest property,
we only need to test whether node i is connected to two nodes that are part of the same tree in the existing
forest. We can do this in O(p) using the following data structures:

1. For each of the n nodes, a list of the adjacent nodes in G.

2. A set of n labels in {0, 1, 2, . . . , t}, where t is the number of trees in the existing forest. This number
is set to 0 for nodes that are not in b, is set to 1 for nodes in the first tree, is set to 2 for nodes in the
second tree, and so on.

Note that there is no ordering to the labels {1, 2, . . . , t}, each tree is just assigned an arbitrary number that
we will use to determine if nodes are in the same tree. We can find all neighbours of node i in O(p) using
the adjacency list, and we can count the number of neighbours in each tree in O(p) using the tree numbers.
If this count is at least 2 for any tree then the node introduces a cycle, and otherwise it does not.

In the algorithms of Section 5.1 and 5.2, we also need to update the data structures after adding a node
i to b that maintains the forest property. For this update we need to consider three scenarios:

• If the node i has one neighbour in b, we assign it the label of its neighbour.

• If the node i has no neighbours in b, we assign it the label (t+ 1) since it forms a new tree.

• If the node i has multiple neighbours in b, we need to merge all the trees it is connected to.

The first two steps cost O(1), but a naive implementation of the third step would cost O(n) since we could
need to re-label almost all of the nodes. Fortunately, we can reduce the cost of this merge step to O(p). This
requires a relaxation of the condition that the labels represent disjoint trees. Instead, we only require that
nodes with the same label are part of the same tree. This allows multiple labels to be associated with each
tree, but using an extra data structure we can still determine if two labels are part of the same tree:

3. A list of t numbers, where element j gives the minimum node number in the tree that j is part of.

Thus, given the labels of two nodes we can determine whether they are part of the same tree in O(1) by
checking whether their minimum node numbers agree. Given this data structure, the merge step is simple:
we arbitrarily assign the new node i to the tree of one of its neighbours, we find the minimum node number
among the p trees that need to be merged, and then we use this as the minimum node number for all p trees.
This reduces the cost to O(p).

Giving that we can efficiently test the forest property in O(p) for a node with p neighbours, it follows
that the total cost of the greedy algorithm from Section 5.2 is O(n log n+ ||E|) given the gradient vector and
adjacency lists. The O(n log n) factor comes from sorting the gradient values, and the number of edges |E|
is 2 times the sum of the p values. If this cost is prohibitive, one could simply restrict the number of nodes
that we consider adding to the forest to reduce this time.

E Functions Bound Iterates under Strong-Convexity

Defining F (x) as F (x) = f(x) + g(x) in the “smooth plus separable non-smooth” setting of (27), existing
works on cyclic [Beck and Tetruashvili, 2013] and greedy selection [Nutini et al., 2015] of ik within proximal
coordinate descent methods imply that

F (xk)− F (x∗) ≤ ρk[F (x0)− F (x∗)], (40)

37

for some ρ < 1 when f is strongly-convex. Note that strong-convexity of f implies strong-convexity of F , so
we have that

F (y) ≥ F (x) + 〈s, y − x〉+
µ

2
‖y − x‖2,

where µ is the strong-convexity constant of f and s is any subgradient of F at x. Taking y = xk and x = x∗

we obtain that
F (xk) ≥ F (x∗) +

µ

2
‖xk − x∗‖2, (41)

which uses that 0 is in the sub-differential of F at x∗. Thus we have that

‖xk − x∗‖2 ≤ 2

µ
[F (xk)− F (x∗)] ≤ 2

µ
ρk[F (x0)− F (x∗)],

which is the type of convergence rate we assume in Section 6.2 with γ = 2
µ [F (x0)− F (x∗)].

F Full Experimental Results

In this section we first provide details on the datasets, and then we present our complete set of experimental
results.

F.1 Datasets

We considered these five datasets:

A A least squares problem with a data matrix A ∈ IRm×n and target b ∈ IRm,

arg min
x∈IRn

1

2
‖Ax− b‖2.

We set A to be an m by n matrix with entries sampled from a N (0, 1) distribution (with m = 1000 and
n = 10000). We then added 1 to each entry (to induce a dependency between columns), multiplied each
column by a sample from N (0, 1) multiplied by ten (to induce different Lipschitz constants across the
coordinates), and only kept each entry of A non-zero with probability 10 log(m)/m. We set b = Ax+e,
where the entries of e were drawn from a N (0, 1) distribution while we set 90% of x to zero and drew
the remaining values from a N (0, 1) distribution.

B A binary logistic regression problem of the form

arg min
x∈IRn

n∑
i=1

log(1 + exp(−bixTai)).

We use the data matrix A from the previous dataset (setting row i of A to aTi), and bi to be the sign
of xTai using the x used in the generating the previous dataset. We then flip the sign of each entry in
b with probability 0.1 to make the dataset non-separable.

C A multi-class logistic regression problem of the form

arg min
x∈IRd×k

m∑
i=1

[
−xTbiai + log

(
k∑
c=1

exp(xTc ai)

)]
,

see (38). We generate a 1000 by 1000 matrix A as in the previous two cases. To generate the
bi ∈ {1, 2, . . . , k} (with k = 50), we compute AX + E where the elements of the matrices X ∈ IRd×k

and E ∈ IRm×k are sampled from a standard normal distribution. We then compute the maximum
index in each row of that matrix as the class labels.

38

D A label propagation problem of the form

min
xi∈S′

1

2

n∑
i=1

n∑
j=1

wij(xi − xj)2,

where x is our label vector, S is the set of labels that we do know (these xi are set to a sample from a
normal distribution with a variance of 100), S′ is the set of labels that we do not know, and wij ≥ 0
are the weights assigned to each xi describing how strongly we want the labels xi and xj to be similar.
We set the non-zero pattern of the wij so that the graph forms a 50 by 50 lattice-structure (setting the
non-zero values to 10000). We labeled 100 points, leading to a problem with 2400 variables but where
each variable has at most 4 neighbours in the graph.

E Another label propagation problem for semi-supervised learning in the ‘two moons’ dataset [Zhou et al.,
2003], which is binary label propagation problem (xi ∈ [−1, 1]). We generate 2000 samples from this
dataset, randomly label 100 points in the data, and connect each node to its five nearest neighbours
(using wij = 1). This results in a very sparse but unstructured graph.

F.2 Greedy Rules with Gradients Updates

In Figure 8 we show the performance of the different methods from Section 7.1 on all five datasets with
three different block sizes. In Figure 9 we repeat the experiment but focusing only on the FB methods.
For each FB method, we plot the performance using our upper bounds on Lb as the step-size (Lb) and
using the Lipschitz approximation procedure from Section 4.3 (LA). Here we see the LA methods improves
performance when using large block sizes and in cases where the global Lb bound is not tight.

Our third experiment also focused on the FB methods, but considered different ways to partition the
variables into fixed blocks. We considered three approaches:

1. Order: we partition the variables based on their numerical order (which is similar to using a random
order for dataset except Dataset D, where this method groups variables that adjacent in the lattice).

2. Avg: we compute the coordinate-wise Lipschitz constants Li, and place the largest Li with the smallest
Li values so that the average Li values are similar across the blocks.

3. Sort: we sort the Li values and place the largest values together (and the smallest values together).

We compared many variations on cyclic/random/greedy rules with gradient or matrix updates. In the case
of greedy rules with gradient updates, we found that the Sort method tended to perform the best while
the Order method tended to perform the worst (see Figure 10). When using matrix updates or when using
cyclic/randomized rules, we found that no partitioning strategy dominated other strategies.

F.3 Greedy Rules with Matrix and Newton Updates

In Figure 11 we show the performance of the different methods from Section 7.2 on all five datasets with
three different block sizes. In Figure 12 we repeat this experiment on the two non-quadratic problems, using
the Newton direction and a line-search rather than matrix updates. We see that using Newton’s method
significantly improves performance over matrix updates.

F.4 Proximal Updates using Random Selection

In Figure 7 we compare the performance of a projected gradient update with Lb step-size, a projected Newton
(PN) solver with line search and the two-metric projection (TMP) update when using greedy selected fixed
(FB) and variable (VB) blocks of different sizes (|b| = 5, 50, 100). In Figure 13 we repeat this experiment
using randomly selected blocks. We see that for such a sparse problem the random block selection rules
suffer from selecting variables that are already zero/active, as seen by the step-like nature of the results.

39

Acknowledgments

We would like to thank Dr. Warren Hare for fruitful conversations that helped with Section 6. We would also
like to thank Francis Bach, Coralia Cartis, Aleksandar Dogandzic, Ives Macedo, Anastasia Podosinnikova,
and Suvrit Sra for valuable discussions. This work was supported by a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada (NSERC). Julie Nutini and Issam Laradji are funded
by UBC Four-Year Doctoral Fellowships (4YFs).

References

S. Bakin. Adaptive regression and model selection in data mining problems. PhD thesis, Australian National
University, Canberra, Australia, 1999.

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods. SIAM J. Optim.,
23(4):2037–2060, 2013.

D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions on
Automatic Control, 21(2):174–184, 1976.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 3rd edition, 2016.

D. Bickson. Gaussian Belief Propagation: Theory and Application. PhD thesis, The Hebrew University of
Jerusalem, Jerusalem, Israel, 2009.

T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Appl. Comput.
Harmon. Anal., 27(3):265–274, 2009.

L. Bo and C. Sminchisescu. Greedy block coordinate descent for large scale Gaussian process regression.
arXiv:1206.3238, 2012.

D. Böhning. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math., 44(1):197–200, 1992.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J. V. Burke and J. J. Moré. On the identification of active constraints. SIAM J. Numer. Anal., 25(5):
1197–1211, 1988.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst.
Technol., 2(3):27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

B. Chen, S. He, Z. Li, and S. Zhang. Maximum block improvement and polynomial optimization. SIAM J.
Optim., 22(1):87–107, 2012.

D. Csiba and P. Richtárik. Importance sampling for minibatches. arXiv:1602.02283, 2016.

D. Csiba and P. Richtárik. Global convergence of arbitrary-block gradient methods for generalized Polyak-
 Lojasiewicz functions. arXiv:1709.03014, 2017.

D. Csiba, Z. Qu, and P. Richtárik. Stochastic dual coordinate ascent with adaptive probabilities. In Pro-
ceedings of the 32nd International Conference on Machine Learning, pages 674–683, Lille, France, 2015.

J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance selection for nonchordal graphs via chordal
embedding. Optim. Methods Softw., 23(4):501–520, 2008.

40

M. De Santis, S. Lucidi, and F. Rinaldi. A fast active set block coordinate descent algorithm for `1-regularized
least squares. SIAM J. Optim., 26(1):781–809, 2016.

R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J. Numer. Anal., 19(2):
400–408, 1982.

J. E. Dennis and J. J. Moré. A characterization of superlinear convergence and its application to quasi-
Newton methods. Math. Comput., 28(126):549–560, 1974.

I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Nearest neighbor based greedy coordinate descent. In
Advances in Neural Information Processing Systems 24, pages 2160–2168, 2011.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Stat., 32(2):407–451,
2004.

A. Ene and H. L. Nguyen. Random coordinate descent methods for minimizing decomposable submodular
functions. In Proceedings of the 32nd International Conference on Machine Learning, pages 787–795, Lille,
France, 2015.

L. Esperet, L. Lemoine, and F. Maffray. Equitable partition of graphs into induced forests. Discrete Math.,
338:1481–1483, 2015.

O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. SIAM J. Optim., 25(4):
1997–2023, 2015.

K. Fountoulakis and R. Tappenden. A flexible coordinate descent method. arXiv:1507.03713, 2015.

K. Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, and M. W. Mahoney. Exploiting optimization
for local graph clustering. arXiv:1602.01886, 2016.

W. J. Fu. Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat., 7(3):397–416, 1998.

E. M. Gafni and D. P. Bertsekas. Two-metric projection methods for constrained optimization. SIAM J.
Control Optim., 22(6):936–964, 1984.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York, NY, USA, 1979.

T. Glasmachers and U. Dogan. Accelerated coordinate descent with adaptive coordinate frequencies. In
Proceedings of the 5th Asian Conference on Machine Learning, pages 72–86, Canberra, Australia, 2013.

J. Gregor and J. A. Fessler. Comparison of SIRT and SQS for regularized weighted least squares image
reconstruction. IEEE Trans. Comput. Imaging, 1(1):44–55, 2015.

W. L. Hare. Identifying active manifolds in regularization problems. In H. H. Bauschke, R. S. Burachik,
P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, pages 261–271. Springer New York, New York, NY, 2011.

W. L. Hare and A. S. Lewis. Identifying active constraints via partial smoothness and prox-regularity. J.
Convex Analysis, 11(2):251–266, 2004.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support vector
machine. J. Mach. Learn. Res., 5:1391–1415, 2004.

R. R. Hocking. A biometrics invited paper. The analysis and selection of variables in linear regression.
Biometrics, 32(1):1–49, 1976.

41

C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. K. Ravikumar, and R. Poldrack. BIG & QUIC: Sparse inverse
covariance estimation for a million variables. In Advances in Neural Information Processing Systems 26,
pages 3165–3173, 2013.

S. Jegelka, F. Bach, and S. Sra. Reflection methods for user-friendly submodular optimization. In Advances
in Neural Information Processing Systems 26, pages 1313–1321, 2013.

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and A. J. Smola,
editors, Advances in Kernel Methods - Support Vector Learning, pages 169–184. MIT Press, 1999.

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-gradient methods under
the Polyak- Lojasiewicz condition. In Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Proceedings, Part I, pages 795–811, Riva del Garda, Italy, 2016.

M. E. Khan. Variational Learning for Latent Gaussian Model of Discrete Data. PhD thesis, The University
of British Columbia, Vancouver, Canada, 2012.

R. Kyng and S. Sachdeva. Approximate Gaussian elimination for Laplacians - fast, sparse, and simple. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 573–582. IEEE,
2016.

C.-P. Lee and S. J. Wright. Random permutations fix a worst case for cyclic coordinate descent.
arXiv:1607.08320, 2016.

J. D. Lee, Y. Sun, and M. A. Saunders. Proximal Newton-type methods for convex optimization. In Advances
in Neural Information Processing Systems 25, pages 827–835, 2012.

S. Lee and S. J. Wright. Manifold identification in dual averaging for regularized stochastic online learning.
J. Mach. Learn. Res., 13(Jun):1705–1744, 2012.

Q. Lei, K. Zhong, and I. S. Dhillon. Coordinate-wise power method. In Advances in Neural Information
Processing Systems 29, pages 2064–2072, 2016.

Z. Li, A. Uschmajew, and S. Zhang. On convergence of the maximum block improvement method. SIAM J.
Optim., 25(1):210–233, 2015.

J. Mairal and B. Yu. Complexity analysis of the lasso regularization path. In Proceedings of the 29th
International Conference on Machine Learning, pages 353–360, New York, NY, USA, 2012.

D. M. Malioutov, J. K. Johnson, and A. S. Willsky. Walk-sums and belief propagation in Gaussian graphical
models. J. Mach. Learn. Res., 7(Oct):2031–2064, 2006.

N. Megiddo. Combinatorial optimization with rational objective functions. Math. Oper. Res., 4(4):414–424,
1979.

L. Meier, S. Van De Geer, and P. Bühlmann. The group lasso for logistic regression. J. R. Stat. Soc. Series
B Stat. Methodol., 70(1):53–71, 2008.

O. Meshi, T. Jaakkola, and A. Globerson. Convergence rate analysis of MAP coordinate minimization
algorithms. In Advances in Neural Information Processing Systems 25, pages 3014–3022, 2012.

R. Mifflin and C. Sagastizábal. Proximal points are on the fast track. J. Convex Anal., 9(2):563–579, 2002.

H. Namkoong, A. Sinha, S. Yadlowsky, and J. C. Duchi. Adaptive sampling probabilities for non-smooth
optimization. In Proceedings of the 34th International Conference on Machine Learning, pages 2574–2583,
Sydney, Australia, 2017.

42

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2004.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. CORE Discus-
sion Paper, 2010.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim.,
22(2):341–362, 2012.

Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance. Math.
Program., pages 177–205, 2006.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

J. Nutini, M. Schmidt, I. H. Laradji, M. Friedlander, and H. Koepke. Coordinate descent converges faster
with the Gauss-Southwell rule than random selection. In Proceedings of the 32nd International Conference
on Machine Learning, pages 1632–1641, Lille, France, 2015.

J. Nutini, M. Schmidt, and W. Hare. “Active-set complexity” of proximal gradient: How long does it take
to find the sparsity pattern? arXiv:1712.03577, 2017.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. New
York: Acedemic Press, 1970.

M. R. Osborne and B. A. Turlach. A homotopy algorithm for the quantile regression lasso and related
piecewise linear problems. J. Comput. Graph. Stat., 20(4):972–987, 2011.

M. R. Osborne, B. Presnell, and B. A. Turlach. A new approach to variable selection in least squares
problems. IMA J. Numer. Anal., 20(3):389–403, 2000.

S. Parter. The use of linear graphs in Gauss elimination. SIAM Rev., 3(2):119–130, 1961.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: Recursive function ap-
proximation with applications to wavelet decomposition. In Proceedings of the 27th Annu. Asilomar Conf.
Signals, Systems and Computers, pages 40–44. IEEE, 1993.

M. Pilanci and M. J. Wainwright. Newton sketch: A linear-time optimization algorithm with linear-quadratic
convergence. SIAM J. Optim., 27(1):205–245, 2017.

J. C. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. Tech-
nical report, Microsoft Research, 1998.

B. T. Polyak. Gradient methods for minimizing functionals (in Russian). Zh. Vychisl. Mat. Mat. Fiz., pages
643–653, 1963.

Z. Qin, K. Scheinberg, and D. Goldfarb. Efficient block-coordinate descent algorithms for Group Lasso.
Mathematical Programming Computation, 5:143–169, 2013.

Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling I: Algorithms and complexity. Optim.
Methods Softw., 31(5):829–857, 2016.

Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling II: Expected separable overapproxima-
tion. Optim. Methods Softw., 31(5):858–884, 2016.

Z. Qu, P. Richtárik, and T. Zhang. Randomized dual coordinate ascent with arbitrary sampling.
arXiv:1411.5873, 2014.

43

Z. Qu, P. Richtárik, M. Takáč, and O. Fercoq. SDNA: Stochastic dual coordinate ascent for empirical risk
minimization. In Proceedings of the 33rd International Conference on Machine Learning, pages 1823–1832,
New York, New York, USA, 2016.

P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization. Math. Prog., 156
(1-2):433–484, 2016.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for mini-
mizing a composite function. Math. Program., 144:1–38, 2014.

P. Richtárik and M. Takáč. On optimal probabilities in stochastic coordinate descent methods. Optimization
Letters, 10(6):1233–1243, 2016.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 14(5):
877898, 1976.

D. J. Rose. Triangulated graphs and the elimination process. J. Math. Anal. Appl., 32(3):597–609, 1970.

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Ann. Stat., 35(3):1012–1030, 2007.

S. Sardy, A. G. Bruce, and P. Tseng. Block coordinate relaxation methods for nonparametric wavelet
denoising. J. Comput. Graph. Stat., 9(2):361–379, 2000.

K. Scheinberg and I. Rish. SINCO-a greedy coordinate ascent method for sparse inverse covariance selection
problem. preprint, 2009.

C. Scherrer, A. Tewari, M. Halappanavar, and D. J. Haglin. Feature clustering for accelerating parallel
coordinate descent. In Advances in Neural Information Processing Systems 25, pages 28–36, 2012.

M. Schmidt. Graphical Model Structure Learning with `1-Regularization. PhD thesis, The University of
British Columbia, Vancouver, Canada, 2010.

O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson, and D. Dolev. Gaussian belief propagation solver for systems
of linear equations. In Information Theory, 2008. ISIT 2008. IEEE International Symposium on, pages
1863–1867, Toronto, Canada, 2008. IEEE.

A. Srinivasan and E. Todorov. Graphical Newton. arXiv:1508.00952, 2015.

S. U. Stich, A. Raj, and M. Jaggi. Approximate steepest coordinate descent. arXiv:1706.08427, 2017.

Y. Sun, M. S. Andersen, and L. Vandenberghe. Decomposition in conic optimization with partially separable
structure. SIAM J. Optim., 24(2):873–897, 2014.

R. Tappenden, P. Richtárik, and J. Gondzio. Inexact coordinate descent: Complexity and preconditioning.
J. Optim. Theory Appl., pages 144–176, 2016.

G. Thoppe, V. S. Borkar, and D. Garg. Greedy block coordinate descent (GBCD) method for high dimen-
sional quadratic programs. arXiv:1404.6635, 2014.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth separable minimization. Math.
Program., 117:387–423, 2009a.

P. Tseng and S. Yun. Block-coordinate gradient descent method for linearly constrained nonsmooth separable
optimization. J. Optim. Theory Appl., pages 513–535, 2009b.

L. Vandenberghe and M. S. Andersen. Chordal graphs and semidefinite optimization. Found. Trends Optim.,
1(4):241–433, 2015.

44

D. J. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and its application to
timetabling problems. The Computer Journal, 10(1):85–86, 1967.

S. J. Wright. Identifiable surfaces in constrained optimization. SIAM J. Control Optim., 31(4):1063–1079,
1993.

S. J. Wright. Accelerated block-coordinate relaxation for regularized optimization. SIAM J. Optim., 22(1):
159–186, 2012.

Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with
applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci, 6(3):1758–1789,
2013.

Y. You, X. Lian, J. Liu, H.-F. Yu, I. S. Dhillon, J. Demmel, and C.-J. Hsieh. Asynchronous parallel greedy
coordinate descent. In Advances in Neural Information Processing Systems 29, pages 4682–4690, 2016.

H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent approaches to parallel matrix
factorization for recommender systems. In Data Mining (ICDM), 2012 IEEE 12th International Conference
on, pages 765–774. IEEE, 2012.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global consistency.
In Advances in Neural Information Processing Systems 16, pages 321–328, 2003.

45

0 100 200 300 400 500
Iterations with 5-sized blocks

7.9× 103

4.4× 104

2.4× 105

1.3× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.1× 10−1

1.8× 100

2.8× 102

4.6× 104

7.4× 106

Cyclic-FB Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

0.3× 10−5

0.4× 10−2

4.9× 100

6.0× 103

7.4× 106

Cyclic-FB Lipschitz-FB

Random-FB
GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

6.1× 101

1.1× 102

2.1× 102

3.8× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

1.6× 101

4.1× 101

1.1× 102

2.7× 102

6.9× 102

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.1× 101

3.1× 101

8.7× 101

2.5× 102

6.9× 102

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

3.0× 103

3.2× 103

3.4× 103

3.6× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB
Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

2.0× 103

2.4× 103

2.8× 103

3.3× 103

3.9× 103

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.6× 103

2.0× 103

2.5× 103

3.1× 103

3.9× 103

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB
GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

1.3× 108

2.2× 108

3.7× 108

6.2× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

Cyclic-FB
Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

2.0× 107

5.3× 107

1.4× 108

3.9× 108

1.0× 109

Cyclic-FB

Lipschitz-FB

Random-FBGS-FB
GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

8.2× 106

2.8× 107

9.3× 107

3.1× 108

1.0× 109

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB
Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.7× 102

3.4× 102

4.4× 102

5.6× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

1.1× 102

1.7× 102

2.7× 102

4.4× 102

7.2× 102

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB

Random-VB

GS-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

5.5× 101

1.0× 102

2.0× 102

3.8× 102

7.2× 102

Cyclic-FB

Lipschitz-FB

Random-FB

GS-FB

GSL-FB

Lipschitz-VB

Cyclic-VB
Random-VBGS-VB

GSL-VB

Figure 8: Comparison of different random and greedy block selection rules on five different problems (rows)
with three different blocks (columns) when using gradient updates.

46

0 100 200 300 400 500
Iterations with 5-sized blocks

8.4× 103

4.6× 104

2.5× 105

1.4× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz
Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

9.0× 101

1.5× 103

2.6× 104

4.4× 105

7.4× 106

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

0.1× 10−2

0.3× 100

9.2× 101

2.6× 104

7.4× 106

LA-GS Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

3.9× 101

8.0× 101

1.6× 102

3.4× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

LA-GS

Lb-GS

LA-GSL
Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

0.5× 100

2.8× 100

1.8× 101

1.1× 102

6.9× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

0.2× 100

1.6× 100

1.2× 101

9.1× 101

6.9× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

1.9× 103

2.3× 103

2.7× 103

3.3× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random
LA-CyclicLb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

5.8× 102

9.3× 102

1.5× 103

2.4× 103

3.9× 103

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

2.6× 101

9.2× 101

3.2× 102

1.1× 103

3.9× 103

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

2.6× 108

3.7× 108

5.2× 108

7.4× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz LA-Random

Lb-Random

LA-Cyclic
Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

1.6× 108

2.5× 108

4.0× 108

6.5× 108

1.0× 109

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

7.9× 107

1.5× 108

2.9× 108

5.5× 108

1.0× 109

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 5-sized blocks

3.2× 102

3.9× 102

4.8× 102

5.9× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 20-sized blocks

1.9× 102

2.6× 102

3.7× 102

5.1× 102

7.2× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

0 100 200 300 400 500
Iterations with 50-sized blocks

1.1× 102

1.7× 102

2.7× 102

4.4× 102

7.2× 102

LA-GS

Lb-GS

LA-GSL

Lb-GSL

LA-Lipschitz

Lb-Lipschitz

LA-Random

Lb-Random

LA-Cyclic

Lb-Cyclic

Figure 9: Comparison of different random and greedy block selection rules with gradient updates and fixed
blocks, using two different strategies to estimate Lb.

47

0 100 200 300 400 500
Iterations with 5-sized blocks

8.2× 103

4.5× 104

2.5× 105

1.4× 106

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg
GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

8.7× 101

1.5× 103

2.5× 104

4.4× 105

7.4× 106

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg
GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

4.4× 100

1.6× 102

5.7× 103

2.1× 105

7.4× 106

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg GSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

6.1× 101

1.1× 102

2.1× 102

3.8× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

3.6× 101

7.5× 101

1.6× 102

3.3× 102

6.9× 102

GS-Sort

GSD-Sort

GSL-Sort
GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

2.7× 101

6.2× 101

1.4× 102

3.1× 102

6.9× 102

GS-Sort

GSD-Sort

GSL-Sort GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

3.3× 103

3.5× 103

3.6× 103

3.8× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order
GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

3.1× 103

3.2× 103

3.5× 103

3.7× 103

3.9× 103

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

2.6× 103

2.9× 103

3.2× 103

3.5× 103

3.9× 103

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

2.6× 108

3.7× 108

5.2× 108

7.4× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

1.7× 108

2.7× 108

4.2× 108

6.7× 108

1.0× 109

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

9.7× 107

1.8× 108

3.2× 108

5.8× 108

1.0× 109

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-AvgGSL-Avg

0 100 200 300 400 500
Iterations with 5-sized blocks

3.2× 102

3.9× 102

4.8× 102

5.9× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 20-sized blocks

1.9× 102

2.6× 102

3.7× 102

5.1× 102

7.2× 102

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

0 100 200 300 400 500
Iterations with 50-sized blocks

1.1× 102

1.7× 102

2.7× 102

4.4× 102

7.2× 102

GS-Sort

GSD-Sort

GSL-Sort

GS-Order

GSD-Order

GSL-Order

GS-Avg

GSD-Avg

GSL-Avg

Figure 10: Comparison of different random and greedy block selection rules with gradient updates and fixed
blocks, using three different ways to partition the variables into blocks.

48

0 100 200 300 400 500
Iterations with 5-sized blocks

0.3× 10−1

4.0× 100

4.9× 102

6.1× 104

7.4× 106

f(
x
)
−
f
∗
 fo

r L
ea

st
 S

qu
ar

es
 o

n
Da

ta
se

t A GSQ-FB
GS-FB

GSL-FB

GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.8× 10−8

0.5× 10−4

0.2× 100

1.4× 103

7.4× 106

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

0.8× 10−8

0.4× 10−4

0.2× 100

1.4× 103

7.4× 106

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 101

5.4× 101

1.3× 102

3.0× 102

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

3.2× 100

1.2× 101

4.7× 101

1.8× 102

6.9× 102

GSQ-FB GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.8× 100

8.1× 100

3.6× 101

1.6× 102

6.9× 102

GSQ-FB

GS-FB

GSL-FB
GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 103

2.6× 103

3.0× 103

3.4× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C GSQ-FB

GS-FB

GSL-FB
GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

3.9× 102

6.9× 102

1.2× 103

2.2× 103

3.9× 103

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.7× 102

3.7× 102

8.1× 102

1.8× 103

3.9× 103

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

1.2× 108

2.0× 108

3.5× 108

6.1× 108

1.0× 109

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 D

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

4.8× 105

3.3× 106

2.3× 107

1.5× 108

1.0× 109

GSQ-FB
GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.4× 103

4.1× 104

1.2× 106

3.5× 107

1.0× 109

GSQ-FB
GS-FB

GSL-FB
GSD-FB

GS-VB
GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.3× 102

3.0× 102

4.1× 102

5.4× 102

7.2× 102

f(
x
)
−
f
∗
 fo

r Q
ua

dr
at

ic
on

 D
at

as
et

 E

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

4.1× 101

8.3× 101

1.7× 102

3.5× 102

7.2× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

9.7× 100

2.9× 101

8.4× 101

2.4× 102

7.2× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB
GSQ-VB

GSL-VB

Figure 11: Comparison of different greedy block selection rules when using matrix updates.

49

0 100 200 300 400 500
Iterations with 5-sized blocks

0.9× 10−3

0.3× 10−1

0.8× 100

2.3× 101

6.9× 102

f(
x
)
−
f
∗
 fo

r L
og

ist
ic

on
 D

at
as

et
 B GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

0.9× 10−8

0.5× 10−5

0.3× 10−2

1.3× 100

6.9× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400
Iterations with 100-sized blocks

0.8× 10−8

0.4× 10−5

0.2× 10−2

1.3× 100

6.9× 102

GSQ-FB

GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 5-sized blocks

2.8× 102

5.4× 102

1.1× 103

2.0× 103

3.9× 103

f(
x
)
−
f
∗
 fo

r S
of

tm
ax

 o
n

Da
ta

se
t C

GSQ-FB

GS-FB

GSL-FB GSD-FBGS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 50-sized blocks

1.0× 10−4

0.8× 10−2

0.6× 100

4.9× 101

3.9× 103

GSQ-FB
GS-FB

GSL-FB

GSD-FB
GS-VB

GSD-VB

GSQ-VB

GSL-VB

0 100 200 300 400 500
Iterations with 100-sized blocks

1.0× 10−8

0.8× 10−5

0.6× 10−2

4.9× 100

3.9× 103

GSQ-FB
GS-FB

GSL-FB

GSD-FB

GS-VB

GSD-VB

GSQ-VB

GSL-VB

Figure 12: Comparison of different greedy block selection rules when using Newton updates and a line-search.

0 100 200 300 400 500
Iterations with 5-sized blocks

6.2× 105

6.4× 105

6.6× 105

6.8× 105

7.1× 105

f(
x
)
−
f
∗
 fo

r N
on

-n
eg

at
iv

e
Le

as
t S

qu
ar

es
 o

n
Da

ta
se

t A

PN-VB

TMP-VB

PG-VB

PN-FB
TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 50-sized blocks

2.0× 104

4.9× 104

1.2× 105

2.9× 105

7.1× 105

PN-VB

TMP-VB

PG-VB

PN-FB

TMP-FB

PG-FB

0 100 200 300 400 500
Iterations with 100-sized blocks

6.0× 102

3.5× 103

2.1× 104

1.2× 105

7.1× 105

PN-VB

TMP-VB

PG-VB

PN-FB

TMP-FB

PG-FB

Figure 13: Comparison of different updates when using random fixed and variable blocks of different sizes.

50

