
N-Body Games

Albert Xin Jiang, Kevin Leyton-Brown, Nando De Freitas
Department of Computer Science, University of British Columbia

{jiang;kevinlb;nando}@cs.ubc.ca

ABSTRACT
This paper introducesn-body games, a new compact game-theoretic
representation which permits a wide variety of game-theoretic quan-
tities to be efficiently computed both approximately and exactly.
This representation is useful for games which consist of choosing
actions from a metric space (e.g., points in space) and in which pay-
offs are a function of the distances between players’ actionchoices.1

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems

General Terms
Theory, Algorithms

Keywords
Computational Game Theory, Compact Game Representations,N-
Body Problems

1. INTRODUCTION
Game theoretic models have recently been very influential inthe

electronic commerce community, primarily as a way of studying
users’ behavior in complex systems (e.g., computer networks) and
the ways in which they would respond to changes in the struc-
ture of that system [28, 5, 26, 22, 29]. In particular, perfect-
information, simultaneous-action games have received consider-
able study, which is reasonable as these games are in a sense the
most fundamental.2 In order to analyze these models computa-
tionally, it is often necessary to compute game-theoretic quantities
ranging from expected utility to Nash equilibria.

Most of the game theoretic literature presumes that simultaneous
games will be represented in normal form. This is problematic be-
cause quite often games of interest have a large number of players
and a large set of action choices. In the normal form representation,
we store the game’s payoff function as a matrix with one entryfor
each player’s payoff under each combination of all players’actions.

1We’d like to thank Mike Klaas for helpful discussions.
2More complex games such as those involving time or uncer-
tainty about payoffs can always be mapped to perfect-information,
simultaneous-action games by creating an action for everypolicy in
the original game. It should be said that this expansion is ofprimar-
ily theoretical interest, however, as it tends to cause an explosion in
the size of the game.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’06,June 11–15, 2006, Ann Arbor, Michigan.
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

As a result, the size of the representation grows exponentially with
the number of players. Even if we had enough space to store such
games, most of the computations we’d like to perform on these
exponential-sized objects take exponential time.

Fortunately, most large games of any practical interest have
highly structured payoff functions, and thus it is possibleto rep-
resent them compactly. (Intuitively, this is why humans areable to
reason about these games in the first place: we understand thepay-
offs in terms of simple relationships rather than in terms ofenor-
mous look-up tables.) Compactness of representations in itself is
not enough, however. In order for a compact representation to be
useful, it must give rise to efficient computations.

Compact representations of structured games and these repre-
sentations’ computational properties have already received consid-
erable study. For example, see work on congestion games [27],
local effect games [20], graphical games [16, 8], multi-agent influ-
ence diagrams [18] and action graph games [2], as well as work
on computation of correlated equilibria on compact game repre-
sentations [25, 24]. This prior work on compactly representing and
reasoning about large utility functions in highly-multiplayer games
provides us with many useful tools; however, for the most part these
classes of games are only compact when players’ payoff functions
exhibit strict or context-specific independencies. While such as-
sumptions are justified in a wide range of practical applications,
there are many other sorts of interactions that cannot be compactly
modeled using these existing approaches.

In this paper, we describe a class of games calledn-body games,
which have structure similar to the “n-body problems” widely stud-
ied in physics and statistical machine learning [12]. Ann-body
problem consists ofn particles in a metric space and quantities to
be computed which are functions of the distances between pairs
(or larger sets) of particles. Examples ofn-body problems range
from determining the gravitational forces in effect between a set of
masses in physics to kernel density estimation in statistics.

In an n-body game, players choose actions in a metric space,
and the payoff of a player depends on the distances between her
actions and each of the other players’ actions. We show that many
computational questions aboutn-body games can be answered effi-
ciently, often by combining techniques forn-body problems, such
as the dual-tree algorithm [12], with classical game-theoretic al-
gorithms. The key difference between our work and the existing
research on compact game representations mentioned above is that
n-body games need exhibitneitherstrict nor context-specific inde-
pendence structures. Instead, in this work we show how regularity
in the action space can be leveraged in several key game-theoretic
computational problems, even when each agent’s payoffalwaysde-
pends on all other agents’ action choices. (Of course, this does not
mean that the two approaches are incompatible: in our current re-
search we are investigating further computational gains that can be
realized inn-body games when strict or conditional independencies
hold between players’ payoff functions.)

2. DEFINING N-BODY GAMES
Consider a game with set of playersN = {1 . . . n}. De-

note bySi agenti’s finite set of actions.3 Denote a pure strat-
egy of playeri as si ∈ Si. A pure strategy profile, denoted
s = (s1, . . . sn), is a tuple of then players’ actions. We also
define the pure strategy profile of all players other thani ass−i =
(s1, . . . , si−1, si+1, . . . , sn). Let S = ×i∈NSi be the set of all
pure strategy profiles. Playeri’s payoff ui : S 7→ R is a function
of all n players’ actions.

An n-body game is any game which has the following properties:

1. EachSi is a subset ofS, whereS is a metric space with
distance measured. Two action setsSi andSj may (partially
or completely) overlap with each other.

2. ∀i, ui = U(d(s1, si), . . . , d(si−1, si), d(si+1, si), . . . ,
d(sn, si)). That is, each playeri’s payoff depends only on
thedistancebetweeni’s action choice and each of the other
players’ action choices.

3. U is monotonic in its distance arguments. That is, holding
all but one ofU ’s arguments constant,U must increase or
decrease (weakly) monotonically as the remaining distance
argument increases. As long as it satisfies this constraint,U
may be any function.

Although we have obtained results about many classes ofn-body
games, due to space constraints in this paper we will consider only
one family of payoff functions and two special cases of this fam-
ily. Intuitively, we consider onlyn-body games which can be con-
structed from functionsKj that depend on the distances between
only two players’ actions. It turns out that these payoff functions
are already sufficient to represent a large class of game-theoretic
interactions.

DEFINITION 1 (PAIRWISE INTERACTIONS). A General Pair-
wise Interactionspayoff function is defined as

∀i, ui(si, s−i) = ∗
j 6=i

Kj(d(si, sj)) (1)

where∗ is a monotonic, commutative and associative operator with
∗jKj = K1 ∗ . . . ∗ Kn and where eachkernelKi is a monotonic
function as defined in point 3 above.

Below we define two special cases of pairwise interactions pay-
off functions which are useful representationally, and which yield
computational benefits over the general case.

DEFINITION 2 (SUM-KERNEL). A Sum-Kernel, or Additive
payoff function is defined as

∀i, ui(si, s−i) =
X

j 6=i

wjK(d(si, sj)) (2)

where the kernelK is a positive and monotonic function of the
distance between two actions, and the weightswj ∈ W ⊆ R.

3In fact, most of our results generalize to the case of continu-
ous action spaces, with the caveat that most quantities mustbe ǫ-
approximated rather than computed exactly. We focus on the finite
case for two reasons: first, it is simpler to explain given ourlim-
ited space here; second, game-theoretic problems can arisein the
continuous case because e.g., Nash equilibria do not alwaysexist.
In fact, we are able to show the existence of Nash equilibria for
broad families of continuousn-body games; we mention these re-
sults briefly in Section 6.

DEFINITION 3 (MAX -KERNEL). A Max-Kernelpayoff func-
tion is defined as

∀i, ui(si, s−i) = max
j 6=i

wjK(d(si, sj)) (3)

whereK is positive and monotonic, andwj ∈ W ⊆ R.

Analogously we can define Min-Kernel payoff functions. An
example of a min-kernel payoff function isNearest Neighbor:

∀i, ui(si, s−i) = min
j 6=i

d(si, sj) (4)

We can represent many other interesting game-theoretic interac-
tions as special cases of general pairwise interactions. For example,
single-shot pursuit-evasion scenarios can be written in this way; for
more details see the full version of our paper.

2.1 Representation Size
According to the definition above, to represent a pairwise inter-

actionsn-body game we need to specify the action setSi and the
kernel functionKi for each player. Lets = maxi |Si|. Storing the
action sets takesO(ns) space. For eachj, we need to specifyKj

for each possible values ofd(si, sj), and in the worst case where
action sets are totally disjoint,d can haveO((ns)2) different val-
ues (recall that we assume that the action space is finite). Sothe
worst case space complexity for representing ann-body game is
O(n3

s
2).

We are most interested in cases whereK can be expressed ana-
lytically, and so we will not need to explicitly store its values. Some
examples of useful analytic kernel functions are:

1. Gaussian Kernel: K(d(si, sj)) = e
−λ||si−sj ||

2

2. Coulombic Kernel: K(d(si, sj)) = −
1

||si − sj ||a

When the kernel has an analytic expression, as in these cases, the
space complexity of representing the game isO(ns), because it is
unnecessary to storeKj(d(si, sj)) for eachsi andsj . Regardless,
the space complexity of representing ann-body game is much less
than the space complexity of the same game’s normal form, which
is O(ns

n).

2.2 Example
Here we give a discrete and multidimensional generalization of

Hotelling’s famous location problem [15], represented as an n-
body game with Additive payoffs:

EXAMPLE 1. Coffee Shop Game
n vendors are trying to decide where to open coffee shops in a
downtown area. The area is rectangular, withr rows andc columns
of blocks; each vendor chooses to open shop in one of these blocks.
Vendors prefer to be far away from other vendors’ shops. Vendor
i’s payoff is the sum of all other vendors’ influence oni, wherej’s
influence oni is an increasing function on the Manhattan distance
betweeni andj’s chosen blocks. Formally,

ui(si, s−i) =
X

j 6=i

K(d(si, sj)) (5)

whered(si, sj) is the Manhattan distance betweeni’s location si

andj’s locationsj :

d(si, sj) = |row(si) − row(sj)| + |col(si) − col(sj)|

andK is a monotonically increasing function (e.g., linear; log).

2.3 Computation onn-body Games
As noted above, then-body game representation is much more

compact than the normal form. However, evaluating a player’s pay-
off now takesO(n) time, where for normal form games this just
requires a table lookup. Evaluating alln players’ payoffs under a
pure strategy profile would then takeO(n2) time using the obvious
method. For some applications—even when the space complexity
of the normal form is not a concern—this might still be fasterthan
constructing the exponential-sized normal form representation and
then doing computation on it. This is because computationaltasks
quite often require the evaluation only of payoffs under a small sub-
set of pure strategy profiles, and payoffs that are not relevant need
not be evaluated when using then-body representation.

Nevertheless, payoff computations are in the inner loops ofmost
computation tasks on games, thus theO(n2) complexity would
limit the size of games we would be able to analyze. Can we speed
up this computation by exploiting then-body structure of the pay-
off function? Intuitively, if a certain set of players choseactions
that are “close together” inS, we could treat them as “approxi-
mately the same” during computation. This allows us to approx-
imate the computation of payoffs by partitioning the actionspace
S, and approximating the points in each partition by representative
point(s). This is the intuition behind manyn-body methods, e.g.
the fast multipole algorithms and the dual-tree algorithm usingkd-
trees or metric trees. (We survey these approaches in more detail
in Section 3.) It is conjectured that the computational complex-
ity of these methodsO(n log n) and there is significant empirical
evidence of this [12, 23, 17, 1].

In the rest of this paper, we consider a number of computa-
tional tasks: computing payoffs under pure strategy profiles, pay-
offs under mixed strategy profiles, best responses, pure strategy
Nash equilibria and mixed strategy Nash equilibria. We demon-
strate that the structure ofn-body games allows each of these tasks
to be performed more efficiently than in the general case.

3. EVALUATING PAYOFFS UNDER PURE
STRATEGY PROFILES

The computation of payoffs under pure strategy (PS) profilesis
required by essentially all computational tasks in game theory. Our
later discussion of more complex problems will be based on results
here. Consider computing a playeri’s payoff for playing each ac-
tion fromSi, given that the other players play according tos−i:

PROBLEM 1. One-Player All-Deviations PS Payoffs:

∀s
′
i ∈ Si, compute ui(s

′
i, s−i)

We start by discussing Problem 1 for the special cases of Ad-
ditive and Max-kernel payoff functions, because they are the most
similar to widely-studied problems in then-body literature; in Sec-
tion 3.3 we will generalize our results to general pairwise interac-
tions payoff functions.

3.1 Additive payoff functions
In the Additive payoff function special case, Problem 1 is

∀s
′
i ∈ Si, compute

X

j 6=i

wjK(d(s′i, sj)) (6)

A mathematically equivalent problem arises often in statistics (e.g.,
Gaussian processes and kernel density estimation) and physics
(e.g., gravitation and electro-magnetics); the complexity of solv-
ing the problem using a naive approach isO(|Si|n). Let h =
max{n, |Si|}. Very recently, several techniques were proposed

Figure 1: KD-tree partition of the action space.

for solving this problem efficiently. Empirical results [19] indicate
that their complexity isO(h log h). These methods produce an ap-
proximate solution which is guaranteed to fall within a specified
error tolerance. (Later, we will see that in the max-kernel and best
response cases, we can even achieve an exact solution using these
methods.) The most general examples of these fast methods for the
sum-kernel problem include fast multipole expansions [13], box-
sum approximations [6] and spatial-index methods [23].

Fast multipole methods tend to work only in low (typically three)
dimensions and need to be re-engineered every time a new kernel
function is adopted. The most popular multipole method is the fast
Gauss transform (FGT) algorithm [14], which as the name implies
applies to Gaussian kernels. In this case, it is possible to attack
larger (e.g., ten) dimensions by adopting clustering-based partitions
as in the improved fast Gauss transform [31].

Spatial-index methods, such as KD-trees and ball trees, arevery
general, easy to implement and can be applied in high-dimensional
spaces [12, 10, 11]. Furthermore, they apply to any monotonic ker-
nels defined on a metric space, and can be easily extended to other
problems besides sum-kernel. Building the trees costsO(h log h)
and in practice the run-time cost behaves asO(h log h), while stor-
age isO(h) [19]. A detailed empirical analysis of the FGT and tree
methods is presented in [19].

To provide some intuition on how these fast algorithms work,we
will present a brief explanation of tree methods. Assume fornow
that the weightswj are all positive. (Below we show that the prob-
lem with arbitrary weights reduces to the case where all weights
are positive.) The first step in these methods involves partitioning a
set of points (s−i in our case) recursively as illustrated in Figure 1.
Along with each node of the tree we will store statistics suchas the
sum of the weights in the node. Now imagine we want to evaluate
the effect of pointssj in a specific nodeB on the query pointsi,
that is:

ui,B =
X

j∈B

wjK(d(si, sj)).

As shown in Figure 2, this sum can be approximated using upper
and lower bounds:

ui,B ≈
1

2

“

u
upper
i + u

lower
i

”

=

P

j∈B wj

2

“

K(dlower) + K(dupper)
”

,

wheredlower anddupper are the closest and farthest distances from
the query point to nodeB. The worst-case error in this approxima-
tion is:

e =
1

2

“

u
upper
i − u

lower
i

”

.

si si si

d d

s in node Bj

lower upper

Figure 2: To bound the influence of node pointssj on the query
point si, we move all the node points to the closest and farthest
positions in the node. To compute each bound, we only need to
carry out a single kernel evaluation.

One only needs to recurse down the tree to the level at which a
pre-specified error tolerance is guaranteed.

Since there are many query pointss′i ∈ Si, it is possible to im-
prove the efficiency of these tree methods by building trees for the
source pointss−i and query pointsSi. Then, instead of comparing
nodes to each separate query point, one compares nodes to query
nodes. A detailed explanation of thesedual treetechniques appears
in [12, 10, 11]. When the kernel depends on more than two agents,
saym agents, one can adoptm trees to solve the sum-kernel prob-
lem efficiently.

If there are positive as well as negative weights, we can split the
set of playersN into the setN+ with non-negative weights and
the setN− with negative weights. Then the sum in (6) can be
decomposed into two sums with non-negative weights:

∀s
′
i ∈ Si,

X

j∈N+,j 6=i

wjK(d(s′i, sj))−
X

j∈N−,j 6=i

|wj |K(d(s′i, sj))

Since we can compute each of the two sums independently of the
other, we have decomposed the problem into two smallern-body
problems, each of which can be solved efficiently using e.g. the
dual tree algorithm. The error of the approximate payoff is then
the sum of the errors of the two sums. So given a required error
tolerance, we could run the two dual-tree algorithms concurrently
until the sum of the two errors is below the required tolerance.

To summarize, for Problem 1 with Additive payoff functions,
approximate solutions with guaranteed error bounds can be effi-
ciently computed. A potential downside of these methods is that
they produce approximate payoffs, while game theorists often care
about exact quantities. It turns out that for many of the problems
discussed in this paper, including the computation of exactbest re-
sponses and exact Nash equilibria, approximate payoffs areoften
sufficient. We also point out that our methods are efficient even for
very smalle — after all, all numerical computation involves some
amount of error whether it claims to be exact or approximate.

3.2 Max-Kernel payoff functions
With theMax-Kernel payoff function, Problem 1 has the form

∀s
′
i ∈ Si, max

j 6=i
wjK(d(s′i, sj)) (7)

Dual-tree methods as proposed in [17] can be used to computeex-
act max-kernel payoffs with average-case complexityO(h log h).
Figure 3 illustrates the fact that in the max-kernel case, a set of
players’ actions can be disregarded whenever it can be proven that
no element in the set is the closest fromi’s action, and hence that
dropping these actions will not change the max. Thus, in thiscase
we use the upper and lower bounds not to produce an approxima-

d

ddAB
upper

lower
dAB

AC

lower

AC
upper

CBA

Figure 3: Assuming that all particles have equal weights, itis
clear in this picture that d

upper
AB < dlower

AC and, hence, nodeB
will have a stronger influence than nodeC on nodeA. As a
result, all the points in nodeC can be discarded in one single
pruning step.

tion toui, but rather to compute the exact value ofui more quickly.
Note that we use a dual-tree approach here which queries using a
set of pointsA rather than using a single point as in Figure 2. Of
course, if we just want approximate payoffs, the same dual-tree al-
gorithm can be run until a given error tolerance is satisfied,yielding
additional savings.

If the actions are defined on a regular grid, then the distance
transform [4, 7] provides exact solutions inO(h) with very low
constant factors. The distance transform is known to work for
quadratic and conic kernels [7].

3.3 General pairwise interactions payoffs
Let us now consider general pairwise interactions. Problem1

can be written as

∀s
′
i ∈ Si, ∗

j 6=i

Kj(d(s′i, sj)) (8)

Since∗ is monotonic, we can use dual-tree methods similar to the
ones for the Additive case to compute approximate payoffs, as long
as we can efficiently compute upper and lower bounds of the effect
of points in a source nodeB to points in a query nodeA:

uA,B = ∗
j∈B

Kj(d(A, sj)) (9)

Similar to Figure 2, the upper and lower bounds ofuA,B are com-
puted by assuming that all the points are located in the closest and
farthest positions which are consistent with the node’s bounding
box respectively.

However, computing the bounds ofuA,B directly would take
O(1) distance computations butO(|B|) kernel evaluations and∗
operations, which implies that the entire dual-tree algorithm would
takeO(h log h) distance computations butO(|Si|n) evaluations.
So unless the computation time of kernel evaluations and∗ is much
less than that of distance computations, we have not gained much
compared to the naive method.

3.4 Related problems
There are several similar problems that we may want to consider.

First, imagine that we are given a pure strategy profile of then
players:s = (s1, . . . , sn), and that we would like to compute the
payoffs of alln players unders. This can be formulated as the
following problem, which takesO(n2) by naive computation.

PROBLEM 2. All-Players One-Action-Profile PS Payoffs:

∀i ∈ N, compute ui(s)

We can also apply dual-tree methods to this problem. We need one
tree to partition then players’ actionssi, and one tree to partition
the actionssj (actions of players other thani). Since these two
trees contain the same data, we can actually just build one tree that
partitionss, and run the dual-tree algorithm on this tree.

We may also want to compute a combination of Problems 2 and
1: given a pure strategy profiles, for all i ∈ N and all deviations
that this playeri could make, computei’s utility.

PROBLEM 3. All-Player All-Deviations PS Payoffs:

∀i ∈ N,∀s
′
i ∈ Si, compute ui(s

′
i, s−i)

We can treat this asn instances of Problem 1 and solve them sep-
arately. However, by considering them together, some of thedata
structures can be shared. In particular, to solve each instance of
Problem 1 using a dual-tree algorithm, we would need to buildtwo
trees, one to partitioni’s action setSi, the other to partition the
n − 1 other players actionss−i. Instead of building a tree ons−i

for eachi, we could build a tree that partitions everyone’s actions
s. Then when we computei’s payoffs, we hidesi from the tree to
yield a tree on then − 1 particless−i. Thus we only need to build
n + 1 trees, instead of2n trees.

If the action sets completely overlap with each other, i.e.Si =
Sj for all i, j ∈ N , we can achieve further savings on space and
time complexity. Firstly, since the action sets overlap, weonly need
one tree to partition them. Thus we only need to build two trees in
total, one for the action setS1 and one for the actionss. Further-
more, since both trees are shared among then sub-problems, much
of the computation of distances between nodes can be cached.If
the action sets only partially overlap with each other, we can still
apply the same ideas as above, although more book-keeping isre-
quired. In particular, we use one tree to partition all the action sets
S1, . . . , Sn, and in each node of the tree we keep separate statistics
about each player’s actions in that partition.

A final problem we might want to solve is very related to Prob-
lem 1. Rather than finding a given player’s utility under eachof
his pure-strategy deviations from a pure-strategy profile,we might
want to identify a single deviation that maximizes this utility. (That
is, we might not care to know exactly what utilities the player would
get by playing each non-optimal deviation, as long as we could
prove that they were indeed non-optimal.) This is the pure-strategy
best-response problem, and we consider it in Section 5.

4. EVALUATING PAYOFFS UNDER
MIXED STRATEGY PROFILES

A mixed strategy of playeri, denotedσi, is a probability distri-
bution overSi. Playing a mixed strategyσi means probabilistically
playing an action fromSi according to the distributionσi. Denote
asσi(si) the probability of playing actionsi under the mixed strat-
egyσi. A mixed strategy profile is denotedσ = (σ1, . . . , σn). The
supportof σi, denotedS+

i (σi), is the set ofi’s actions with positive
probability underσi. We use the shorthandui(σ) to denote player
i’s expected payoff under mixed strategy profileσ.

A fundamental computational problem is to computei’s ex-
pected payoffs for playing each of her pure actions inSi, given
that the other players follow the mixed strategyσ−i.

PROBLEM 4. One-Player All-Deviations Mixed Payoff:

∀si ∈ Si, compute ui(si, σ−i)

For computing expected payoffs, the naive method is to sum over

all possible outcomes, weighted by their probabilities of occurring:

ui(si, σ−i) =
X

s
−i

ui(si, s−i) Pr(s−i|σ−i)

=
X

s
−i

ui(si, s−i)
Y

j 6=i

σj(sj). (10)

But the number of terms to sum is exponential in the number of
players. (Remembers−i is a pure strategy profile of the(n − 1)
players other thani, i.e. we are summing over all possible combi-
nations of the(n − 1) players’ actions.) We need a more efficient
algorithm.

4.1 Additive payoff functions
If the game’s payoff function is of theAdditive type (Equation

(2)), then due to linearity of expectation, we can compute expected
payoffs easily. For example, consider a case where playerj with
weightwj plays action 1 with probability1

4
and action 2 with prob-

ability 3

4
. Linearity of expectation allows us essentially to “replace”

playerj with two new players: one with weight1
4
wj who plays ac-

tion 1 and another with weight3
4
wj who plays action 2. Formally,

ui(si, σ−i) =
X

s
−i

ui(si, s−i)
Y

k 6=i

σk(sk)

=
X

s
−i

X

j 6=i

wjK(d(si, sj))
Y

k 6=i

σk(sk)

=
X

j 6=i

X

s
−i

wjK(d(si, sj))
Y

k 6=i

σk(sk)

=
X

j 6=i

X

sj

wjK(d(si, sj))σj(sj)
X

s
−i,−j

Y

k 6=i,j

σk(sk)

=
X

j 6=i

X

sj

wjσj(sj)K(d(si, sj))
Y

k 6=i,j

X

sk

σk(sk)

=
X

j 6=i

X

sj

wjσj(sj)K(d(si, sj)) (11)

wheres−i,−j denotes a pure strategy profile for all players except
i andj. Thus we have reduced Problem 4 to the pure-strategy case
(Problem 1) with Additive payoffs. The number of non-zero terms
in (11) is equal toH =

P

j 6=i
|S+

j (σj)|, the sum of the support
sizes of the other players’ mixed strategies. Since the methods de-
scribed in Section 3.1 (e.g., dual-tree) showO(h log h) run-time
performance in practice for the sum-kernel problem, we expect that
these methods would approximate Problem 4 for Additive payoffs
with O(H log H) run-time performance.

4.2 Max-Kernel payoff functions
If the game’s payoff function is of theMax-Kernels type (Equa-

tion (3)), the task is more complex since we cannot use the lin-
earity of expectation. Instead, we can combine dual-tree methods
with dynamic programming techniques to efficiently approximate
expected payoffs.

First, let us look at the naive way of computing the expected
payoff:

ui(si, σ−i) =
X

s
−i

max
j 6=i

[wjK(si, sj)]
Y

k 6=i

σk(sk) (12)

For each possibles−i, we need to solve the maximization prob-
lem maxj 6=i [wjK(si, sj)], and add up these values, weighted by
Q

k 6=i
σk(sk). Since the number of possibles−i is

Q

j 6=i
|Sj |, this

method is exponential inn.

We have seen previously that dual-tree methods, by partition-
ing the particles into clusters and considering interactions between
clusters of particles instead of individual particles, canspeed up
the computation ofn-body problems. Let us apply this intuition
here. Let us partition the action spaceS using e.g. akd-tree or a
ball-tree. Denote as̃S the set of partitions in a partitioning ofS,
corresponding to a frontier of the tree, and ass̃ one of the parti-
tions, corresponding to one node in that frontier. The partitioning
of S induces a partitioning for eachSj , denotedS̃j . Essentially, we
are approximating the original game using a game with actionsets
S̃j , where different actions in the original game that belong tothe
same partition are treated as approximately the same actionin the
new game. For all̃s ∈ S̃ and allj 6= i, let σ̃j(s̃) =

P

sj∈s̃
σj(sj),

i.e. σ̃j(s̃) is the probability ofj playing an action in the regioñs.
In other words,̃σj is playerj’s mixed strategy in the approximated
game onS̃. We also partition playeri’s action spaceSi (the query
points) using another tree. Let us denote a node in this querytree
asX. For each nodeX in theSi tree and each nodẽs in theS tree,
we can compute the upper and lower bounds of the distance be-
tween the two nodes, denoteddu(X, s̃) anddl(X, s̃) respectively.
Assuming the kernelK is monotonically decreasing ind, we can
compute the upper and lower bounds of the expected payoff when i
plays an action inX, and the other players play the mixed strategy
profile σ̃−i:

u
{u,l}
i (X, σ̃−i) =

X

s̃
−i

max
j 6=i

h

wjK(d{l,u}(X, s̃j))
i

Y

k 6=i

σ̃k(s̃k)

(13)
Compared to Equation (12), we have effectively reduced the ac-

tion setsSj to smaller sets̃Sj by grouping nearby actions. Unfor-
tunately, since we are still considering each possible action profile
s̃−i of then − 1 players, the number of summands isO(|S̃|n−1),
i.e. still exponential inn.

Can we do better? We observe that the pure strategy payoff

maxj 6=i

h

wjK(d{l,u}(X, s̃j))
i

depends only on the nodẽs ∈ S̃

that achieves this maximum of the weighted kernels, and the weight
wj of the player whose action achieves this maximum. Since this
weight can take one ofn−1 different values, the payoff can take at
most(n−1)|S̃| different values. If we can compute the probability
distribution of these payoff values given the mixed strategy profile,
then the expected payoff is just a weighted sum of these payoff
values, with the weights being the probabilities of each value. For-
mally,

ui(X, σ̃−i) =
X

v

Pr(ui(X, s̃−i) = v|σ̃−i) · v (14)

=
X

v

Pr(max
j 6=i

[wjK(d(X, s̃j))] = v|σ̃−i) · v (15)

wherePr(ui(X, s̃−i) = v|σ̃−i) is the probability ofi’s payoff be-
ing v, given that the other players are playing the mixed strategy
σ̃−i. Sincev has at most(n − 1)|S̃| possible values, the num-
ber of summands is at most(n − 1)|S̃|. The difficult part is to
compute the probability distributionPr(ui(X, s̃−i)|σ̃−i). From
Equation (15), we observe that this is the distribution of the maxi-
mum of(n− 1) independent random variables, each with distribu-
tion Pr(wjK(d(X, s̃))|σ̃j) which is the distribution of playerj’s
weighted kernel given her mixed strategyσ̃j . Note that the Cumu-
lative Distribution Function (CDF) of the highest order statistic of
n − 1 independent random variables is the product of the CDFs of
each random variable. So a simple algorithm to compute the distri-
bution of the maximum is to first compute the CDFs of the random

variables, multiply them together to get the CDF of the maximum,
and then convert the CDF back to a probability density function.

1. Sort the partitions iñS by their distances toX, i.e. d(X, s̃).

2. For eachj 6= i:

(a) For each̃s ∈ S̃: Pj(wjK(d(X, s̃)) := σ̃j(s̃)

(b) Compute the CDF ofPj , denotedFj . SincePj is al-
ready sorted,Fj is the cumulative sum ofPj .

3. For each of the possible values ofv, compute the CDF of the
maximum:F (v) =

Q

j 6=i
Fj(v)

4. Compute the probability distribution from the CDFF (v).

This process needs to be done twice: once for the upper bound
and once for the lower bound. The complexity of the algorithmis
O(|S̃| log |S̃| + n2|S̃|). This is much better than the exponential
complexity of Equation (13).

Furthermore, since we only need upper and lower bounds on
the expected payoff, we can further speed up this computation.
Intuitively, although there areO(n|S̃|) possible outcomes ofv,
we can “merge” possible outcomes at the sames̃ but with differ-
ent weights, and replace them using maximum (minimum) of the
weights. This way we only have to consider|S̃| outcomes. This
yields anO(|S̃| log |S̃| + n|S̃|) algorithm, although it would pro-
duce looser bounds.

Once we have computed an approximated expected payoff on
query nodeX and partitioningS̃, and later want to approximate
the expected payoff on one ofX ’s childrenX ′ and a finer partition-
ing S̃′, can we save any computation by using the earlier results?
Unfortunately the earlier results cannot be directly used for com-
puting the payoff on the finer resolution; but the good news isthat
we can use the earlier results (especially the distributionof v) to
prune parts of the spaceS. Following is an outline of our dual-tree
algorithm (the pseudo-code of this algorithm is too long to include
here, but will be included in the full version of this paper):

1. Get the query nodeX from a depth-first traversal of thekd-
tree onSi; and get the partitioning̃S as the frontier of a
breath-first traversal of thekd-tree onS.

2. Prune away parts of̃S, using earlier results.

3. Compute the distribution over payoffs.

4. Compute the expected payoff using Equation (15).

This algorithm can be run until we reach the leaves of the trees,
to produce exact expected payoffs. We still gain speed-up com-
pared to not using trees, due to the pruning in each iteration. Of
course, if we only need approximate expected payoffs, we just run
this algorithm until the error tolerance is satisfied. This algorithm
is obviously polynomial inn. Analyzing the exact time complexity
of our algorithm, both theoretically and empirically, is a subject of
future work.

4.3 General pairwise interactions payoffss
Let us now considern-body games with general pairwise inter-

actions, as defined in Equation (1). Assume that upper and lower
bounds on the kernel value between two nodes can be computed,so
that dual tree methods can be applied. From our discussion onthe
Max-Kernel case, we note that the expected payoff can be written
as Equation (14). If the number of possible values ofv (i.e. the
number ofi’s distinct payoff values under pure strategy profiles)

grows exponentially with respect ton, then Equation (14) is still
an exponential-sized sum. However, if the number of possible val-
ues ofv is polynomial inn (as is the case for Max-Kernel), then
the expected payoff can be computed efficiently. To compute the
distribution of payoffsPr(ui(X, s̃−i)|σ̃−i), we use a dynamical
programming algorithm that applies one player’s mixed strategy at
a time.4 Let Qj(v) = Pr(Kj(d(si, sj)) = v|σ̃j), then the algo-
rithm computes the following recurrence:

Pk(v) =
X

x∗y=v

Pk−1(x)Qk(y)

for k = 1, . . . , i − 1, i + 1, . . . , n. The resultPn is the distribu-
tion of payoffs needed in Equation (14). Let the number of possi-
ble v in Equation (14) beV . Then this algorithm’s complexity is
O(nV |S̃|), which is polynomial ifV is polynomial inn.

4.4 A more general problem
Another important problem is to computei’s expected payoff

when all players (includingi) are playing mixed strategies:

PROBLEM 5. One-Player Mixed Payoff

compute ui(σ) =
X

si∈Si

σi(si)ui(si, σ−i)) (16)

A straightforward way to compute this is to first compute
ui(si, σ−i) for all si (Problem 4), then do the above weighted
sum. A more efficient way is to integrate the computation of this
weighted sum into the dual-tree algorithm of Problem 4. In partic-
ular, for any partitioning ofSi and partitioning ofS, we can com-
pute upper and lower bounds onui(σ) by summing the bounds for
ui(X, σ̃−i) for all nodesX in that partitioning ofSi, weighted by
the probability of playing an action inX:

u
{u,l}
i (σ) =

X

X

u
{u,l}
i (X, σ̃−i)

X

si∈X

σi(si)

Thus we can keep a running estimation ofui(σ), and undo parts of
the above approximation as we descend down the tree onSi. As a
result, we could achieve the desired accuracy before reaching the
leaves of theSi tree.

5. COMPUTING BEST RESPONSE
Playeri’s best response (BR) under a pure strategy profiles or

mixed strategy profileσ is i’s optimal action against the other play-
ers’ strategies. Although it is true that mixed strategies can be
best responses, there always exists a pure strategy best responses
to any strategy profiles−i. Players only play mixed strategy best
responses when they are indifferent between the actions in the sup-
port of that mixed strategy: any mixed strategy BR is a mixture of
pure strategy BRs, and any mixture of pure strategy BRs is a mixed
strategy BR.

5.1 Best response to a pure strategy profile
First we consider the case where the other players are playing a

pure strategy profiles−i.

PROBLEM 6. Best Response to a Pure Strategy Profile

compute BRi(s−i) ∈ arg max
si∈Si

ui(si, s−i) (17)

4We observe that analogous dynamic programming algorithms
have been used in different contexts; see for example the algorithm
for exploitingcausal independencein Bayesian networks [32].

An important observation is that in order to find the best response
(i.e. to evaluate thearg max operation), we do not need to compute
the exact payoffs. If we could efficiently compute upper and lower
bounds on payoffs of the candidate actions, we could quicklyprune
candidate actions that cannot be a best response. (For example, in
the case of additive payoffs with no negative weights, if theupper
bound on the sum for a nodeA is lower than the lower bound on
the sum for another nodeB, then nodeA can be pruned because
no action inA could possibly be a best response. Note that we
are able to perform this pruning without having computed theexact
expected utility of actions inA; nevertheless, in the end we will
compute the exact best response.) Once we have pruned all candi-
date actions but one, we can return the remaining action as the best
response. The dual-tree algorithm also partitions the set of candi-
datesSi and operates on chunks ofSi, so it can prune chunks of
candidate actions which is much faster than pruning individual can-
didate actions. Following is an outline of our dual-tree algorithm
for finding best responses:

1. Initialize the set of candidate nodes:C := { root of the query
tree onSi }

2. Loop until C has only one node X and X has only one action:

(a) Split on query and/or source nodes

(b) Update upper / lower boundsuu
i , ul

i. If uu
i = ul

i for all
actions left inC, then stop and return the best action(s).
Otherwise, letr be the highest lower bound:

r := max
X∈C

u
l
i(X, s−i)

(c) Remove fromC the nodes whose upper bound is less
thanr:

C := {X ∈ C : u
u
i (X, s−i) ≥ r}

If there is only one BR againsts−i, then the above algorithm stops
when all actions except the BR are pruned off. Letδ be the differ-
ence between the payoffs of the best response and the second-best
response againsts−i. Then we need to at least approximate the
payoffs of the BR and the second-best response with error toler-
anceδ, in order to prune off the second-best response in step 2(c).
Pessimistically assume that all other actions ofi achieve payoffs
similar to that of the second-best response and each requirean ap-
proximation withδ error to prune off. Then essentially we would
need to solve Problem 1 with error toleranceδ. If there are more
than one BRs, then in addition we would need to compute the exact
payoffs of these BRs to verify that they are equal. Since in most
situations the number of BRs isO(1), this only takesO(n) time.
Therefore the running time of our BR algorithm is no worse than
that of solving Problem 1 with error toleranceδ. In practice, most
parts ofSi achieve much worse payoff than the BR, and can be
pruned off early, resulting in speed-ups compared to Problem 1.

Observe that our algorithm amounts to branch-and-bound
search. In step 2(a), there are many different ways of expanding
the query and source trees—this corresponds to variable- and value-
ordering heuristics in the search. Since the speed of the algorithm
depends on how much of the action spaceSi we can prune off, we
need a good heuristic for expanding the trees in order to maximize
the chance of pruning. Intuitively, a heuristic should takeinto ac-
count the highest lower boundr, the upper bounds of the candidate
nodes, and the sizes of these nodes. In the full version of this paper
we will provide empirical results that compares different heuristics.

Sometimes we do not need exact best responses; instead we just
want an action that achieves a payoff withinǫ of the best response’s

payoff. The dual-tree methods described above can be straightfor-
wardly extended to compute suchǫ-best responses.

5.2 Best response to a mixed strategy profile
We can similarly define the problem of computing a best re-

sponse against other players’ mixed strategy profilesσ−i:

PROBLEM 7. Best Response to a Mixed Strategy Profile

compute BRi(σ−i) ∈ arg max
si∈Si

ui(si, σ−i) (18)

This problem can be solved using the same techniques discussed
in the previous section. The only difference is that in steps2(a) and
2(b) above, we must compute expected payoffs (i.e., solve Prob-
lem 4), instead of payoffs under pure strategy profiles (i.e., solving
Problem 1).

6. COMPUTING NASH EQUILIBRIA
An important computational task is determining a sample Nash

equilibrium of a given game.

PROBLEM 8. Sample Nash Equilibrium

Find someσ which satisfies∀i ∈ N σi ∈ BRi(σ−i). (19)

The strategy profileσ may be mixed; however, it may also in-
volve pure strategies. A Nash equilibrium is always guaranteed to
exist in finite games; however, no polynomial algorithm is known
for finding such equilibria in general games.

Pure-strategy equilibria can be easier to find; however, they do
not always exist.

PROBLEM 9. Sample Pure-Strategy Nash Equilibrium

Find somes which satisfies∀i ∈ N si ∈ BRi(s−i). (20)

In this section we consider both kinds of equilibria.

6.1 Existence of PS Nash Equilibria
We can prove that certain sub-classes ofn-body games always

have pure-strategy Nash equilibria.

THEOREM 1 (COORDINATION EQUILIBRIA). If ann-body
game has a pairwise-interaction payoff function with an monoton-
ically non-decreasing operator∗ (e.g. Additive or Max-Kernel),
and each kernelKj achieves its maximum when the distance is
zero, and the intersection of the action sets

T

Si is nonempty, then
for any actions ∈

T

Si, the action profile where everyone playss
is a Nash equilibrium.

In other words, if everyone prefers to play actions that are closer
to other actions, then every pure strategy profile where everyone
plays the same action is an equilibrium. Such games are examples
of coordination games, which are well studied in economics.

Let us now consider other cases, where players have richer pref-
erences. It turns out that we can prove the existence of pure strat-
egy equilibria for a large set ofn-body games, using the concept of
generalized ordinal potentialfrom Monderer and Shapley’s highly
influential paper [21].

DEFINITION 4 (MONDERER& SHAPLEY [21]). A function
P : S 7→ R is a generalized ordinal potentialfor a gameΓ
if for every i ∈ N and for everys−i, and for everysi, s

′
i ∈

Si, ui(s
′
i, s−i) − ui(si, s−i) > 0 implies that P (s′i, s−i) −

P (si, s−i) > 0.

Several subclasses of generalized ordinal potentials are:ordinal
potential, potential and weighted potential. We refer the readers to
[21] for their definitions.

THEOREM 2 (MONDERER& SHAPLEY [21]). LetΓ be a fi-
nite game with a generalized ordinal potential. ThenΓ has at least
one pure strategy equilibrium.

Thus we have proven the existence of pure strategy equilibria
for a class of games when we have identified a generalized ordinal
potential function for that class of games.

6.1.1 General pairwise interactions payoffs
Let us first considern-body games with general pairwise interac-

tion payoff functions (Equation (1)). We have the followingresult:

THEOREM 3. SupposeΓ is ann-body game with pairwise in-
teractions (Equation(1)) satisfying the following properties:

1. The kernels are identical. Formally,

ui(si, s−i) = ∗
j 6=i

K(d(si, sj))

2. The binary operator∗ is strictly monotonically increasing in
its arguments. Formally, for allx, x′, y from the range ofK,
x > x′ iff x ∗ y > x′ ∗ y.

ThenΓ has an ordinal potential function:

P (s) = ∗
i,j∈N,i6=j

K(d(si, sj)) (21)

which implies thatΓ has at least one pure strategy equilibrium.

PROOF. By re-arranging terms inP (s) into terms that depend
on i’s strategysi and terms that does not, we observe that the terms
that depend onsi is exactlyi’s payoff ui:

P (s) = ui(s) ∗ (terms not dependent onsi)

Then the monotonicity of the operator∗ implies thatP is an ordinal
potential function.

A straightforward corollary is that if∗ is instead monotonically
decreasing, then−P (s) is an ordinal potential function.

6.1.2 Additive payoff functions
The addition operator+ is monotonically increasing, so if the

weightswj are identical, then following Theorem 3 the game has
at least one pure strategy equilibrium.

If the weights are not identical, Theorem 3 cannot be applied.
Nevertheless, we can prove the existence of pure strategy equilibria
for the case of non-negative weights.

THEOREM 4. If an n-body game has Additive payoffs and non-
negative weights, then the game has at least one pure strategy equi-
librium.

PROOF. Let us first consider the case when all weights are
strictly positive. We claim that the following is a generalized or-
dinal potential:

P (s) =
X

i,j∈N,i6=j

wiwjK(d(si, sj))

This is because if we collect the terms ofP that depend onsi, it is
exactlywiui(s).

Now suppose that some of the players’ weights are zero. Then
an increase inui would not necessarily increaseP . It turns out that

we can easily get around this problem. LetI be the set of players
with positive weights, andO be the set of players with weight 0.
Let s∗I be the pure strategy profile ofI that maximizes the “partial
weighted potential”PI , i.e. the weighted sum of the interactions
among players inI :

s
∗
I = arg max

sI

PI(sI) = arg max
sI

X

i,j∈I,i6=j

wiwjK(d(si, sj))

Let s∗O be the pure strategy profile ofO that maximizes thesocial
welfare(the sum of then players’ payoffs) given that the players in
I is playings

∗
I , i.e.

s
∗
O = arg max

sO

W (s∗I , sO) = arg max
sO

X

i∈N

ui(s
∗
I , sO)

Then the strategy profile(s∗I , s
∗
O) is a Nash equilibrium. Intuitively,

since the players inO do not affect the payoffs of players inI , we
can “optimize” within I first, then optimize withinO given the
partial solution inI .

Can we formulate a generalized ordinal potential for this class of
games? We make use of the following Lemma:

LEMMA 1. SupposeΓ is a finite game. If there exists a func-
tion P : s 7→ Rk such that for everyi ∈ N and for everys−i,
and for everysi, s

′
i ∈ Si, ui(s

′
i, s−i) > ui(si, s−i) implies that

P (s′i, s−i) is lexicographically greater thanP (si, s−i) (denoted
P (s′i, s−i) >l P (si, s−i)), thenΓ has a generalized ordinal po-
tential.

PROOFSKETCH. SinceΓ is finite, we can sort all pure strategy
profiles byP . Then we can construct a generalized ordinal poten-
tial that mapss to its index in the sorted list.

For convenience, we call suchP (s) a generalized lexicographi-
cal ordinal potential (GLOP)and use it as regular generalized or-
dinal potentials. For Additiven-body games with non-negative
weights, it is straightforward to verify that the tupleP ′(s) =
(PI(sI), W (sI, sO)) is a GLOP.

If the weights are instead non-positive, then following thesame
argument, pure strategy equilibria still exist. However ifthere are
positive and negative weights, then pure strategy equilibria might
not exist. One simple example is a game with two players with
opposite weights (w1 = −w2). Let S1 = S2 = {H, T} and
d(H,T) = 1. Then one player prefers to choose the same action as
the other, while the other player prefers to be different. This is the
classic game of Matching Pennies which do not have pure-strategy
equilibrium.

6.1.3 Max-Kernel payoff functions
Let us considern-body games with Max-Kernel payoff func-

tions. Themax operator is only weakly increasing in its operands,
so Theorem 3 cannot be applied even for the case with identical
weights.

We look at Nearest Neighbor games (Equation (4)), which is a
subclass of Min-Kerneln-body games with identical weights.

THEOREM 5. A Nearest Neighbor game as defined by Equation
(4) has at least one pure strategy equilibrium.

PROOF. We define therank vectorV (s), which is a vector of all
distances between pairs of actions ins, sorted in increasing order:

V (s) = sort{d(si, sj) : i, j ∈ N, i 6= j}

Now suppose playeri deviates fromsi to s′i, and achieves a bet-
ter payoff. This must be because the distance betweens′i and its

nearest neighbor,sj , is greater than the distance betweensi and
its nearest neighbor,sk: d(s′i, sj) > d(si, sk). Now let’s consider
this deviation’s effect on the rank vector. ComparingV (s′i, s−i)
and V (si, s−i) lexicographically, we see that the change ini’s
nearest neighbor distance dominates the changes ini’s distances
to the other actions. And sinced(s′i, sj) > d(si, sk), we must
haveV (s′i, s−i) >l V (si, s−i). ThusV (s) is a GLOP.

This result can be generalized to the case with positive non-
identical weights, by using the weighted rank vector

WV (s) = sort{wiwjK(d(si, sj)) : i, j ∈ N, i 6= j}

as a GLOP. We omit the details of the proof.
All of our existence results for finiten-body games can be ex-

tended ton-body games with continuous action spaces, with the
additional restriction that the action setsSi are compact and the
kernelK is bounded. Due to space constraints we omit the proofs.

6.2 Iterated Best Response Dynamics
We’ve shown that a large set ofn-body games always have pure

strategy equilibria. Here, we show that these equilibria can be
computed relatively inexpensively by repeatedly computing best
responses to pure strategy profiles.

DEFINITION 5 (MONDERER& SHAPLEY [21]). A se-
quence of pure strategy profilesγ = (s0, s1, . . .) is an improve-
ment pathwith respect toΓ if for everyk ≥ 1 there exists an unique
player, sayi, such thatsk = (sk

i , sk−1

−i) for somesk
i 6= sk−1

i , and
furthermoreui(s

k
i , sk−1

−i) > ui(s
k−1

i , sk−1

−i).

In other words, at each step of an improvement path, one “my-
opic” player unilaterally deviates to an action with a better payoff.
Γ has thefinite improvement property (FIP)if every improvement
path is finite.

THEOREM 6 (MONDERER& SHAPLEY [21]). LetΓ be a fi-
nite game. ThenΓ has the FIP if and only if it has a generalized
ordinal potential.

This immediately suggests a method to find an equilibrium by
iteratively improving the strategy profiles. One such method is
iterated best response dynamics:

1. start from an initial pure strategy profiles

2. repeat the following until eithers converges or maximum
number of iterations reached:

(a) for each playeri who is not already playing a best re-
sponse tos−i, updatesi to be one ofi’s best responses.

It is obvious that the resulting path of pure strategy profiles is an
improvement path. Thus forn-body games with generalized ordi-
nal potentials, the path is finite and terminates at an equilibrium.
The bottleneck of the above procedure is the computation of best
responses. As discussed in Section 5 this can be done efficiently.5

5An alternative is thebetter response dynamics: at each iteration,
just try to find a better response than the current one. Due to space
constraints, we omit the details on computation of better responses.
For continuousn-body games with differentiableK and operator∗,
gradient-following algorithms could be even more efficient. Again,
we leave detailed discussion to the full version of the paper.

6.3 Mixed Strategy Equilibria
Quite a few algorithms for computing mixed-strategy equilibria

of finite games have been proposed, e.g. simplicial subdivision [30]
and Govindan & Wilson’s continuation method [9]. These algo-
rithms all depend on the subroutine of computing expected payoffs
under given mixed strategies and/or computing best responses. For
example, the computation of the integer labels in simplicial sub-
division algorithms depends on the computation of best responses
against mixed-strategy profiles. In the cases where we have shown
how to efficiently compute these values exactly forn-body games,
it is immediate to see that we can speed up all of these algorithms.
Many of these algorithms already tolerate some error (e.g.,see the
GameTracer [3] implementation of Govindan & Wilson’s continu-
ation method, which uses a generalized Newton method to recover
from small steps off the path); showing how to use approximate
computations in these algorithms is a topic for future work.

7. CONCLUSION
We have presentedn-body games, a new compactly repre-

sentable class of games about which many important computational
game-theoretic questions can be answered efficiently. We also
showed that manyn-body games have pure-strategy Nash equilib-
ria which can be found using iterated best response dynamics. Of
course, we have only scratched the surface of this rich topic. We
are currently investigating games built around higher-dimensional
kernels, games with continuous action spaces, more efficient com-
putational techniques (e.g., for best response), other special cases
(e.g., pursuit-evasion games) and connections with other compact
representations (e.g., action-graph games).

8. REFERENCES
[1] B J C Baxter and G Roussos. A new error estimate of the fast

Gauss transform.SIAM Journal of Scientific Computing,
24(1):257–259, 2002.

[2] N. Bhat and K. Leyton-Brown. Computing Nash equilibria
of action-graph games. InConference on Uncertainty in
Artificial Intelligence (UAI), 2004.

[3] B. Blum, C. Shelton, and D. Koller. Gametracer.
http://dags.stanford.edu/Games/gametracer.html.

[4] G Borgefors. Distance Transformations in digital images.
Computer Vision, Graphics, and Image Processing,
34:344–371, 1986.

[5] D. Chakrabarty, A. Mehta, V. Nagarajan, and V. Vazirani.
Fairness and optimality in congestion games. InACM-EC,
2005.

[6] P F Felzenswalb, D P Huttenlocher, and J M Kleinberg. Fast
Algorithms for Large-State-Space HMMs with Application
to Web Usage Analysis. InAdvances in Neural Information
Processing Systems 16, 2003.

[7] P F Felzenszwalb and D P Huttenlocher. Distance
Transforms of Sampled Functions. Technical Report
TR2004-1963, Cornell Computing and Information Science,
September 2004.

[8] P.W. Goldberg and C.H. Papadimitriou. Reducibility among
equilibrium problems. Technical Report TR05-090, ECCC,
2005.

[9] S. Govindan and R. Wilson. A global newton method to
compute Nash equilibria.Journal of Economic Theory, 2003.

[10] A Gray and A Moore. Nonparametric density estimation:
Toward computational tractability. InSIAM International
Conference on Data Mining, 2003.

[11] A Gray and A Moore. Rapid evaluation of multiple density
models. InArtificial Iintelligence and Statistics, 2003.

[12] A G Gray and A W Moore. ‘N-Body’ Problems in Statistical
Learning. InAdvances in Neural Information Processing
Systems 4, pages 521–527, 2000.

[13] L Greengard and V Rokhlin. A fast algorithm for particle
simulations.Journal of Computational Physics, 73:325–348,
1987.

[14] L Greengard and X Sun. A new version of the Fast gauss
transform.Documenta Mathematica, ICM(3):575–584,
1998.

[15] H. Hotelling. Stability in competition.Economic Journal,
39:41–57, 1929.

[16] M.J. Kearns, M.L. Littman, and S.P. Singh. Graphical
models for game theory. InUAI, 2001.

[17] M Klaas, D Lang, and N de Freitas. Fast maximum a
posteriori inference in Monte Carlo state spaces. InArtificial
Intelligence and Statistics, 2005.

[18] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. InIJCAI, 2001.

[19] D Lang, M Klaas, and N de Freitas. Empirical testing of fast
kernel density estimation algorithms. Technical Report
TR-2005-03, Department of Computer Science, UBC,
February 2005.

[20] K. Leyton-Brown and M. Tennenholtz. Local-effect games.
In International Joint Conferences on Artificial Intelligence
(IJCAI), 2003.

[21] D. Monderer and L.S. Shapley. Potential games.Games and
Economic Behavior, 14:124–143, 1996.

[22] D. Monderer and M. Tennenholtz. k-implementation. In
ACM-EC, 2003.

[23] A W Moore. The Anchors Hierarchy: Using the triangle
inequality to survive high dimensional data. Technical
Report CMU-RI-TR-00-05, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, February 2000.

[24] C.H. Papadimitriou. Computing correlated equilibriain
multiplayer games (extended abstract). Available at
http://www.cs.berkeley.edu/˜christos/papers/cor.ps,2004.

[25] C.H. Papadimitriou and T. Roughgarden. Computing
equilibria in multi-player games. InSODA, pages 82–91,
2005.

[26] M. Polukarov, M. Penn, and M. Tennenholtz. Congestion
games with failures. InACM-EC, 2005.

[27] R.W. Rosenthal. A class of games possessing pure-strategy
Nash equilibria.Int. J. Game Theory, 2:65–67, 1973.

[28] T. Roughgarden and E. Tardos. Bounding the inefficiencyof
equilibria in nonatomic congestion games.Games and
Economic Behavior, 47(2):389–403, 2004.

[29] S. Singh, V. Soni, and M. Wellman. Computing approximate
bayes nash equilibria in tree-games of incomplete
information. InACM-EC, 2004.

[30] G. van der Laan, A.J.J. Talman, and L. van der Heyden.
Simplicial variable dimension algorithms for solving the
nonlinear complementarity problem on a product of unit
simplices using a general labelling.Mathematics of
operations research, 12(3):377–397, 1987.

[31] C Yang, R Duraiswami, N A Gumerov, and L S Davis.
Improved fast Gauss transform and efficient kernel density
estimation. InICCV, Nice, 2003.

[32] N.L. Zhang and D. Poole. Exploiting causal independence in
bayesian network inference.JAIR, 5:301–328, 1996.

