Pure Nash Equilibria: Complete Characterization of
Hard and Easy Graphical Games

Albert Xin Jiang
Department of Computer Science
University of British Columbia
Vancouver, Canada
jlang@cs.ubc.ca

ABSTRACT

We consider the computational complexity of pure Nash equilibria
in graphical games. It is known that the problem is NP-complete

in general, but tractable (i.e., in P) for special classes of graphs . .
g ( ) b grap k- in the language of Al aseasoningabout the game: what are the

such as those with bounded treewidth. It is then natural to as

is it possible to characterize all tractable classes of graphs for this

problem? In this work, we provide such a characterization for the

case of bounded in-degree graphs, thereby resolving the gap be

tween existing hardness and tractability results. In particular, we
analyze the complexity of PURE-GG, —), the problem of de-
ciding the existence of pure Nash equilibria in graphical games
whose underlying graphs are restricted to cl@ssWe prove that,

under reasonable complexity theoretic assumptions, for every re-

cursively enumerable clags of directed graphs with bounded in-
degree, PURE-G@, —) is in polynomial time if and only if the

reduced graphs (the graphs resulting from iterated removal of sinks)

of C' have bounded treewidth. We also give a characterization for
PURE-CHGQC, —), the problem of deciding the existence of pure

Nash equilibria in colored hypergraphical games, a game repre-
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to-peer file sharing, auctions and other market mechanisms. One
fundamental class of computational problems in game theory is the
computation ofsolution concept®f a finite game, such as Nash

equilibria. These kinds of computational tasks can be understood

likely outcomes of the game, under certain models of rationality
of the agents? The goal is to be able to efficiently carry out such

reasoning for real-world systems.

Much of the existing game theoretic literature models simultane-
ous action games using the normal form (also known as the strate-
gic form), i.e. a game’s payoff function is represented as a matrix
with one entry for each player’s payoff each combination of the ac-
tions of all players. The size of this representation grows exponen-
tially in the number of players. Computations that are “polynomial-
time” in the input size are nevertheless impractical. As a result the
normal form is unsuitable for representing large systems.

Fortunately, most real-world large games have highly-structured
utility functions, which allows them to be represented compactly.
A line of research thus exists looking feompact game representa-

sentation that can express the additional structure that some of theionsthat are able to succinctly describe structured games, and ef-

players have identical local utility functions. We show that the

ficient algorithms for computing solution concepts that run in time

tractable classes of bounded-arity colored hypergraphical gamespolynomial i_n the size ofthe representation. An influential compact
are precisely those whose reduced graphs have bounded treewidth€Presentation of gamesgsaphical gameproposed by Kearnst

modulo homomorphic equivalence. Our proofs make novel use
of Grohe’s characterization of the complexity of homomorphism
problems.
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1. INTRODUCTION

al. [16]. A graphical game is associated with a graph whose nodes
correspond to the players of the game and edges correspond to pay-
off influence between players. In other words, each player’s pay-
offs depend only on the actions of himself and his neighbors in the
graph. The representation size of a graphical game is exponential
in the size of its largest neighborhood. This can be exponentially
smaller than the normal form representation of the same game, es-
pecially for sparse graphs.

A compact game representation is not very useful if we cannot
perform computations that are efficient relative to its size. In this
paper we focus on the problem of computing pure-strategy Nash
equilibria (PSNE). Unlike mixed-strategy Nash equilibria, which
are guaranteed to exist for finite games [18], in general pure Nash
equilibria are not guaranteed to exist. Nevertheless, in many ways
pure Nash equilibrium is a more attractive solution concept than
mixed-strategy Nash equilibrium. First, pure Nash equilibrium can
be easier to justify because it does not require the players to ran-
domize. Second, it can be easier to analyze because of its dis-

There has been r_ecentinterest in using game theory to r_nodel andcrete nature (see, e.g., [2]). Gottlebal. [11] were the first to
analyze large multi-agent systems such as network routing, peer-analyze the problem of computing pure Nash equilibria in graphi-
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cal games. They proved that the problem is NP-complete in gen-
eral, even when the graphs have neighborhood size at most 3. On
the other hand, for games with graphs of bounded hypertree-width
there exists a dynamic-programming algorithm that determines the
existence of pure Nash equilibria in polynomial time in the size



of the representation. Daskalakis and Papadimitriou [7] reduced pared to the graphical game representation. That s, by incor-

the problem of finding pure strategy Nash equilibrium in graphi- porating more information about the structure of the game
cal games to a Markov Random Field (MRF), and then applied the into the graph, we are able to identify new tractable classes
standard clique tree algorithm to the resulting MRF. Among their of games.

results they showed that for graphical games on graphs with log-
sized treewidth, bounded neighborhood size and bounded numbef@Ur results for PURE-GE, —) follow as a corollary to our re-

of actions per player, deciding the existence of pure Nash equilibria Sults for PURE-CHGC', —). Another corollary is that if the graph-
is in polynomial time. ical games are represented as undirected graphs, then the tractable

graphical games? Such a tractable class can be defined by restric- Ve prove these results by Connecting PURE(GG—)'and
tions over the graph structure as well as the local utility functions. PURE-CHGC', —) to homomorphism problemshich given col-
In this paper, we analyze the complexity of PURE{GG—), the ored hypergraph& and H, ask whether there exists a homomor-
problem of determining the existence of pure Nash equilibria in Phism fromG to H. We then make use of Grohe’s [12] break-
graphical games whose underlying digralphee restricted to class ~ through resultthat characterizes the tractable clasdé®d(C, —),
C (while other aspects of the game representation can be arbitrary).nomomorphism problems with restricted left-hand side. This is
We sayC is tractableif PURE-GG(C, —) is in polynomial time. (as far as we know) a novel appllcatlon of Grohe’s_, result for ho-
Throughout the paper we make the restriction that the graphical Momorphism problems to computational problems in game theory.
games have bounded neighborhood size (i.e. bounded in-degree)We prove our main tractability result by reducing an arbitrary in-
Graphical games with large in-degree have the same problem asstance of PURE-CH(@, —) to an instance of the homomorphism
normal form games: even if we find polynomial-time algorithms ~Problem. This reduction has a similar structure as [11]'s formu-
for them, that would still be impractical due tb the large input size. lation of graphical games as constraint satisfaction problems. On
Previous results [11, 7] do not answer whether bounded tree- the other hand, our proof for our hardness result is quite unlike the
width is the sole measure of tractability of PURE-GG—). For existing N_P-hardness proof f_or graphical games [11]. At a high
example, it was unknown whether games with log-sized treewidth |€vel, this is because the previous approach would construct graph-
and unbounded number of actions per player are tractable. Further-ical games on graphs with a certain specific structure. This is suf-
more, there are other graph parameters that affect the tractabilityficient for proving NP-hardness, but not for our purposes, because
of certain computational problems on directed graphs, e.g. directed W€ want to Cha_ractc_arlze_ the complexity for I_DURE-CCrﬂG—) for
tree-width [15], D-width [20], DAG-width [19], and Kelly-width arbltrgry C, which implies tha}t we had to |nstead_ constrgct our
[13]. Since these parameters take advantage of the directionality ofgraphical/colored hypergraphical game on an arbitrarily given di-
the edges, they could potentially give a better characterization of graph/colored hypergraph. In other words, we only have control
the tractability of PURE-G@C, —). over the utility functions (but not the graph structure), and need
In this paper we give a complete characterization of the tractable t0 Set the utilities such that there is a solution to the given homo-
classes of bounded-indegree graphs, thereby resolving the gap petmorphism problem if and only if the game has a pure equilibrium.

tween existing tractability and hardness results. Our results are This makes our task more technically challenging. We think our
summarized below. proof techniques may have wider interest; for example, it might

be possible to extend these techniques to prove similar results for
1. Bounded-treewidth graphs amet the only tractable kind of action-graph games [1], another compact game representation.
digraphs. One example is graphical games on DAGs, for = These results increase our understanding of the power and lim-
which pure equilibria always exist and can be computed ef- itations of the graphical game representation, and have immediate
ficiently. More generally, whenever there is a sink (a vertex practical impact. Specifically, they imply that if the systems we are
with out-degree zero), the utilities for that sink player do not interested in have large-treewidth reduced graphs when modeled as
affect the existence of pure equilibria. graphical games, then the resulting graphical games are unlikely to
admit an polynomial-time algorithm for pure Nash equilibeagn
2. Given a digraptG, let its reduced graphbe the graph ob- if the graphs have other types of structufdevertheless, if some
tained by iterated removal of sinks. We prove that, under rea- of the players have identical utility functions, we might be able to
sonable complexity theoretic assumptions, for every recur- get around this limitation of graphical games by representing the
sively enumerable class of directed graphs with bounded  systems as colored graphical games instead. If the corresponding
in-degree, PURE-G@, —) isin polynomial timeifandonly  reduced graphs have bounded treewidth modulo homomorphism

if the reduced graphs @' have bounded treewidth. equivalence, pure Nash equilibria can be found efficiently by trans-
) ] forming to the corresponding homomorphism problems which have
3. We considecolored hypergraphical gamea new game rep-  known polynomial-time algorithms [5, 12].

resentation based on colored hypergraphs, which can express

the additional structure that some of the players have identi-

cal local utility functions. For the pure equilibrium problem 2. PRELIMINARIES
on this representation PURE-CHIG, —), we show that a .
class of colored hypergraphs is tractable if and only if its re- 2.1 Graphlcal Games

duced graphs have bounded treewidth modulo homomorphic A (simultaneous-movejameis a tuple(N, {S; }ien, {uitien)

equivalence. This is a wider family of tractable games com- whereN = {1,...,n} is the set of agents; for each agents;
1 - - . '@the set ofi's actions. S; is nonempty. An a@'on profils €
We define graphical games on directed graphs (whereas v S is a tuple of actions of the agents; : en S — R

Daskalakis and Papadimitriou’s [7] definition is based on undi- ;_ N~ . . e o ;
rected graphs). The definition with directed graphs is more gen- IS S utility function, which specifies’s utility given any action
eral, as graphical games on undirected graphs can be thought ofrofile. _ _ _ , )
as games on directed graphs with bi-directional edges. Our result For every action profils, let s; be the action of agertunder this
applies to undirected graphs as a special case. action profile, and_; be the(n — 1)-tuple of the actions of agents



other thani under this action profile. For each actishc S;, let
(si,s—;) be the action profile where agenplayss; and all the
other agents play according 0.

A game representation is a data structure that stores all informa-
tion needed to specify a game.

DEFINITION 1. Agraphical gameepresentation is a tuple
(G,{Ui}ien) where

e G = (N,E) is a directed graph, with the set of vertices
corresponding to the set of agentd’ is a set of ordered
tuples corresponding to the arcs of the graph, {€j) € E
means there is an arc fromto j. Vertex; is aneighborof ¢
if (j,i) € E.

e for eachi € N, alocal utility functionUs; = =, s, S5 —
RwhereN (i) = {i} U{j € N|(j,:) € E} is theneighbor-
hoodof .

QEach local utility functionU; is represented as a matrix of size

jenry 195l Since the size of the local utility functions dom-
inates the size of the grapfi, the total size of the representa-
tion is O(nmZ*V) whereZ is the maximum in-degree @ and
m = maxjen |59;]|.

A graphical gameG, {U;}) specifies a gaméN, {S;}, {u:})
where eacts; is specified by the domain of agenin U;, and for
alli € N and all action profiles we haveu;(s) = Ui(sy@)),
wheres (i) = (s5)jen(i)-

2.2 Colored Hypergraphical Games

We now consider graphical games with a certain additional struc-
ture. Specifically, some players may have identical local utility
functions?

To represent this kind of structure, we not only need to specify
which players have the same local utility function, we also need to
specify an ordering of the vertices in each neighborhood. We ex-
press this kind of structure graphically using colored hypergraphs.

A colored hypergraphd = (V, E, C) consists of a set of ver-
ticesV, a set of edge#’ where every edge € E is an ordered
tuple of vertices in/,% and a color functiorC : E — 7 that maps
each edge to its color. In other words, each edge E is labeled
with a colorC'(e). We denote a¥ (H), E(H) andCy the set of
vertices, set of edges and the color function of colored hypergraph
H, respectively.

We are now ready to define colored hypergraphical games. In
tuitively, in a colored hypergraphical game, the players affecting
playeri’s utility are represented as a colored hyperedge consisting
of these players’ vertices, withbeing the first element. If two
hyperedges have the same color, it means that their correspondin
local utility functions are identical.

DEFINITION 2. A colored hypergraphical ganiea tuple
(G,{Uc}cer), where

e G = (N,E,C)is acolored hypergraph with the set of col-
orsT;

2For simplicity of presentation, we assume each player have the
same number of actions. We can convert an arbitrary game to our
setting by adding dummy actions. Since we are only focusing on
graphical games with bounded in-degree, this would only increase
the representation size by a polynomial factor.

Note that the definition we use is slightly different from the com-
mon definition of hypergraphs in which each edge is an unordered
set of vertices.

¢ the set of vertice¥ (G)) = N corresponds to the set of play-

ers;
o for each vertew € N, there exists exactly one edges E
that hasv as the first element. Denote this edgecas

for each colorc € 7, edges of coloe: have the same arity
Ze.

each player hasn actions. Lefm| = {1,...,m}.

e for each colore, U, : [m]*¢ — R.

A colored hypergraphical gan{&, {U;}) specifies a game
(N, {Si}, {u:}) where eachS; = [m] and for each € N and
each action profile, ui(s) = Uc(e,)(Se; )-

Unlike graphical games, where given an arbitrary digrd@ph
there is a graphical game @®, not all colored hypergraphs have
corresponding colored hypergraph games. L éte the set of col-
ored hypergraphs of colored hypergraph games.

GivenG € X, we define itsnduced digraphD(G) to be a di-
graph on the same set of vertices; and for each hyperedae, . . . , v,)
in G we create directed edgés,, v), ..., (v, v) iIn D(G).

Graphical games can be thought of as special cases of colored
hypergraph games where each neighborhood has a different lo-
cal utility function, i.e. a different color. Given a directed graph
G = (V, E), we define itanduced colored hypergraph/(G) =
(V,&,C) such thatits set of colors I8 and for each vertex € V,
there is a hyperedge € £ of color v, consisting of vertices in

N (i), with v being the first element in the tupte The rest of the

vertices ine is sorted in a pre-determined order oVérIn particu-

lar, if the vertices correspond to the agehts. ., n in a game, we
require these vertices to be sorted in ascending order of the agents.
By constructionD(H(G)) = G for all digraphG. Given a graph-

ical gamel’ = (G, {U;}:en), itsinduced colored hypergraphical
gameis H(I') = (H(G), {Ui}ien). Itis straightforward to verify
thatI" andH(I") represent the same game.

For notational convenience, given a class of directed grédphs
let H(C) be the class of induced hypergraphs of the directed graphs
inC.

There is one graph often associated with any hypergraplprihe
malgraph. Given a colored hypergragh its primal graptpri(H)
is an undirected graph obtained by making a clique out of the ver-
tices in every edge it .

There are a couple of previous papers on the computational prop-
erties of graphical games with different notions of identical utility
functions. Daskalakigt al. [6] analyzed the complexity of find-
ing pure and mixed Nash equilibria of graphical games on highly
regular graphs (namely thedimensional grid), in which all local

gpayoff functions are identical. Branet al. [3] instead analyzed

graphical games on arbitrary graphs, but with several stronger no-
tions of symmetry. In contrast, the colored hypergraphical game
formulation places the least amount of restrictions and is thus more
likely to occur in practice. In fact, these previous formulations can
be thought of as special cases of colored hypergraphical games.

2.3 BestResponse and Pure Nash Equilibrium

Given a gamg N, {S; }ien, {ui }ien) ands_;, agenti's best
responsdo s_; is BR;(s—;) = argmaxs,es; ui(Si, S—i). Since
S is nonempty;j has at least one best response givensany Note
that in a graphical game, the best responsedafpends only on the
actions ofi’'s neighbors.

“Thearity of an edge: is its size, i.e. number of elements.



DEFINITION 3. An action profiles € QiGN S;isapureNash 2.6 Parameterized Complexity Theory

equilibriumof the game(V, {Si }ie v, {u: }ien) if each agent € Our results make use of certain concepts from he theory of pa-
N is playing a best response $0.;, i.e. s; € BRi(s—:). rameterized complexity developed by Downey and Fellows [9].
They are not essential for understanding our reductions. We briefly
mention the relevant concepts here and refer the reader to [9, 10]
for more details.
Given a decision problen? C X*, a parameterization oP
is a mappingt : X* — N that defines the paramterized problem
(P, k). A paramterized problerfP, k) is fixed parameter tractable
if there is a computable functiofi : N — N and an algorithm
that decides if a given instance € X* belongs toP in time
f(k(z))|z|°® for some functionf depending only ork. The
class of all fixed parameter tractable problems is denoted by FPT.
Downey and Fellows [8] defined the paramterized complexity
classW1], which can be seen as an analogue of NP in parametrized

U; takes| N (i)| arguments. complexi - )
o . plexity theory, and conjectured that FPT is a proper subset of
Similarly, we define the problem PURE-CHG, —) to be the WI[1]. This conjecture is widely believed to be true.

pure Nash equilibrium decision problem on colored hypergraphical Let p-HOM(C, —) be the parametrized version dDM(C, —)
games, with colored hypergraphs restricted to oféiss with the parameter being the representation size of the left colored
: hypergraph. Similarly we define p-PURE-GG, —) and
2.4 Treewidth . ) e - p-PURE-CHGC, —) to be the parametrized versions of
Due to space constraints we omit the standard definition of treewidthyRE-GGQ C, —) and PURE-CHGC, —), with the parameters be-

for undirected graphs (see, e.g., [17]). The treewidth of a digraph jng the representation sizes of the directed graph and the colored
G is the treewidth of the undirected version®@f The treewidth of hypergraph, respectively.

a colored hypergraph is the treewidth of its primal graph.

We define PURE-GG to be the following decision problem: given
a graphical gaméG, {U; }ic v ), decide whether there exists a pure
Nash equilibrium. Gottlotet al.[11] have shown that this problem
is NP-complete in general. Given a clasf digraphs and class
U of local utility functions, let PURE-GG”, /) be the pure Nash
equilibrium decision problem on graphical games when the graphs
of the input game are taken only from claSsand the local utility
functions are taken only from clagé In this paper we are inter-
ested in problems of the form PURE-GG, —), which means that
the local utility functions are unconstrained, other than the require-
ment that the input is a well-formed graphical game, i.e. that each

2.7 Complexity of Homomorphism Problems

2.5 Homomorphlsm Grohe [12], in a breakthrough paper, characterizes the tractable

Let G and H be two colored hypergraphs. Bomomorphism instances of the homomorphism problem when we restrict the left
from G to H is a mapping: from the vertex set of to the vertex input graphs.
set of H that preserves both adjacency and color, i.e. for every edge
e=(a1,as, - ,ar) € Ea, h(e) = (h(a1), h(az), - , hlax)) € THEOREM.5 (GROHE[12]). Assume FPE WI[1]. Then fqr
Ex andCe(e) = Cr (h(e)). Inahomomorphism probleyme are every recursively enumerable claSsof colored hypergraphs with

givenG andH and have to decide whether there exists a homomor- Pounded arity the following statements are equivalent.
phism fromG to H.

For two classe€ andD of colored hypergraphs |€tOM(C, D)
be the homomorphism problem when the input colored hypergraphs 2. p-HOM(C, —) is fixed-parameter tractable.
are taken only from class&€sandD. When an input class is the ]
class of all colored hypergraphs, we use the notatigrinistead. 3. C has bounded modulo-treewidth.

Two hypergraphss and H are homomorphically equivalerit
there is a homomorphism fro to H and vice versa. A clas§
has bounded treewidth modulo homomaorphic equivalence if there
exists some constaitsuch that every hypergraph @ is homo-
morphically equivalent to a hypergraph with treewidth at mfast
For example the class of bipartite graphs have bounded treewidth‘?" MAIN RESULT
modulo homomorphic equivalence as they are homomorphically . . .
equivalent to an edge. We useodulo-treewidth) to indicate 31 Dlgraphs with sinks
the minimumék for which G is homomorphically equivalent to a One’s first intuition is to try and show a correspondence between
hypergraph of treewidtk. PURE-GGQC, —) and HOM (H(C), —) for arbitrary classes of

bounded-degree graphs. In fact such correspondence does not exist

EXAMPLE 4. We describe a class of colored hypergraphical for arbitrary graphs. For example, a graphical game on a directed
games with bounded treewidth modulo homomorphism equivalenceacyclic graph (DAG) always has a PSNE, which can be computed

1. HOM(C, —) is in polynomial time.

Under a slightly stronger assumptionrasnuniform-FP T
nonuniform-W[1] this result holds for arbitrary (not necessarily
recursively enumerable) claés

Each game hasi?>+2m players. There are 4 colofsL, R, X, Y }. efficiently by a greedy algorithm that goes through vertices in the
We haven players labeled; ... I, andm players labeled topological order, from sources to sinks. Consider the clags
r1,...,rm. Foreachi,j € {1,...,m} we have a player;; of k-bounded in-degree DAGsH (D) has unbounded modulo-
and a playery;;. For each playerz,;;, we have an hyperedge treewidth, however PURE-G®, —) is in polynomial time. This
(215,45, li,r;) of color X; for each playery;,;, we have an hy- is just an example of a more general phenomenon in graphical
peredge(y,;, zi;, li, ;) of color Y. Furthermore for each player ~ 9ames. LetGG = (G, {Ui}ien) be a graphical game. @ has

1; we have a hyperedge;) of color L and for each player; we a sinku (i.e. u has out-degree zero) then the actioruadoes not

have a hyperedgér;) of color R. The colored hypergraph is ho-  affect any other player. This means we can simply solve the game
momrophically equivalent to the fragment involving only the ver- Without playeru and the resulting game has a pure Nash equilib-
ticesly, 1,211,411 and their corresponding hyperedges. There- rium if and only if GG has one.

fore these colored hypergraphical games have modulo-treewidth 3, 5Gohe stated his result aslational structuresnstead of colored
while the treewidth of each hypergraph is at least hypergraphs. The two formulations are equivalent.




Intuitively, this is because in a graphical game (and any game in

We can define analogous concepts for colored hypergraphs and

general) each player has at least one action, and as a result, whateolored hypergraphical games, by looking at their induced digraphs.
ever actions others chose, each player has at least one best respons&.colored hypergrapltz € ¥ is irreducible if and only if its in-

We formalize this intuition as the following classification of di-
graphs into reducible and irreducible graphs:

DEFINITION 6. A directed graphG is irreducibleif it does not
have a sink (a vertex with out-degree zero). Othervisés re-
ducible

Itis often helpful to consider the strongly connected components
(SCCs) of a directed graph. In particular, we can characterize irre-
ducible graphs by theterminal SCCs

DEFINITION 7. A strongly connected component(SGO)f G
is terminalif there is no outgoing edges from A terminal SCC is
by definition a maximal SCC.

LEMMA 8. If G is irreducible then all its terminal SCCs have
size at least 2.

This is because otherwise, a vertex in a terminal SCC with only one
vertex would have out-degree zero.

It turns out that for our purposes, given an arbitrary digraph we
can focus on its subgraph resulting from iterative removal of sinks.

DEFINITION 9. Given a directed graplt, its reduced graph
red(G) is the result of the following algorithm:

1. repeat untilG does not change:

(a) remove all vertices with out-degree zero as well as their
incoming edges.

2. returnG

DEFINITION 10. Given agraphical gam&'G = (G, {U; }ien),
its reduced gameed(GG) is (red(G), {Ui}icv (edc))), i-€. the
game obtained by removing all agents corresponding to reducible
vertices ofG.

red(GG) is well defined because for all € red(G), vertices that
are neighbors of in G are not reducible vertices, so they are still
present irred(G).

LEMMA 11. A graphical gameGG has a pure Nash equilib-
rium if and only if its reduced game ré@G) has a pure Nash
equilibrium.

LEMMA 12. SupposeC is a recursively enumerable class of
graphs with bounded in-degree, such that PURE{@&@(C), —)
isin P. Then PURE-G@, —) isin P.

For the other direction, we would like to prove that if graphical
games on a class of grapfigs tractable, then graphical games on
red(C) is also tractable. This is not trivial, because although the
reducible vertices of graphs thdo not affect the existence of pure
equilibria, the subgraphs on these vertices could potentially carry
information (similar to advice strings in complexity theory) such
that PURE-GGC, —) is easier than PURE-G@d(C), —). It turns
out that if we consider the parameterized version of the problem,
then if p-PURE-GGC, —) is in FPT then p-PURE-G@ed(C), —)
is in FPT. This will be sufficient for our purposes. The proof of the
following lemma is given in Appendix A.

LEMMA 13. SupposeC is a recursively enumerable class of
graphs with bounded in-degree, such that p-PURE(GG-) is in
FPT. Then p-PURE-G@ed(C), —) is in FPT.

duced digraph is irreducible. Givefi € %, its reduced colored
hypergrapired(G) is obtained by removing all reducible vertices

of the induced digraph off and all hyperedges that include these
reducible vertices. Reduced colored hypergraphical games can be
defined similarly. Lemmas 12 and 13 can be straightforwardly ex-
tended to colored hypergraphical games.

3.2 Main Theorems

The above implies that for the complexity of PURE-@G —)
and PURE-CHGC, —), itis sufficient to consider irreducible graphs.
The complexity for a general clagsthen correspond to the com-
plexity for red(C). It turns out that if we restrict to irreducible
graphs, there exists a correspondence between PURE-CHG
andHOM (H(C), —). We are now ready to state our main result,
which will be proved in the rest of Section 3:

THEOREM 14. Assume FPT# WI[1]. Then for every recur-
sively enumerable class of bounded arity colored hypergrapfas
3, the following statements are equivalent.

1. PURE-CHQGC, —) is in polynomial time.
2. p-PURE-CHGC, —) is fixed-parameter tractable.
3. for everyG € C, red(G) has bounded modulo-treewidth.

The directionl — 2 is trivial; the “tractability” direction3 — 1 is
proved in Section 3.3; the “hardness" directibr- 3 is proved in
Sections 3.4 and 3.5.

We then obtain as a corollary the characterization for the com-
plexity of PURE-GGC, —). We make use of the following lemma
on the modulo-treewidth of((G).

LEmmMA 15. Given adigraph, the modulo-treewidth 6ft(G)
equals the treewidth dfl(G).

Furthermore, we can relate the treewidth of a digrépto the
treewidth of H(G). Daskalakis and Papadimitriou [7] showed that
given an undirected grapH with bounded degree, the treewidth
of its induced hypergraph/ (H) and the treewidth off are within
a constant factor of each other. This result cannot be directly ap-
plied to digraphs, because the induced hypergraph of the undirected
version of a digrapltz can be different front{(G). Nevertheless,
their proof can be relatively straightforwardly adapted to digraphs,
yielding the following lemma.

LEMMA 16. Given a digraphG with bounded in-degree, the
treewidth ofH(G) and the treewidth of the undirected versior(df
are within a constant factor of each other.

This means for our purposes bounded treewidt#¢f) implies
bounded treewidth of and vice versa. We are now ready to state
the characterization for PURE-GG, —), which is a direct conse-
guence of Theorem 14 and Lemmas 15 and 16.

COROLLARY 17. Assume FPE£ W[1]. Then for every recur-
sively enumerable class of digraphs with bounded in-degree the
following statements are equivalent.

1. PURE-GQC, —) is in polynomial time.
2. p-PURE-GGC, —) is fixed-parameter tractable.
3. for everyG € C, red(G) has bounded treewidth.



Comparing Theorem 14 and Corollary 17, CHGs gives a wider
family of tractable games compared to graphical games. For ex-

ample, the class of CHGs described in Example 4 has bounded

modulo-treewidth but unbounded treewidth. Thus they would be
intractable if represented as graphical games.

We also obtain as a corollary the characterization for the pure
equilibrium problem for graphical games defined on undirected
graphs. Define PURE-UGE', —) to be the problem of deciding
existence of pure equilibrium on such undirected graphical games,
restricted to the class of graplis Then under the same assump-
tions,C'is tractable if and only if its graphs have bounded treewidth.

3.3 Proof of Tractability Result

We use the following lemma that reduces a colored hypergraph-
ical game to a homomorphism problem instance. The tractability
direction of Theorem 14 then follows straightforwardly.

LEMMA 18. LetI’ = (G, {U;}icn) be a colored hypergraph-
ical game. It is possible to construct in polynomial time an in-
stance(G’, H")of homomorphism problem such tHahas a pure
equilibrium if and only if there exists a homomorphism fréfnto
H'. Furthermore ifG has bounded arity and bounded modulo-
treewidth then so does’.

PROOF Given a colored hypergraphical gafie= (G, {Uc}cer),
each player havingn actions, we construct the instan@&’, H')
of the homomorphism problem as follows. L&t = G. H’ con-
sists ofm vertices, one for each action jm]. For each coloe, for
each action tupléa, a1, az, - - - , a,) such that

!
a € arg max Uc(a',a1,a2, - ,ar)
a’€[m]

(i.e. a is a best response for a player with utility functib given
neighbor actiongai, a2, - - - , ar)), create an hyperedge
(a,a1,az,--- ,a,) of H with colorc.

If T" has a pure Nash equilibrium then the mapping that maps
each vertexu to the vertexa, whereaq is the action chosen by
in the pure Nash equilibrium, is a homomorphism. For the other
direction, if H' is a homomorphism ofs’ and the corresponding
mapping function ig then/(u) corresponds to an action of and
for every edge™ = (u, u1, uz,--- ,ur) of colorcin G’, £(e*)
(L(u), €(u1),(u2), - ,£(u,)) must be an edge of colaerin H'.
This implies that’(u) is a best response action of playeagainst
his neighbors’ actions. Therefore, the mappingprresponds to a
pure Nash equilibrium.

Since G’ is identical toG, both maximum arity and modulo-
treewidth remain unchanged[]

3.4 Hardness for graphical games

We first consider the hardness result for graphical games. In
Section 3.5 we extend our approach to colored hypergraph games.

As mentioned in the introduction, applying the hardness proof
approach of [11] to our setting would create graphical games with
a particular structure, which is not sufficient for our purpose be-
cause we want to characterized the complexity of PUREGG-)
given anarbitrary classC.We thus use a different construction in
our proof of the hardness direction, which starts with an arbitrary
classC of irreducible digraphs, constructs a bijective mapping to
a classC’ of colored hypergraphs, and then show that for any in-
stance(G, H) of HOM(C',—) we can construct an equivalent
instance of PURE-G@, —). We can then apply Theorem 5 to get
the hardness result.

The key step of the proof is the following lemma. Recall that
given digraphG, H(G) is the colored hypergraph with hyperedge

e; (the edge that corresponds to verieand its neighbors) being
colored with color:.

LEMMA 19. Let G be an irreducible digraph. Then for any
colored hypergraphH, there exists a graphical gan@G =
(G, {U;}ien) such that there is a homomorphism fré#{(G) to
H if and only if GG has a PSNE.

The reduction is outlined as follows. (We give a detailed proof
of the lemma in Appendix B.) Each player’s action set consists of
V (H) plus some “failure actions”, in this cageand B. We define
the utility for ¢, given a local strategy profile ove(:), such that
if the local strategy profile correspond to a hyperedg# iaf color
1, theni gets a high payoff (say 100), such that if there exists a
homomorphism front{(G) to H, then the corresponding strategy
profile is a PSNE.

If the local strategy profile does not correspond to an edge of
right color in H, we set the utilities so that playeis forced to play
one of the failure actions. This implies that out-neighbors of i are
forced to play failure actions, and so on. Now we just need to set
utilities such that if at least one player plays failure actions, then no
PSNE exists. Recall that @ was a DAG, then there always exists
a PSNE; i.e. a game construction with no PSNE must contain a
cycle. FortunatelyG is assumed to be irreducible, which means
that all of its terminal SCCs has a directed cycle of length at least
2. For each of the terminal SCCs, fix a cycle and set the utilities of
players on that cycle (given failure actions of their neighbors) to be
a generalization of the Matching Pennies game: one of the players
is incentivized to play the opposite failure action as his predecessor
in the cycle, while all other players on the cycle are incentivized to
imitate their predecessors.

If there is no homomorphism, then for any strategy profile, there
must be one player forced to play failure actions, which implies that
at least one terminal SCC play failure actions, which implies that
one of these cycles are playing the generalized Matching Pennies
game, which does not have a PSNE.

Using Lemma 19, given an FPT algorithm for p-PURE-EG—)
we can construct an FPT algorithm fsHOM(C’, —) whereC’ =
{H(G)|G € red(C)}. This implies the hardness direction for
graphical games.

3.5 Hardness for colored hypergraphical games

To prove the hardness direction of Theorem 14, it is sufficient to
extend Lemma 19 to colored hypergraphical games:

LEMMA 20. LetG € X be an irreducible colored hypergraph.
Then for any colored hypergrapH, there exists a colored hyper-
graphical gamd® = (G, {U.}cc~-) such that there is a homomor-
phism fromG to H if and only ifI" has a PSNE.

We sketch a proof of the lemma in this section. At a high level,
the main difficulty when extending our proof of Lemma 19 to col-
ored hypergraphical games is that players with the same color must
have the same utility function. Instead of being able to specify the
utility function for each player in the graphical game case, now we
need to define one utility functiofl.. for each color. In fact, our
generalized Matching Pennies construction for the graphical game
case cannot be directly applied to colored hypergraphical game,
and our proof of Lemma 20 instead uses a different construction
involving 2n + 1 failure actions for each player.

Part of the hardness proof for graphical games can be relatively
easily adapted to colored hypergrahical games: each player’s action
set still consists o¥/ (H) plus some failure actions (to be specified
later). We set the utility functio/. so that if the input action
tuple corresponds to a hyperedge of celan H, then the utility is



100. This will ensure that if there exists a homomorphism, then the
corresponding strategy profile is a PSNE. This concludes the proof
of the “if” direction of Lemma 20.

The “only if” direction is more difficult. In particular, it is dif-
ficult to define the utilities for the failure actions in a way that re-
spects the color constraints. For one, we would not be able to ex-
press the generalized Matching Pennies game now: in the worst
case all players may have the same color. Also, we cannot specify
a cycle and then define utility functions on that cycle in a way that
ignore all edges not in the cycle: this would also require player-
specific utility functions.

Thus we want the utilities given failure actions to not depend
on the player. For the simple case of a single cycle, the follow-
ing construction is sufficient. (For notational convenience, we only
specify the best response functi®R, which maps a tuple of ac-

e if no neighbors are playing failure actions, then utility of
playing failure action 1 is +1, all others -100;

e otherwise, letfmax be the max failure action of neighbors.
If fmax < 2n + 1, thenBR = fmax + 1; otherwise (i.e.
fmax=2n+1),letBR =n + 1.

We now sketch the “only if” direction of Lemma 20. If there is
no homomorphism, then for any strategy profile, some player must
play failure actions, which implies that some SCC (and all SCCs
reachable form there) must play failure; the other SCCs must not
play failure actions. Given a strategy profile, consider the “earliest
reached" non-singleton SCC, as defined by the following process:
go through SCCs in topological order, in the direction of the edges;
return the first non-singleton SCC whose players choose failure ac-
tions. All earlier SCCs are either not playing failure actions, or a

tions of the neighbors to a single action as the best response. Giversingleton SCC that is playing failure actian<= n.

the B R function the utilities can be defined straightforwardly.)

LEMMA 21. Given a colored hypergrapfy, whose induced di-
graph consists of just one cycle with lengththe following colored
hypergraphical game o6 does not have PSNE:

e each player’s actions are the integdis. .., p — 1;

e let BR(a) = (a+ 1) mod pwherep > n + 1.

We omit the straightforward proof. If we think @ R as arcs from
a to BR(a), then the digraph on actions fornpecycle.

This can be extended to strongly connected digraphs, by the the
following construction:

LEMMA 22. Given a colored hypergrapy, whose induced di-
graph is strongly connected, the following colored hypergraphical
game onG does not have PSNE:

e each player’s actions are the integdls. . . , n;

e given neighbors’ actiongsy, . . ., sm), let BR(s1, . . .
(max{si,...,sm}+1) mod (n+1).

The intuition is that for each strategy profile, at least one neighbor
is "activated" in the following sense: Given digraph= (V, E),
strat profiles, we say an edgéu, v) € E is active if

,Sm):

u € arg max

S,/
u':(u,v)EE w

i.e. u's action unders is maximal among’s neighbors. LeG’

be the subgraph af where we only keep the active edges, i.e. for
each player, only keep the edge from the neighbor playing the
highest action among neighbors. We claim t&4tmust contain a
cycle, i.e. is not a DAG. This is becauégis strongly connected,
which means it has no source, i.e. all verticegzbhave positive
number of incoming edges. This implies that all verticesBf
have positive number of incoming edges, i@’ has no source.
ThereforeG’ is not a DAG.

SinceG’ must contain a cycle, on that cycleR(a) = (a + 1)
mod (n + 1), which implies that at least one player on that cycle
is not playing a best response. Thereferaust not be a PSNE.

The above construction does not directly work for the general
case of digraphs with no sinks: na@ could be a DAG. It turns
out that we can indeed fix the construction to work for all digraphs
with no sinks. At a high level, instead of forming a best-response
cycle with the actions, we form @shape with a cycle and a tail.

We now complete the specification of the utility functions for our
construction for Lemma 20. The failure actions are. ., 2n + 1.

If the input action tuple ot/. does not correspond to a hyperedge
in H with the same coloe, then:

Given strategy profiles, consider the graplir¢, which is the
subgraph ofG restricted over the earliest non-singleton SCC and
all earlier singleton SCCs playing failure actions:

First, we claim that if one playef in the non-singleton SCC is
playing an action less or equal tg thens must not be a PSNE.
This is because for such an actibn< n to be a best response,
all incoming neighbors within the SCC must be playing even lesser
failure actions. If we iteratively follow an incoming neighbor within
the SCC, thus with decreasing actions, we either encoyratgain,
with action less thah, a contradiction, or a playérplaying action
1. For 1 to be a BR, all neighbors must not play failure actions;
butk is in a non-singleton SCC with all players playing failure ac-
tions, so there must be at least one neighbor playing failure actions,
a contradiction.

Therefore, in order fos to be an PSNE, all players in the non-
singleton SCC must play failure actions greater thartWe claim
that if this is the case, then each vertex in the non-trivial SCC must
have an active neighbor in the same SCC. This is because if an edge
from a singleton SCC i to a player: the non-singleton SCC in
Gy is active, then because the player in the singleton SCC is play-
ing some actiorn <= n, the target playef in the non-singleton
SCC must have an inactive neighbor in that SCC, i.e. some player
j in the non-singleton SCC is playirig< a < n. We have argued
above that this would contradict withbeing a PSNE. Therefore,
each vertex in the non-trivial SCC must have an active neighbor in
the same SCC. By the same argument as for the strongly connected
digraph case, there must exist an active cycle in the SCC. Since ev-
ery player on that active cycle is playing an action greater than
they are playing a shifted version of the game in Lemma 22. This
implies thats cannot be a PSNE.

4. DISCUSSION AND FUTURE WORK

Our results can be understood as establishing an equivalence
between PSNE problems and homomorphism problems. Such a
equivalence relation is closer than the kind of equivalence between
two NP-complete problems: we are in fact showing a family of
equivalences, between PURE-CHG —) for an arbitrary clas§’
andHOM(red(C), —). On the other hand, our results also show
that there are certain differences between the two problems: be-
cause in a graphical/colored hypergraphical game each player has
at least one best response regardless of her neighbors’ actions, we
can iteratively remove sinks without affecting the answer, whereas
the same does not hold for homomorphism problems in general.

We have focused on the decision problem on the existence of
pure Nash equilibria. Related problems include counting the num-
ber of pure Nash equilibria and finding one such equilibrium if one
exists. On the homomorphism problem side, Dalmau and Jonsson



[4] gave a characterization of the complexity of the counting ver-
sion of HOM(C, —), while the characterization for the construction
problem is still open. An interesting direction is to adapt our reduc-

tions to the counting and construction versions of these problems,
as well as to cases with unbounded in-degree. Another direction is
to use similar techniques to prove characterizations for other game

representations such as action graph games [1, 14].
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APPENDIX
A. PROOF OF LEMMA 13

PROOF Given classC with in-degree bounded b¥, and an
FPT algorithm for p-PURE-G(, —), we now construct a fixed-
parameter tractable algorithm for p-PURE-@G&I(C), —). Given
G' € red(C), we run the following algorithm:

1. Enumerate the clagsuntil we find a graphG € C such that
G’ = red(G).

2. Run algorithm for p-PURE-GE, —) onG.

We claim that Step 1 always terminates and its running time is
bounded by a computable function on the sizeG4f This is be-
cause the clas§’ is recursively enumerable, and because by def-
inition, for eachG’ € red(C), there exists a grapi’ € C such
thatG’ = red(G). Therefore we have a fixed-parameter tractable

algorithm for p-PURE-G@ed(C), —). [

B. PROOF OF LEMMA 19

PROOF. LetG’s terminal SCCs ba, . .., mm. For eachr;, fix
acyclei} — ... — z‘fr'j — 4}. This is always possible sindg
is irreducible and, hence, every terminal SCC has at least two ver-
tices. These cycles are disjoint since the terminal SCCs are maxi-
mal SCCs.

The graphical gamé&'G is constructed as follows.

e Each playet’s action setis/(H) UT U B. T andB are the
“failure actions”.

e Player:’s utility: by the definition of graphical game, his util-
ity deper@s on the actions chosen by him and his neighbors.
Letp: € " cn)Si be the tuple of actions chosen bgand
its neighbors.

1. If p; corresponds to a hyperedge in H with the same color
ase; (the edge corresponding £d(¢)), theni’s utility is
100.

2. Otherwise:

(a) If 7 is not playing one of the failure actioAs or B,
theni gets—100.
(b) Otherwise, ifi = ch in one of the pre-defined cycles:

i. If &> 0,theni= zfcs payoff depends only on the
actions of herself and, . If ¢, plays other
thanT or B, i gets 0 by playing eithef” or B.
Otherwise,: gets 1 if both she and,_, playsT
or both playsB, and -1 otherwise.

i. If &k =0,theni = zos payoff depends only on
the actions of herself and. . If i/ plays other
thanT or B, i gets 0 by playing eithef” or B.
Otherwise; gets -1 if both she and]. playsT or
both playsB, and 1 otherwise.

(c) Otherwisej gets 0 (by playing eithef or B).

We claim that this graphical game has a PSNE if and only if there
is a homomorphism frorf{G to H.

if part : if there exists a homomorphism frofG to H whose
mapping function is, then in the graphical game, the strategy in
which each playei playsh(i) is a Nash equilibrium.

only if part: A PSNE where everyone gets 100 corresponds to
a homomorphism. Furthermore, the only PSNE of the graphical
game are ones where every player gets 100. This is because if
some playet fails to get 100, then he has to pldyor B to avoid
the -100 penalty. This makes all his (outgoing) neighbors fail to get
100 as well, so they also have to pl@yor B. i is either part of
a terminalr; or there is a path to a vertex in a termingl Since
i plays failure actions all players im; must play failure actions
as well. Therefore the pre-defined cyéle — ...
play failure actions. The utilities are set up so that the players in
this cycle are playing a game similar to Matching Pennies, and it
is straightforward to verify that there is no PSNE if they play the
failure actions. Therefore there’s no PSNE unless everyone gets
100. O
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