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1 Proof of Lemma 4

Proof. Given an arbitrary Bayesian game (N, {Ai}i∈N ,Θ, P, {ui}i∈N ) represented in Bayesian
normal form, we construct the BAGG (N,Θ, P, {A′i,θi}i∈N,θi∈Θi

, G, {uα}α∈A) as follows. The
Bayesian normal form’s tabular representation of type profile distribution P can be straightfor-
wardly represented as a BN, e.g. by creating a random variable representing θ as the only parent of
the random variables θ1, . . . , θn. To represent utility functions, we create an action graph G with∑
i |Θi||Ai| action nodes; in other words, all type-action setsA′i,θi are disjoint. Each action ai ∈ Ai

of the Bayesian normal form corresponds to |Θi| action nodes in the BAGG, one for each type in-
stantiation θi. For each player i and each type θi ∈ Θi, each action node α ∈ A′i,θi has incoming
edges from all action nodes from type-action sets A′j,θj for all j 6= i, θj ∈ Θj , i.e. all action nodes
of the other players. For each action node α ∈ A′i,θi corresponding to ai ∈ Ai, the utility function
uα is defined as follows: given configuration c(α) we can infer the action profile a′−i ∈ A′−i of the
BAGG, which then tells us the corresponding a−i and θ−i of the Bayesian normal form, which gives
us the utility ui(a, θ). The number of utility values stored in this BAGG is the same as the Bayesian
normal form.

2 Proof of Theorem 9

Proof. We reduce the problem of computing expected utility ui(σθi→ai |θi) for BAGGs with inde-
pendent type distributions to the problem of computing expected utility for AGGs.

Given a BAGG (N,G, {uα}α∈A), we consider the AGG Γ specified by (N,
{A∪i }i∈N , G, {uα}α∈A), i.e. an AGG with the same set of players, the same action graph
and the same utility functions, but with action sets corresponding to total action sets of the BAGG.
The representation size of the AGG Γ is proportional to the size of the BAGG. Furthermore, since the
BAGG is contribution-independent, all function nodes in the AGG Γ is contribution-independent.

Given i, θi and σθi→ai , for each player j 6= iwe can calculate Pr(Dj) by summing out θj : Pr(Dj =
aj) =

∑
θj
σj(aj |θj). Observe that this distribution of the strategy variable Dj can be interpreted

as a (complete-information) mixed strategy σ′j of the AGG Γ’s player j. Similarly for player i,
the distribution Pr(Di|θi) can be interpreted as a mixed strategy σ′i of Γ’s player i. Furthermore
these distributions are independent, so they induce the same distribution over configurations of the
BAGG as the distribution over configurations of the AGG Γ induced by the mixed-strategy profile
σ′ = (σ′1, . . . , σ

′
n).

Therefore the expected utility ui(σθi→ai |θi) for the BAGG is equal to the expected utility of i in
the AGG Γ under the mixed strategy profile σ′. Expected utility for contribution-independent AGGs
can be computed in polynomial time by running the algorithm of Jiang and Leyton-Brown [1].
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An alternative approach for proving Theorem 9 is to work on the TBN of the BAGG, which can be
shown to have treewidth as most |ν(ai)|. Although |ν(ai)| is not necessarily a constant so Theorem
8 cannot be directly applied, it can be shown that a variable elimination algorithm needs to store at
most |C(ai)| numbers in each of its tables, which is polynomial in the size of the BAGG. These two
proof approaches can be thought of as two interpretations of the same expected utility algorithm.

References

[1] A. X. Jiang and K. Leyton-Brown. A polynomial-time algorithm for Action-Graph Games. In
AAAI, pages 679–684, 2006.

2


