
A Polynomial-Time Algorithm
for Action-Graph Games

Albert Xin Jiang
Computer Science,

University of British Columbia

Based on joint work with
Kevin Leyton-Brown

Computation-Friendly Game
Representations

• Goal: use game theory to model real-world
systems
– allow large numbers of agents and actions

• Problem: interesting games are large;
computing Nash equilibrium, etc. is hard
– The normal form representation requires exponential

space in the number of agents
• Solution:

– compact representation
– tractable computation

Strict Payoff Independence
• n agents have bought land along a road
• Each agent has to decide on what to build
• Payoff depends on:

– What the agent decides to build
– What is built by adjacent and opposite agents

• Much work on such games, e.g. [La Mura, 2000], [Kearns, Littman,
Singh, 2001], [Oritz & Kearns, 2003], [Blum, Shelton, Koller, 2003], [Daslakakis &
Papadimitriou, 2006],…

this example follows [Koller & Milch, 2001]

Context-Specific Payoff Independence
• What if the agents can choose the location?
• Agent payoffs depend on:

– # of agents that chose the same location
– numbers of agents that chose each of the adjacent locations

i2
i3i1

k2

k3

k1

j2

j1

j3

Action-Graph Games [Bhat & Leyton-Brown, 2004]

B1 B3

T4

B4B2

T3T2T1

AGGs are Fully Expressive

i2
i3i1

k2

k3

k1

j2

j1

j3

Graphical Games as AGGs

i2

i3

i1

j2

j1

j3

k2

k3

k1

i j k

Node utility functionLocal game matrix
Bipartite graphs between action setsEdge
Action set boxAgent node
AGGGG

Other Related Work
• Other representations compactly represent CSI, but can’t

represent arbitrary games
– Congestion games [Rosenthal, 1973]

– Local effect games [Leyton-Brown & Tennenholz, 2003]

• Our current work extends past work on AGGs with:
1. a (much) faster algorithm for computing expected payoffs
2. an extension to the representation (“function nodes”)
3. experiments

Overview of Our Results

1. Computing with AGGs

2. Function Nodes

3. Experiments

Computing with Games
• Expected payoff of agent i for playing action si,

other agents play according to mixed-strategy
profile σ−i

:

• Useful computations based on
– Best Response
– Algorithms for computing Nash equilibrium

• Govindan-Wilson
• Simplicial Subdivision

– Papadimitriou’s Algorithm (correlated equilibrium)

Computing with AGGs: Projection

B1 B3

T4

B4B2

T3T2T1
B3

T4

B4

;

V1

C2C1

;

Computing with AGGs: Projection
• Projection captures context-specific independence and

strict independence

Computing with AGGs: Anonymity
• Writing in terms of the configuration captures anonymity

Dynamic Programming
• A ray of hope: note that

– the players’ mixed strategies are independent
• i.e. σ is a product probability distribution

– each player affects the configuration D independently

• Formal algorithm given in the paper; I’ll illustrate it today
using an example…

AGG Computation Example
• Example game:

– 4 players, 2 actions

• Compute joint probability
distribution σ where
σ1=(1, 0), σ2=(0.2, 0.8),
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

AGG Example: 0 players
• Example game:

– 4 players, 2 actions

• Compute joint probability
distribution σ where
σ1=(1, 0), σ2=(0.2, 0.8),
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1

AGG Example: 1 player
σ1=(1, 0), σ2=(0.2, 0.8),
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0

AGG Example: 2 players
σ1=(1, 0), σ2=(0.2, 0.8),
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0

P2((2,0))=0.2

σ2(a)=0.2

P2((1,1))=0.8

σ2(b)=0.8

AGG Example: 3 players
σ1=(1, 0), σ2=(0.2, 0.8),
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0

P2((2,0))=0.2

σ2(a)=0.2

P2((1,1))=0.8

σ2(b)=0.8

P3((3,0))=0.08 P3((2,1))=0.44

σ3(a)=0.4 σ3(b)=0.6

P3((1,2))=0.48

0.4 0.6+

AGG Example: 4 players
a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0

P2((2,0))=0.2

σ2(a)=0.2

P2((1,1))=0.8

σ2(b)=0.8

P3((3,0))=0.08 P3((2,1))=0.44

σ3(a)=0.4 σ3(b)=0.6

P3((1,2))=0.48

0.4 0.6

P4((4,0))
=0.04

P4((3,1))
=0.26

P4((2,2))
=0.46

P4((1,3))
=0.24

σ4(a)
=0.5

σ4(b)
=0.5 0.50.50.50.5

+ +

+

Putting it all together: Complexity

• Exponential speedup
– vs. standard approach.

– vs. algorithm in [Bhat & Leyton-Brown, 2004]

Overview of Our Results

1. Computing with AGGs

2. Function Nodes

3. Experiments

2D Road Game: Coffee Shop Game

Coffee Shop
• The action graph has in-degree rc

– AGG representation: O(rcNrc)
– when rc is held constant, AGG representation is polynomial in N

• but it doesn’t do a good job of capturing the structure in this game
• given i’s action, his payoff depends only on 3 quantities!

6 £ 5 Coffee Shop Problem: projected action graph at the red node

Function Nodes
• To exploit this structure, introduce function nodes:

– Represents intermediate parameters in utility function

• Coffee-shop example: for each action node s, introduce:
– One function node with adjacent actions as neighbours
– Similarly, a function node with non-adjacent actions as neighbours

6 £ 5 Coffee Shop Problem: function nodes for the red node

Coffee Shop
• Now the representation size is O(rcN3)

• Theorem: Our dynamic programming algorithm works
with AGGs with function nodes which are contribution-
independent
– players’ contributions to the configuration are independent of each other

(see paper for technical definition)

6 £ 5 Coffee Shop Problem: projected action graph at the red node

Overview of Our Results

1. Computing with AGGs

2. Function Nodes

3. Experiments

Experimental Results: Expected Payoff

Coffee Shop Game, 5 £ 5 grid, AGG vs. GameTracer using NF
1000 random strategy profiles with full support

AGG grows polynomially, NF grows exponentially

(largest NF game we
could fit in memory)

Conclusions
Action-Graph Games
• Fully-expressive compact representation of games

exhibiting context-specific independence and/or
strict independence

• Permit efficient computation of expected utility under a
mixed strategy.

• Can be enriched with function nodes

• Experimentally: much faster than the normal form

	A Polynomial-Time Algorithm for Action-Graph Games
	Computation-Friendly Game Representations
	Strict Payoff Independence
	Context-Specific Payoff Independence
	Other Related Work
	Overview of Our Results
	Computing with Games
	Computing with AGGs: Projection
	Computing with AGGs: Anonymity
	Dynamic Programming
	AGG Computation Example
	AGG Example: 0 players
	AGG Example: 1 player
	AGG Example: 2 players
	AGG Example: 3 players
	AGG Example: 4 players
	Putting it all together: Complexity
	Overview of Our Results
	2D Road Game: Coffee Shop Game
	Coffee Shop
	Function Nodes
	Coffee Shop
	Overview of Our Results
	Experimental Results: Expected Payoff
	Conclusions

