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Computation-Friendly Game 
Representations

• Goal: use game theory to model real-world 
systems
– allow large numbers of agents and actions

• Problem: interesting games are large;
computing Nash equilibrium, etc. is hard
– The normal form representation requires exponential 

space in the number of agents
• Solution:

– compact representation
– tractable computation



Strict Payoff Independence
• n agents have bought land along a road
• Each agent has to decide on what to build
• Payoff depends on:

– What the agent decides to build
– What is built by adjacent and opposite agents

• Much work on such games, e.g. [La Mura, 2000], [Kearns, Littman, 
Singh, 2001],  [Oritz & Kearns, 2003], [Blum, Shelton, Koller, 2003], [Daslakakis & 
Papadimitriou, 2006],…

this example follows [Koller & Milch, 2001]



Context-Specific Payoff Independence
• What if the agents can choose the location?
• Agent payoffs depend on:

– # of agents that chose the same location
– numbers of agents that chose each of the adjacent locations
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Action-Graph Games   [Bhat & Leyton-Brown, 2004]
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AGGs are Fully Expressive
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Graphical Games as AGGs
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Other Related Work
• Other representations compactly represent CSI, but can’t 

represent arbitrary games
– Congestion games [Rosenthal, 1973]

– Local effect games [Leyton-Brown & Tennenholz, 2003]

• Our current work extends past work on AGGs with:
1. a (much) faster algorithm for computing expected payoffs
2. an extension to the representation (“function nodes”)
3. experiments



Overview of Our Results

1. Computing with AGGs

2. Function Nodes

3. Experiments



Computing with Games
• Expected payoff of agent i for playing action si, 

other agents play according to mixed-strategy 
profile σ−i

:

• Useful computations based on
– Best Response
– Algorithms for computing Nash equilibrium

• Govindan-Wilson
• Simplicial Subdivision

– Papadimitriou’s Algorithm (correlated equilibrium)



Computing with AGGs: Projection
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Computing with AGGs: Projection
• Projection captures context-specific independence and 

strict independence



Computing with AGGs: Anonymity
• Writing in terms of the configuration captures anonymity



Dynamic Programming
• A ray of hope: note that

– the players’ mixed strategies are independent 
• i.e. σ is a product probability distribution

– each player affects the configuration D independently

• Formal algorithm given in the paper; I’ll illustrate it today 
using an example…



AGG Computation Example
• Example game: 

– 4 players, 2 actions

• Compute joint probability 
distribution σ where 
σ1=(1, 0), σ2=(0.2, 0.8), 
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4



AGG Example: 0 players
• Example game: 

– 4 players, 2 actions

• Compute joint probability 
distribution σ where
σ1=(1, 0), σ2=(0.2, 0.8), 
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1



AGG Example: 1 player
σ1=(1, 0), σ2=(0.2, 0.8), 
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0



AGG Example: 2 players
σ1=(1, 0), σ2=(0.2, 0.8), 
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0

P2((2,0))=0.2

σ2(a)=0.2

P2((1,1))=0.8

σ2(b)=0.8



AGG Example: 3 players
σ1=(1, 0), σ2=(0.2, 0.8), 
σ3=(0.4, 0.6), σ4=(0.5, 0.5)

a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0

P2((2,0))=0.2

σ2(a)=0.2

P2((1,1))=0.8

σ2(b)=0.8

P3((3,0))=0.08 P3((2,1))=0.44

σ3(a)=0.4 σ3(b)=0.6

P3((1,2))=0.48
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AGG Example: 4 players
a b

S1—4

P0((0,0))=1

P1((1,0))=1

σ1(a) = 1.0

P2((2,0))=0.2

σ2(a)=0.2

P2((1,1))=0.8

σ2(b)=0.8

P3((3,0))=0.08 P3((2,1))=0.44

σ3(a)=0.4 σ3(b)=0.6

P3((1,2))=0.48
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Putting it all together: Complexity

• Exponential speedup
– vs. standard approach.

– vs. algorithm in [Bhat & Leyton-Brown, 2004]



Overview of Our Results

1. Computing with AGGs

2. Function Nodes

3. Experiments



2D Road Game: Coffee Shop Game



Coffee Shop
• The action graph has in-degree rc

– AGG representation:  O(rcNrc)
– when rc is held constant, AGG representation is polynomial in N

• but it doesn’t do a good job of capturing the structure in this game
• given i’s action, his payoff depends only on 3 quantities!

6 £ 5 Coffee Shop Problem: projected action graph at the red node



Function Nodes
• To exploit this structure, introduce function nodes:

– Represents intermediate parameters in utility function

• Coffee-shop example: for each action node s, introduce:
– One function node with adjacent actions as neighbours
– Similarly, a function node with non-adjacent actions as neighbours

6 £ 5 Coffee Shop Problem: function nodes for the red node



Coffee Shop
• Now the representation size is O(rcN3)

• Theorem: Our dynamic programming algorithm works
with AGGs with function nodes which are contribution-
independent
– players’ contributions to the configuration are independent of each other

(see paper for technical definition)

6 £ 5 Coffee Shop Problem: projected action graph at the red node



Overview of Our Results

1. Computing with AGGs

2. Function Nodes

3. Experiments



Experimental Results: Expected Payoff

Coffee Shop Game, 5 £ 5 grid, AGG vs. GameTracer using NF
1000 random strategy profiles with full support

AGG grows polynomially, NF grows exponentially

(largest NF game we
could fit in memory)



Conclusions
Action-Graph Games
• Fully-expressive compact representation of games 

exhibiting context-specific independence and/or 
strict independence

• Permit efficient computation of expected utility under a 
mixed strategy.

• Can be enriched with function nodes

• Experimentally: much faster than the normal form
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